Technical Memorandum #1, Environmental Management Disposal Facility Phase 1 Field Sampling Results Oak Ridge, Tennessee

This document is approved for public release per review by:

7/2/18

ETTP Classification and Information Control Office

Date

DOE/OR/01-2785

Technical Memorandum #1, Environmental Management Disposal Facility Phase 1 Field Sampling Results Oak Ridge, Tennessee

Date Issued—July 2018

Prepared by Leidos Oak Ridge, Tennessee under subcontract SC-17-024714 under revision number 16

Prepared for the U.S. Department of Energy Office of Environmental Management

URS | CH2M Oak Ridge LLC Managing and Safely Delivering the Department of Energy's Vision for the East Tennessee Technology Park Mission under contract DE-SC-0004645

FIG	URES			vii
TAI	BLES			ix
ACI	RONY	MS		xi
EXI	ECUTI	VE SUM	IMARY	ES-1
	ES.1	SETTIN	IG	ES-1
	ES.2	PHASE	1 INVESTIGATION APPROACH AND RESULTS	ES-1
		ES.2.1	Surface Water Walkovers	
		ES.2.2	Locate the Maynardville Limestone	
		ES.2.3	Determine Surface Water Flow	
		ES.2.4	Drill and Install Piezometers	
		ES.2.5	Test Subsurface Materials	
	ES.3	PHASE	1 CHARACTERIZATION CONCLUSIONS	ES-6
1.	INTR	ODUCT	ION	1-1
2.	HYD	ROGEO	LOGIC SETTING	2-1
2.	2.1		AL SITE CONDITIONS	
	2.2		GY/HYDROLOGY	
	2.2	2.2.1	Geology	
		2.2.2	Surface Water Hydrology	
	2.3		NDWATER	
	2.4		ONCEPTUAL MODEL	
3.	CLIDI		ATER WALKDOWN EVALUATION	2 1
э.	3.1		ATER WALKDOWN EVALUATION	
	3.1 3.2		IGS	
	5.2	3.2.1	Parameter Results	
		3.2.1	Seep Locations	
4.			TILLE CONTACT EVALUATION	
	4.1		ACH	
	4.2	FINDIN	GS	4-1
5.	SURI	FACE W	ATER FLOW EVALUATION	5-1
	5.1	APPRO	ACH	
	5.2	FLUME	DATA FINDINGS	5-1
6.	GRO		TER EVALUATION	61
0.	6.1		ACH	
	6.2 NEW PIEZOMETERS			
	6.3		IGS	
	0.5	6.3.1	FLUTe TM /Slug Test Results	
		6.3.2	Groundwater Monitoring Findings	
			0 0	

		6.3.3	Groundwater Elevation Data	
		6.3.4	Comparable Existing Piezometers	6-13
7.	7.1	APPRC	NICAL TEST RESULTS OACH MARY OF KEY RESULTS	7-1
8.	VAL	IDATIO	ON OF KEY ASSUMPTIONS	8-1
9.	REFI	ERENCE	ES	9-1
APF	PENDI	X A SU	URFACE WATER MEASUREMENTS	A-1
APF	PENDI	X B BC	ORING LOGS	B-1
APF	PENDI	X C SL	LUG TEST DATA	C-1
APF	PENDI	X D FL	LUTe TM TESTS	D-1
APF	PENDI	XE GR	ROUNDWATER ELEVATION PLOTS	E-1
APF	PENDI	X F GE	EOTECHNICAL LABORATORY REPORTS	F-1

FIGURES

Fig. ES.1.	Location of the proposed EMDF.	ES-2
Fig. ES.2.	Monitoring locations at EMDF.	ES-3
Fig. 1.1.	Location of the proposed EMDF.	1-2
Fig. 2.1.	General features of the EMDF site.	2-2
Fig. 2.2.	Geologic map of the EMDF and surrounding area.	2-3
Fig. 2.3.	General geologic cross-section of the EMDF site	2-4
Fig. 3.1.	Surface water measurement locations in the vicinity of the EMDF.	
Fig. 4.1.	Monitoring locations at EMDF.	4-2
Fig. 5.1.	Surface water flow measurements at EMDF weirs	5-2
Fig. 6.1.	Piezometer locations at the EMDF.	6-2
Fig. 6.2.	North-south geologic cross-section of EMDF	6-9
Fig. 6.3.	East-west geologic cross-section of EMDF.	
Fig. 6.4.	Time trend plot of groundwater elevation, specific conductivity, and pH with daily	
e	rainfall for well pair GW-978/GW-979.	6-14
Fig. 6.5.	Time trend plot of groundwater elevation, specific conductivity, and pH with daily	
C	rainfall for well pair GW-980R/GW-981	6-15
Fig. 6.6.	Time trend plot of groundwater elevation, specific conductivity, and pH with daily	
e	rainfall for well pair GW-982/GW-983.	6-16
Fig. 6.7.	Time trend plot of groundwater elevation, specific conductivity, and pH with daily	
U	rainfall for well pair GW-986/GW-987.	6-17
Fig. 6.8.	Time trend plot of groundwater elevation, specific conductivity, and pH with daily	
C	rainfall for well pair GW-988/GW-989.	6-18
Fig. 6.9.	Time trend plot of groundwater elevation, specific conductivity, and pH with daily	
0	rainfall for well pair GW-992R/GW-993.	6-19
Fig. 6.10.	Time trend plot of groundwater elevation, specific conductivity, and pH with daily	
U	rainfall for well pair GW-994/GW-995.	6-20
Fig. 6.11.	Time trend plot of groundwater elevation, specific conductivity, and pH with daily	
U	rainfall for well pair GW-998/GW-999.	6-21
Fig. 6.12.	Water levels at well pair GW-978/GW-979	
	Water levels at well pair GW-980R/GW-981.	
	Water levels at well pair GW-982/GW-983	
	Water levels at well pair GW-986/GW-987	
	Water levels at well pair GW-988/GW-989	
	Water levels at well pair GW-992R/GW-993.	
Fig. 6.18.	Water levels at well pair GW-994/GW-995	6-25
Fig. 6.19.	Water levels at well pair GW-998/GW-999	6-25
-	Bear Creek Valley well locations	
	Extrapolated water levels for GW-978.	
•	Extrapolated water levels for GW-979.	
	Extrapolated water levels for GW-980R	
	Extrapolated water levels for GW-981.	
U	Extrapolated water levels for GW-982.	
	Extrapolated water levels for GW-983.	
	Extrapolated water levels for GW-986.	
•	Extrapolated water levels for GW-987.	
•	Extrapolated water levels for GW-988.	
•	Extrapolated water levels for GW-989.	
•	Extrapolated water levels for GW-992R.	

Fig. 6.32. Extrapolated water levels for GW-993.	6-34
Fig. 6.33. Extrapolated water levels for GW-994.	
Fig. 6.34. Extrapolated water levels for GW-995.	6-35
Fig. 6.35. Extrapolated water levels for GW-998.	
Fig. 6.36. Extrapolated water levels for GW-999.	6-36

TABLES

Table 5.1. Minimum and maximum flow rates for EMDF flumes, April 2018	5-3
Table 6.1. Slug test results for the EMDF shallow piezometers	6-3
Table 6.2. EMDF piezometer construction summary	6-5
Table 6.3. FLUTe [™] test result summary for the EMDF piezometers	6-11
Table 6.4. Vertical hydraulic gradients at EMDF, Spring 2018	6-13
Table 7.1. Summary of EMDF split-spoon and bulk sample laboratory index test results	7-2

This page intentionally left blank.

ACRONYMS

BCV	Bear Creek Valley
CBCV	Central Bear Creek Valley
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act of 1980
D	Drainage
DOE	U.S. Department of Energy
E	East
EMDF	Environmental Management Disposal Facility
EMWMF	Environmental Management Waste Management Facility
FLUTe TM	Flexible Liner Underground Technologies, LLC
FSP	Field Sampling Plan
NT	North Tributary
ORNL	Oak Ridge National Laboratory
ORR	Oak Ridge Reservation
PVC	polyvinyl chloride
QAPP	Quality Assurance Project Plan
RI/FS	Remedial Investigation/Feasibility Study
Т	transmissivity
TDEC	Tennessee Department of Environment and Conservation
TM	technical memorandum
UPF	Uranium Processing Facility
W	West
UCOR	URS CH2M Oak Ridge LLC

This page intentionally left blank.

EXECUTIVE SUMMARY

An estimated 2.2 million cubic yards of landfill disposal capacity beyond what is already available in the existing Environmental Management Waste Management Facility (EMWMF) is needed for the disposal of wastes from continuing Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup actions on the Oak Ridge Reservation. Additional capacity will be provided by the Environmental Management Disposal Facility (EMDF), which is proposed to be located in Central Bear Creek Valley (CBCV), approximately 1.5 miles southwest of the existing EMWMF (Fig. ES.1).

Characterization of this site began in February 2018 as described in the *Phase 1 Field Sampling Plan for the Proposed Environmental Management Disposal Facility for Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee* (Field Sampling Plan) [Department of Energy 2018]. Characterization was intended to determine if the key assumptions for groundwater and surface water conditions at the site were correct and to confirm the CBCV site was acceptable for a new, low-level waste landfill. Additional characterization is planned to develop the engineering design for the landfill.

The results of the Phase 1 data collection are contained in this Technical Memorandum (TM).

ES.1 SETTING

The CBCV site is located along Pine Ridge between two streams, North Tributary (NT)-10 and NT-11. A smaller stream at the site, Drainage (D)-10 West (W), is located just west of NT-10 (Fig. ES.2). The area is mostly forested, except for a cleared area with a large soil pile and two constructed wetlands for the Y-12 National Security Complex. The Haul Road and Bear Creek Road cross the southern edge of the site and will need to be rerouted prior to EMDF construction.

The anticipated landfill would overlie steeply angled bedrock with fine-grained shales, siltstones, and mudstones with some limestone layers. Recent stream deposits are present on the valley floors, particularly along D-10W at the eastern side of the site. Karst features, such as sinkholes, sinking streams, and resurgent springs, are not present beneath the proposed footprint of the CBCV site, but are present along Bear Creek south of the site.

Precipitation primarily runs off as surface water and shallow groundwater in the stormflow zone. During the summer/fall growing season, the streams within the CBCV site may dry up, although there is still flow during significant rainfall events. However, there is continuous surface water flow in Bear Creek.

ES.2 PHASE 1 INVESTIGATION APPROACH AND RESULTS

Bear Creek Valley (BCV) has been extensively investigated and monitored over the years, although not at the proposed EMDF location. The Phase 1 investigation provided site-specific information for the proposed EMDF site.

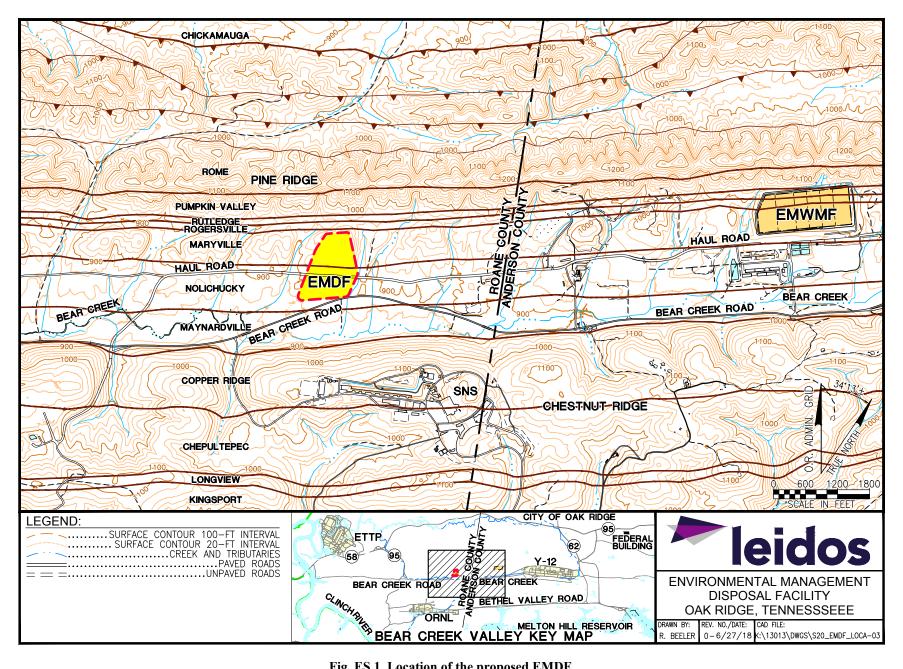


Fig. ES.1. Location of the proposed EMDF.

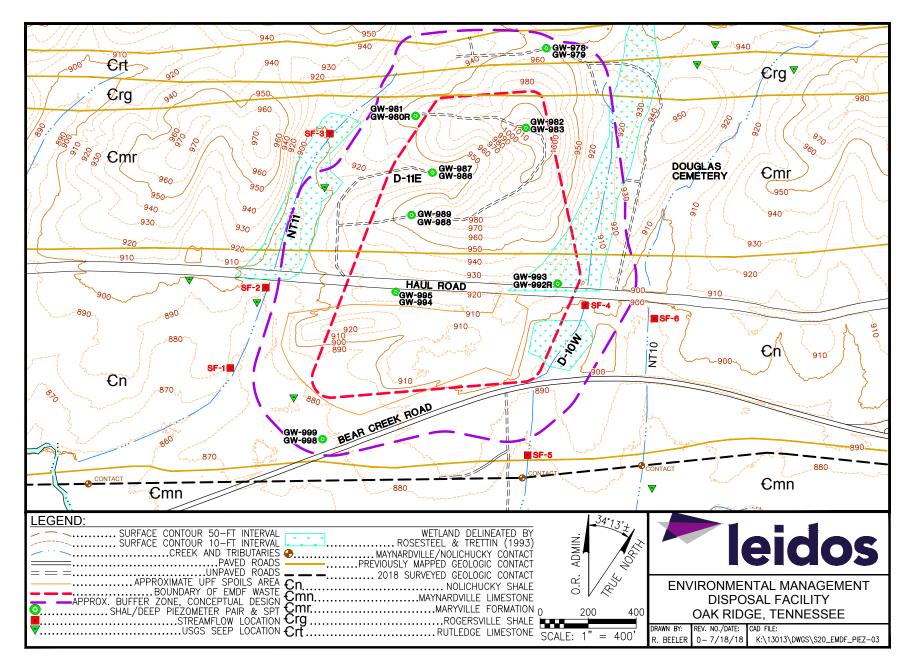


Fig. ES.2. Monitoring locations at EMDF.

The investigation approach was developed with the U.S. Environmental Protection Agency and Tennessee Department of Environment and Conservation (TDEC). The investigation consisted of the following tasks:

- Perform surface water walkovers to evaluate streams, identify seeps, springs, and other expressions of shallow groundwater.
- Locate the contact with the Maynardville Limestone, the type of bedrock most prone to contain karst features.
- Determine surface water flow by installing flumes to measure flow in NT-10, D-10W, and NT-11.
- Drill and install piezometers to measure groundwater surfaces and to obtain detailed subsurface information.
- Test subsurface materials to obtain design data to develop the engineering design for the proposed landfill.

The acquired data were used to verify the CBCV site is appropriate for siting a landfill and will be used to develop the engineering design.

ES.2.1 Surface Water Walkovers

Two detailed site walkovers were performed during the wet season (January 30, 2018, and February 27, 2018) to further characterize surface geology and hydrology; identify geotechnical areas of interest; and identify seeps, springs, and other expressions of shallow groundwater (Fig. ES.2). Two additional walkovers, representing drier conditions (May 1 and June 4, 2018) were also completed. TDEC participated in all of the walkovers.

All previously identified seeps were located except for one seep in a disturbed area. No additional seeps were identified during the site walkovers. Field data collected during the walkovers are provided in Appendix A. In general, pH and specific conductivity of the surface water in these tributaries increase from north to south. Additional dry season walkovers will be performed in the summer/fall of 2018 and will be documented in a second TM.

ES.2.2 Locate the Maynardville Limestone

The Maynardville Limestone is the type of bedrock most prone to contain karst features in BCV. The contact between the Maynardville and Nolichucky Shale was previously mapped by a regional investigation about 300 ft south of the planned landfill footprint. The January 2018 surface walkover with subject matter experts (SMEs) and TDEC geologists examined this location and revised the Maynardville Limestone contact in CBCV based on observations within NT-10 and D-10W streambeds. The contact location within the NT-11 streambed was found later by the same SME. The contact was confirmed to be approximately 50 ft further south of the proposed landfill location than was originally mapped (Fig. ES.2).

ES.2.3 Determine Surface Water Flow

Six surface water flow measurement stations were installed to determine surface water flow along the stream channels of NT-10, D-10W, and NT-11 (Fig. ES.2). These stations were placed to evaluate surface water flow, particularly close to the proposed landfill location. TDEC participated in the walkdown to determine flume placement.

Three flumes were installed along NT-11, two along D-10W, and one at NT-10 (Fig. ES-2). The flumes were sized to accommodate the reasonably expected flow rates based on historical information and additional field observations. No flume was installed at D-11E because there is no stream channel or observed surface water flow.

Flumes were equipped to measure surface water flow, pH, specific conductivity, and temperature at 30-min intervals. These data are automatically recorded and downloaded every two weeks. The surface water flow data will be used to design surface water controls for the landfill.

As expected, flow rates increase downstream, from north to south, and increase quickly in response to rainfall. April 2018 flow rates for NT-11 ranged from 22 to 700 gallons per minute (gpm). The flow rate for NT-10 during April 2018 has a similar range of 24 to 693 gpm. D-10W is a smaller stream and has a lower flow rate. The April 2018 flow rate ranged from 6 to 478 gpm. Later in the year during the dry season, there may be no flow at some of these flumes.

ES.2.4 Drill and Install Piezometers

Eight pairs of bedrock and shallow piezometers were installed within the proposed landfill area to monitor the groundwater (Fig. ES.2). First, boreholes were cored from the surface to total depth to obtain representative rock cores. These cores were photographed and described at the drill site. Next, subsurface testing was conducted in the bedrock holes to estimate the hydraulic properties. Piezometers were constructed with well screens placed to monitor groundwater bearing zones.

Following piezometer construction, the shallow piezometers were tested to estimate the hydraulic properties. After testing was completed, downhole monitors were installed to measure groundwater levels, temperature, pH, and specific conductivity at 30-min intervals. In general, the EMDF wells show typical fluctuations in specifc conductivity and pH in response to precipitation events. Groundwater levels show responses to rainfall events in most of the shallow and deep wells indicating some recharge is occurring at several locations on the site.

This TM includes data from the continuous monitoring of these 16 piezometers during the March/April time frame. Monitoring of the EMDF water levels will continue for at least one year to ensure seasonal high-water levels are captured for evaluation in the design of the EMDF, and data will be provided in the next TM.

Groundwater levels will be used to: (1) estimate the groundwater surface elevations across the entire footprint of EMDF prior to construction, and (2) provide information for the engineering design.

Continuous groundwater level monitors were installed in existing BCV groundwater wells located outside of the EMDF area in similar conditions prior to completing and instrumenting the CBCV piezometers. Data from these wells provide additional, comparable, wet season data and were used to provide the relative magnitude change in groundwater elevations during wetter periods. These data were then used to predict the February 2018 groundwater levels for each EMDF well (wet season high groundwater levels).

ES.2.5 Test Subsurface Materials

The laboratory testing program was directed toward determining the general soil classification, physical properties, shear strength, and compressibility of the soil for the engineering analysis and design of the EMDF. Limited permeability testing was also conducted on both relatively undisturbed samples (tube samples) and from recompacted bulk samples taken during piezometer drilling. All laboratory testing was performed in accordance with applicable American Society for Testing and Materials Standards. In total,

18 thin-walled (i.e., Shelby tube) samples, 69 split-spoon soil samples, 10 bulk soil samples, and 10 rock core samples were shipped to laboratories for testing. Appendix F provides the laboratory reports for geotechnical laboratory testing. The collected data will be used to develop the engineering design.

ES.3 PHASE 1 CHARACTERIZATION CONCLUSIONS

Results of the Phase 1 site characterization confirm the acceptability of the CBCV site for a new, low-level waste landfill and support final site selection based on the following conclusions.

Walkovers confirmed the location of existing seeps and did not locate additional seeps in the EMDF area. The contact with the Maynardville Limestone is located approximately 50 ft further south of the currently proposed EMDF footprint than previously mapped.

Precipitation primarily runs off as surface water and as shallow groundwater in the stormflow zone. Site walkovers found numerous cases where surface water entered and exited the soil through decayed trees and other types of features. Flumes record higher stream flows following precipitation, indicating that precipitation is running off as stormwater. Flow rates rapidly decrease when precipitation is over, indicating a smaller influence from groundwater.

Core drilling for the EMDF piezometers confirmed the presence of typical BCV geologic structures in the subsurface, including steeply dipping beds; interbedded shales siltstones and some limestone; and the presence of joints and fractures in bedrock.

Groundwater elevations are typical of other BCV wells in similar settings and were similar to the groundwater elevations predicted in the Remedial Investigation/Feasibility Study (RI/FS). Groundwater levels measured in both deep and shallow piezometers during the Phase 1 characterization confirmed that groundwater discharges as seeps in the valleys and drainages, and mirroring topography, is higher topographically beneath knolls/ridges. The elevation beneath the largest knoll in the site is lower topographically than predicted in the RI/FS. Groundwater levels respond to rainfall events, indicating minor recharge is occurring on the site.

1. INTRODUCTION

The mission of the U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management is to decommission and demolish numerous facilities and conduct remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. This effort requires an estimated 2.2 million cubic yards of landfill disposal capacity beyond what is available in the existing Environmental Management Waste Management Facility (EMWMF) for the disposal of wastes from CERCLA cleanup actions. The *Remedial Investigation/Feasibility Study for the Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee* (RI/FS) [DOE 2017], evaluated several alternatives for the disposal of this waste, including no action, off-site disposal, and on-site disposal.

The proposed Environmental Management Disposal Facility (EMDF) site on the ORR, located in Central Bear Creek Valley (CBCV), is approximately 1.5 miles southwest of the existing EMWMF. The approximately 70-acre tract was identified as the best alternative for development of the disposal facility based on available capacity and location (Fig. 1.1). The Phase 1 site characterization activities were focused on the CBCV site.

The Phase 1 site characterization activities began in January 2018. All activities were conducted in accordance with the *Phase 1 Field Sampling Plan for the Proposed Environmental Management Disposal Facility for Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee* (Field Sampling Plan [FSP]) [DOE 2018], which included the project-specific Quality Assurance Project Plan (QAPP) for the Proposed EMDF Design Investigation. The QAPP identifies the procedures that are to be followed in the collection, custody, sample handling, data management, and quality control activities for all anticipated EMDF investigation activities.

The objective of Phase 1 site characterization of the proposed EMDF site was to validate key assumptions regarding the hydrogeologic setting (groundwater and surface water conditions) at the site. These key assumptions will be used to confirm the acceptability of the CBCV for a new, low-level waste landfill and to support a final site selection. The key assumptions for the Phase 1 characterization are:

- Geology is typical of Bear Creek Valley (BCV) with steeply dipping, fractured bedrock, and there are no major karstic features in the Maryville, Nolichucky, or Rogersville formations underlying the CBCV site.
- The contact with the Maynardville Limestone is located south of the currently proposed EMDF footprint.
- Precipitation primarily runs off as surface water and shallow groundwater in the stormflow zone.
- Groundwater elevations are typical of other BCV wells in similar settings.

This Technical Memorandum (TM) #1 presents the data collected during the Phase 1 site characterization, the analysis of the data in relation to the geologic and hydrologic properties, and an evaluation of the key assumptions associated with the EMDF site.

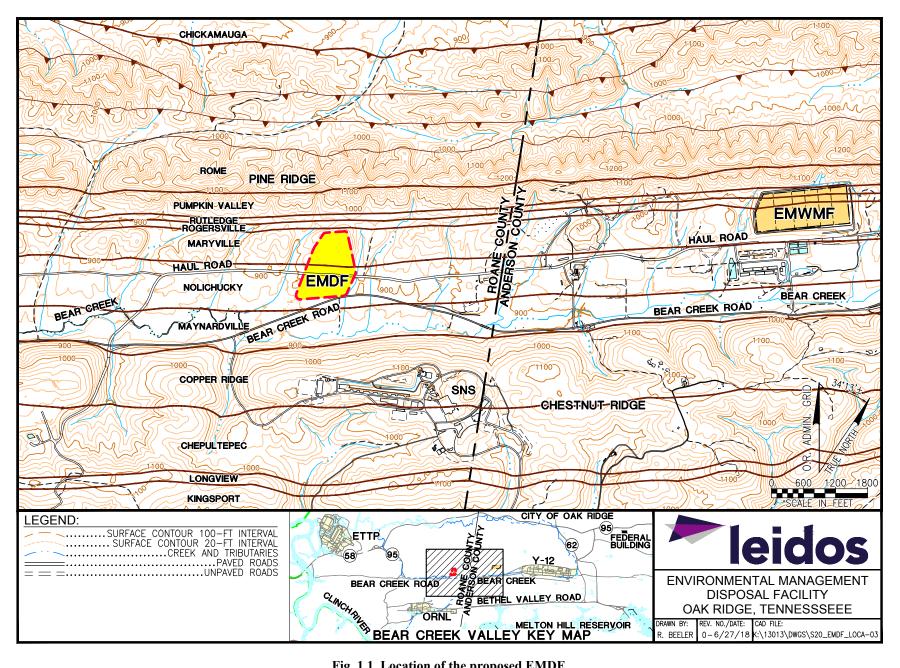


Fig. 1.1. Location of the proposed EMDF.

2. HYDROGEOLOGIC SETTING

2.1 GENERAL SITE CONDITIONS

The CBCV site is situated within an upland area located between north–south trending valleys of North Tributary (NT)-10 and NT-11. The site and surrounding areas are forested, except for areas along the south side between the Haul Road and Bear Creek Road, where the area has been cleared. The cleared area includes a recent soil staging area along the southern margin and two wetland basins completed in 2015 for the Y-12 National Security Complex compensatory wetland mitigation. The Haul Road and Bear Creek Road are located at the southern edge of the site and will need to be rerouted prior to EMDF construction.

The larger surface water conveyances within the site are Drainage (D)-10 West (W), parallel to and just west of NT-10, and D-11 East (E), an east–west trending feature that drains westward into NT-11 near the center of the site (Fig. 2.1). An additional shallow east–west trending drainage was present in the southern part of the area prior to construction of the Uranium Processing Facility (UPF) wet spoils pile. This drainage was noted as dry when previously observed and is now covered by the UPF wet spoils pile; however, there was a seep within this drainage area downgradient of the wet spoils pile that is now covered by a sediment basin.

The BCV has been extensively investigated over the years. Geologic, hydrogeologic, and groundwater contamination conditions have been characterized, and there is routine monitoring of surface water conditions and groundwater conditions in specific areas. In addition, other investigations have been conducted to identify wetlands, ecological species of concern, and cultural resources. This Phase 1 site characterization provides additional site-specific hydrogeologic information for the proposed EMDF site.

2.2 GEOLOGY/HYDROLOGY

The available hydrogeologic data for various potential EMDF sites in BCV are described in the RI/FS (DOE 2017). The general subsurface hydrogeological conditions at the CBCV site are known from previous characterization performed of the BCV watershed summarized in the *Groundwater Strategy for the* U.S. Department of Energy, Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2014).

2.2.1 Geology

The anticipated waste footprint at the CBCV site predominantly overlies bedrock of the Conasauga Group (Fig. 2.2), including the Maryville Formation, and Nolichucky Shale. Recent alluvium is present on the valley floor along D-10W (eastern side of the site).

These formations are predominantly shales, siltstones, and mudstones, with some interbedded limestone. There is little limestone present in the bedrock underlying the proposed disposal cells, even in the Maryville Formation. The crest of the knoll below the north center of the footprint is underlain by the erosion-resistant Dismal Gap/Maryville Formation. The typical weathering profile of topsoil, silty/clayey soil residuum, saprolite, and fractured bedrock occupy the undisturbed site areas.

In BCV, the average dip of the formations is 45° southeast (Fig. 2.3). Some microfolds to mesofolds are present. Fractures are present within the bedrock and exert substantial control on the location of the tributaries. These fractures and macro/micropores within the remaining soils/saprolite and bedrock provide the primary routes for groundwater flow (and contaminant transport) as documented in the 2016 *Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee* (DOE 2016). A key assumption is that the geology is typical of BCV with steeply dipping,

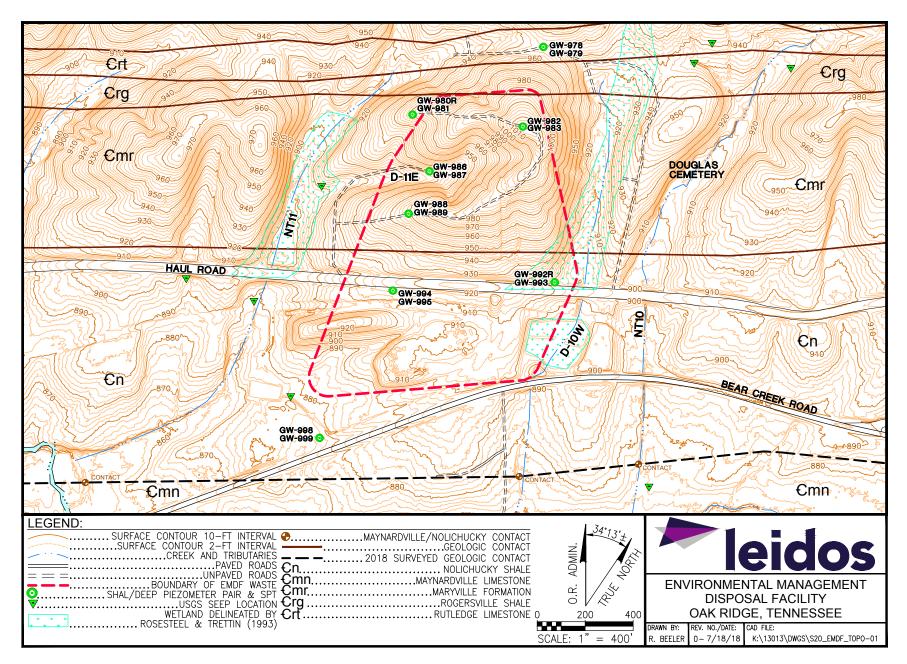


Fig. 2.1. General features of the EMDF site.

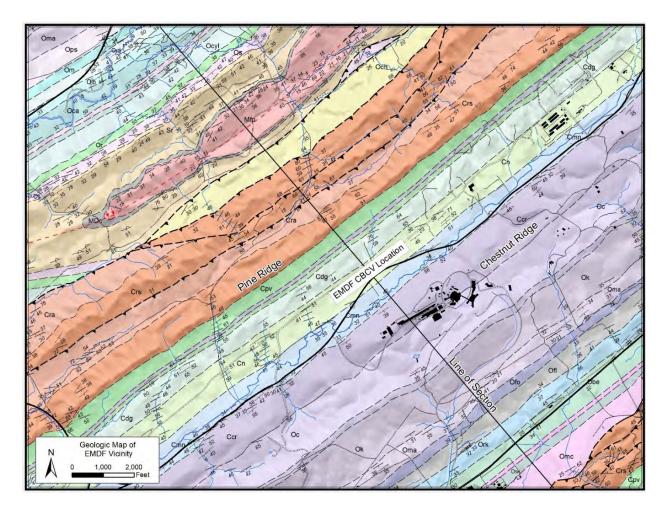
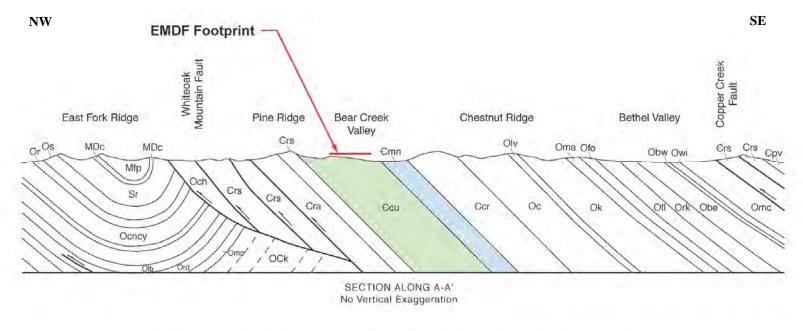



Fig. 2.2. Geologic map of the EMDF and surrounding area.

Cra/Crs – Lower Cambrian Rome Formation; Apison Shale Member and Sandstone Member. Ccu – Middle Cambrian Conasauga Shale Undivided (including the Nolichucky Shale). Cmn – Upper Cambrian Maynardville Limestone. Ccr – Upper Cambrian Copper Ridge Dolomite.

Fig. 2.3. General geologic cross-section of the EMDF site.

fractured bedrock, and there are no major karstic features in the Maryville, Nolichucky, or Rogersville formations underlying the CBCV site.

Thin layers of alluvial and colluvial soils may be present along streams, drainage ways, and the base of steeper slopes. These soils may be looser, more compressible, and more permeable than the underlying residual soils or saprolite. As noted in *Geology of the West Bear Creek Site* (Oak Ridge National Laboratory [ORNL] 1989):

"The soils are underlain by a comparatively thick saprolite zone which varies from 10 to 20 ft thick. The saprolite is composed of weathered bedrock which has lost its rock cement but retained its bedding features. Its upper portions can be readily penetrated with a hand auger. The saprolite/bedrock contact is gradational due to decreasing weathering with depth but is typically defined as the depth of machine auger refusal."

Karst features such as sinkholes, sinking streams, and resurgent springs have not been documented within the formations underlying the proposed footprint of the CBCV site. Karst features are documented within the Maynardville outcrop belt south of the CBCV site. A key assumption is that the contact with the Maynardville Limestone is located south of the currently proposed EMDF footprint.

2.2.2 Surface Water Hydrology

The CBCV site surface water systems are fed by precipitation, surface runoff and shallow stormflow, and both shallow and deeper groundwater that discharges via springs and seeps. In areas underlain by Conasauga Group shales, as much as 90% of the water entering the groundwater system flows rapidly through highly porous, shallow soil. In areas underlain by soluble, massive carbonate bedrock of the Maynardville Limestone, a larger fraction of the water enters the groundwater system by conduit flow through deeper flow pathways (DOE 2016). A key assumption is that precipitation primarily runs off as surface water and shallow groundwater in the stormflow zone.

Historical continuous flow monitoring data were not previously available for NT-10, NT-11, or D-10W. The available U.S. Geological Survey base flow data indicated that base flow is continuous along the NT-10, D-10W, and NT-11 stream channels during the winter/spring non-growing wet season. During the summer/fall growing season with warm and often dry conditions, base flow is negligible and limited to pulsed flow associated with significant storm rainfall events. Flow monitoring for Bear Creek downstream of the CBCV site indicates continuous flow in Bear Creek (DOE 2017).

2.3 GROUNDWATER

There were no previous groundwater elevation data available for the CBCV site prior to this investigation. Available groundwater elevation data were projected to this site from adjacent areas with similar hydrogeologic conditions to plan the Phase 1 investigation. A key assumption is that groundwater elevations are typical of other BCV wells in similar settings. As the landfill is constructed, the current surface water and groundwater flow regime will be modified due to regrading of the site and installation of impermeable barriers and adjustments to surface runoff.

2.4 SITE CONCEPTUAL MODEL

The majority of flow from upland areas is directed toward the valley axis by the NTs. Groundwater in bedrock that does not discharge directly to surface water (e.g., within a confined system) has an

upward gradient because of the pressure gradient of recharge from Pine Ridge and discharges into the Bear Creek–Maynardville Limestone drainage system.

Bear Creek flows more or less continuously over non-karst bedrock, but loses flow to subsurface conduits where it crosses karst features in the Maynardville Limestone. Underflow conduits in the Maynardville Limestone continuously convey base flow, while overflow conduits and Bear Creek carry high flows during the wet season and heavy rainfall events.

The CBCV site area slopes to the south–southeast. As described in the *Oak Ridge Reservation Physical Characteristics and Natural Resources* (ORNL 2006), sloping land surfaces on the ORR exhibit the characteristics of hillslope hydrology. In undisturbed, naturally vegetated areas such as the CBCV site, an estimated 80 to 90% of precipitation is captured and discharged from the 3 to 6.5-ft (1- to 2-m) storm-flow zone/root zone and does not infiltrate into the groundwater table. During November through March when plants are not consuming water and shallow soils are saturated, lateral drainage of water occurs on slopes through macropores (e.g., holes left by the decay of dead plant roots and animal burrows) as well as through vertical seepage to the water table through pervious zones (Clapp 1997).

3. SURFACE WATER WALKDOWN EVALUATION

3.1 APPROACH

Two detailed site walkovers were performed during the wet season (January 30, 2018, and February 27, 2018) to further characterize surface geology; identify geotechnical areas of interest; and identify seeps, springs, and other expressions of shallow groundwater in NT-10, D-10W, D-11E, and NT-11. The walkovers were conducted by a qualified hydrologic professional, as defined in Tennessee Department of Environment and Conservation (TDEC) 0400-40-17. TDEC personnel also participated in all of the walkovers.

Observations of flow in macropores and similar features during the wet season were also noted to determine potential impacts on design. The walkover included a description every 50 ft of NT-10, D-10W, and NT-11 (as safe access allowed) and field measurements of temperature, specific conductivity, and pH.

Two additional walkovers, representing drier conditions (May 1 and June 4, 2018) were also completed. The results of all walkovers are documented in Appendix A. Additional dry season walkovers will be performed and documented in the TM #2, as appropriate.

3.2 FINDINGS

The site walkovers have identified several noteworthy soil macropore and channel features in the upper 3 ft of soil in the Nolichucky Shale. A shallow macropore/soil channel transmits percolation water from soils to the NT-11 stream channel in the Nolichucky Shale outcrop area. Overland surface water flow into a soil macropore/channel was also observed, and that subsurface channel is daylighted a short distance downstream due to collapse and downstream transport of shallow soils. A small amount of water flow emanating from the channel has been observed at this location. This feature joins another branch of subsurface flow from an unnamed western valley. These types of soil drainage features are typical in undisturbed ORR soils and are a part of the stormflow system that rapidly conducts percolation water laterally downslope to stream channels.

The site walkover found that the east–west valley draining to NT-11, also referred to as D-11E, located on the western slope of the high knoll in the Maryville Formation, contained no defined surface water channel.

A well-established surface channel approximately 1-ft wide by 1-ft deep was encountered in the D-10W valley. The channel contained isolated pools of standing water, but no flow was occurring. The D-10W valley is approximately 50% less incised than the adjacent NT-10 and NT-11 valleys and has a much narrower headwater basin.

The surface water field measurement locations are shown on Fig. 3.1. The results of the surface water field measurements are illustrated on maps included in Appendix A.

3.2.1 Parameter Results

Appendix A provides illustrations of the field data collected during the four walkover surveys (January, February, May, and June 2018) conducted to date. These figures show that, in general, pH and specific conductivity of the surface water in these tributaries increase from north to south. This indicates influx of groundwater and an increasing carbonate content of the bedrock to the south.

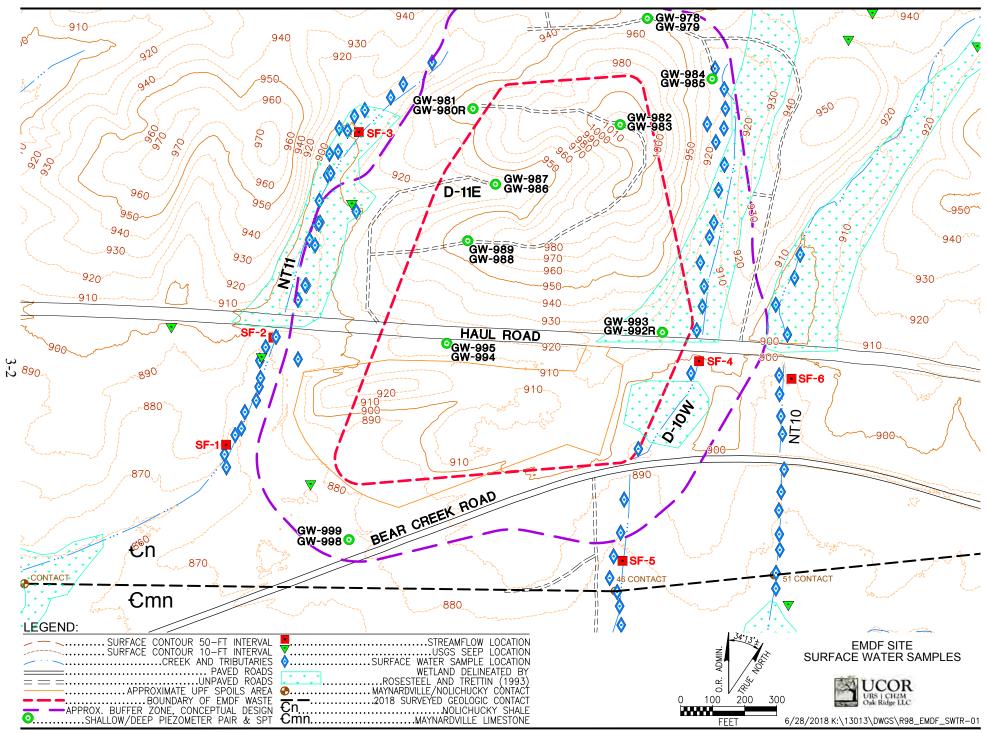


Fig. 3.1. Surface water measurment locations in the vicinity of the EMDF.

3.2.2 Seep Locations

Seep locations are identified on Fig. 3.1. All but one of the previously identified seeps were located and no additional seeps were located during the site walkovers. One seep was previously located in an area disturbed by the UPF and could not be located during the walkovers.

This page intentionally left blank.

4. MAYNARDVILLE CONTACT EVALUATION

Previous mapping of BCV indicated that the contact between the Nolichucky Shale and Maynardville Limestone was located approximately 300 ft south of the proposed southernmost waste limit (DOE 2017).

4.1 APPROACH

The Nolichucky/Maynardville geologic contact in the NT-10 and D-10W stream channels was located during the first surface water walkover in January 2018. Participants included a hydrogeologist/subject matter expert from the URS | CH2M Oak Ridge LLC (UCOR) Water Resources Restoration group and TDEC geologists. The walkover used observations of bedrock outcrops in the stream channels and observations of weathered bedrock material to more precisely identify the geologic contact. Coordinates for these contact locations were obtained using Global Positioning System equipment.

4.2 FINDINGS

The Maynardville/Nolichucky geologic contact was observed in the field at three locations. The contact was located in the drainage channel of NT 10, D-10W, and near the confluence of NT-11 and Bear Creek (Fig. 4.1). The location of the Maynardville/Nolichucky geologic contacts observed in the field were approximately 50 ft further south than represented on the geologic maps prior to the field mapping effort.

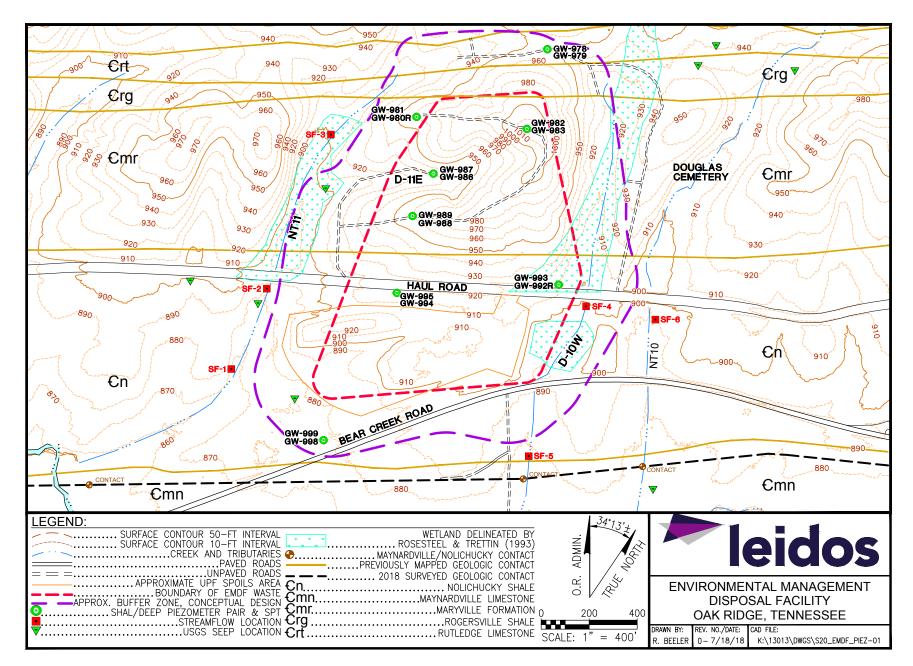


Fig. 4.1. Monitoring locations at EMDF.

5. SURFACE WATER FLOW EVALUATION

5.1 APPROACH

The areas of the three surface water basins between the crest of Pine Ridge on the northwest and the geologic contact between the Maynardville Limestone and the Nolichucky Shale on the southeast are shown in Fig. 4.1. The Maynardville/Nolichucky geologic contact is the most downstream flow measurement location because further downstream surface water tends to sink into the Maynardville karst, causing a low bias to the flow data.

Six surface water flow measurement stations were installed at locations identified during the January surface water walkdown. These were located in the Nolichucky Shale and Maryville Formation outcrop areas in NT-10, D-10W, and NT-11 (Fig. 5.1). TDEC personnel participated in the walkdown including discussion of flume placement.

Three measurement flumes were installed in NT-11 at locations identified during the site walkover (SF-1, -2, and -3; see Fig. 4.1). For the D-10W valley, a surface water flow measurement station was installed downstream of the Haul Road (SF-4) and another downstream of Bear Creek Road near the Nolichucky Shale/Maynardville Limestone geologic contact (SF-5). Another surface water flow measurement station (SF-6) was placed on the downstream side of the culvert under Haul Road in NT-10, the northernmost location with a well-defined stream channel. The flumes were installed during March 2018.

The flumes were sized based on historical flow information and measurements of the stream width, depth, and bankfull dimensions collected during the site walkover. Based on this information, 2.0-ft H-flumes and 1.5-ft H-flumes were sized for installation at the site. The 1.5-ft H-flumes were installed at upstream locations, where the stream channels, size of the catchment basins, and associated runoff are smaller. The 2.0-ft H-flumes were installed downstream, where higher flows are expected due to larger drainage areas as well as the influence of the Haul Road, Bear Creek Road, UPF Spoils Area, and other disturbed areas. In total, three 2.0-ft H-flumes and three 1.5-ft H-flumes were installed within the three primary tributaries at EMDF.

All of the surface water flumes were equipped with a flow meter and water quality analyzer and controller system to provide monitoring of water flow through the flumes. Final surveying of all locations occurred upon completion of monitoring station installation. The coordinates and elevations of the locations of each monitoring site and positions and elevations of the base of each flow control section were surveyed to an accuracy of 0.1 ft horizontal and 0.01 ft vertical.

5.2 FLUME DATA FINDINGS

Surface water flow measurements were performed as described in the Phase 1 FSP and included continuous flow, temperature pH, and specific conductivity measurements collected at 30-min intervals.

Flow data collected at the flumes installed in March 2018 at EMDF are illustrated in Fig. 5.1. As expected, flow rates increase downstream, from north to south, and increase quickly in response to rainfall. April 2018 flow rates for NT-11 ranged from 22 to 700 gallons per minute (gpm). The flow rate for NT-10 during April 2018 has a similar range of 24 to 693 gpm. D-10W is a smaller stream and has a lower flow rate. The April 2018 flow rate ranged from 6 to 478 gpm. Later in the year during the dry season, there may be no flow at some of these flumes.

Table 5.1 provides a summary of the flow rates recorded in April 2018.

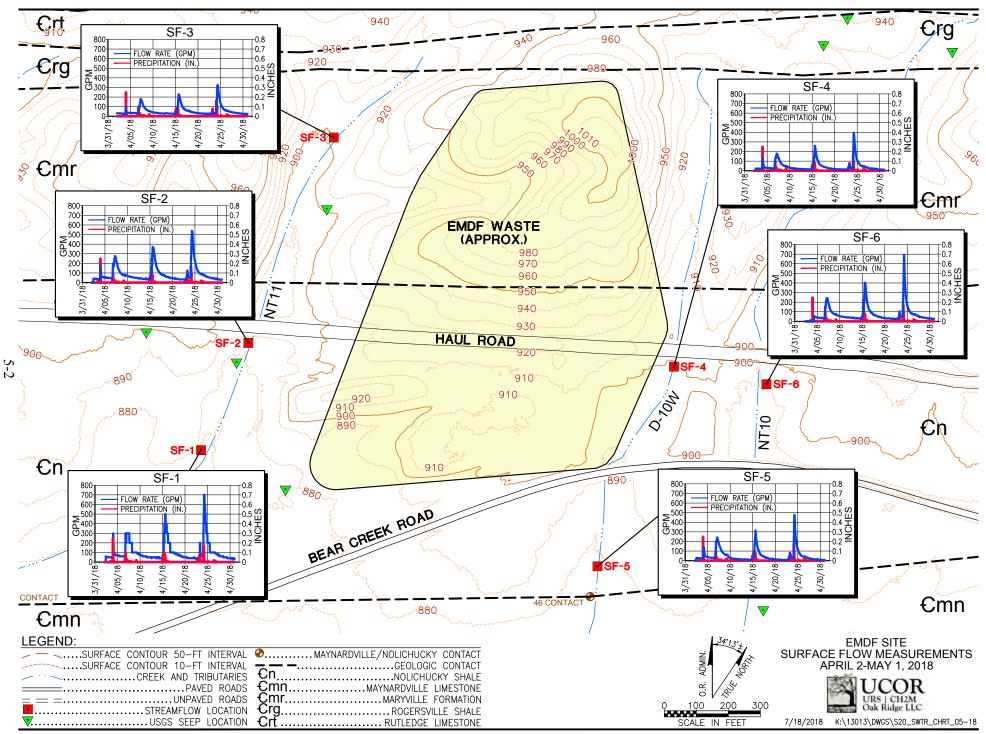


Fig. 5.1. Surface water flow measurements at EMDF weirs.

Tributary measured	Flume	Minimum flow rate (gpm)	Maximum flow rate (gpm)
NT-11	SF-1	30	700
NT-11	SF-2	28	538
NT-11	SF-3	22	328
D-10W	SF-4	12	395
D-10W	SF-5	6	478
NT-10	SF-6	24	693

Table 5.1. Minimum and maximum flow rates for EMDF flumes, April 2018

D = drainage. EMDF = Environmental Management Disposal Facility. gpm = gallons per minute. NT = North Tributary.

This page intentionally left blank.

6. GROUNDWATER EVALUATION

6.1 APPROACH

The following describes the installation and results of the piezometers installed at the EMDF during the Phase 1 site characterization. The locations of the piezometers are shown on Fig. 6.1.

Flexible Liner Underground Technologies, LLC $(FLUTe^{TM})^1$ tests (bedrock piezometers) and slug tests (shallow piezometers) were conducted to develop a more complete picture of the *in situ* hydraulic conductivity. Hydraulic conductivity (horizontal) was measured by performing slug tests for piezometers completed in the residuum, and FLUTeTM testing was performed for bedrock intervals to maximize the amount and precision of hydraulic conductivity information obtained.

FLUTeTM Tests

FLUTeTM testing was performed in each open, deep borehole prior to piezometer installation. The results from the FLUTeTM testing and interpretation of the borehole logs, relative to identifying target intervals of permeable water-bearing bedrock, were used to determine screen and sand-pack intervals for both the deep and shallow piezometers at each location. During FLUTeTM testing, a flexible borehole liner made of a water-tight, urethane-coated, nylon fabric is lowered into the borehole. Each flexible liner is custom made for each borehole and shipped from the FLUTeTM manufacturing facility in New Mexico to the field site on a reel. Tests were performed in accordance with the manufacturer's guidelines. The rate of water addition to the liner during installation is carefully controlled to create a nearly constant applied head differential between the inside of the liner and the water level in the formation outside the liner. The rate at which water is added to the liner is governed mostly by the rate at which the water can escape into the permeable features in the open hole below the descending liner as it forces the water out into the permeable zones in the formation. About 1% of the transmissivity (T) remaining below the descending liner at any depth in the hole is the limit of resolution. For that reason, the resolution in the bottom portion of the hole is better than in the upper portion of the hole.

Slug Tests

Hydraulic conductivity (horizontal) was measured by performing slug tests for piezometers completed in the residuum. Slug tests were performed after well development in shallow piezometers GW-979, GW-981, GW-983, GW-987, GW-989, GW-993, GW-995, and GW-999 (Table 6.1). The slug tests were conducted by monitoring water-level changes after displacement of a volume of water. Water was displaced by the insertion of a 4-ft by 1.25-in. stainless steel slug bar into the well just below the static water level. Steady but rapid insertion of the slug bar was employed to create as rapid a displacement of the water as possible while creating minimal splash in the piezometer. A second test was performed by displacing water downward with the sudden removal of the slug bar. Slug test results are summarized in Table 6.2 and presented in Appendix C.

Water-level data were collected during the slug tests using a pressure transducer data logger. Static water levels were measured manually and recorded prior to setting the transducer into the piezometer. The pressure transducer was then lowered into the well. The transducer was set at a depth below the water table appropriate for the pressure range of the transducer and deep enough to be below the inserted slug bar during the test. After setting the transducer, the water level was allowed to equilibrate to static conditions

¹ Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

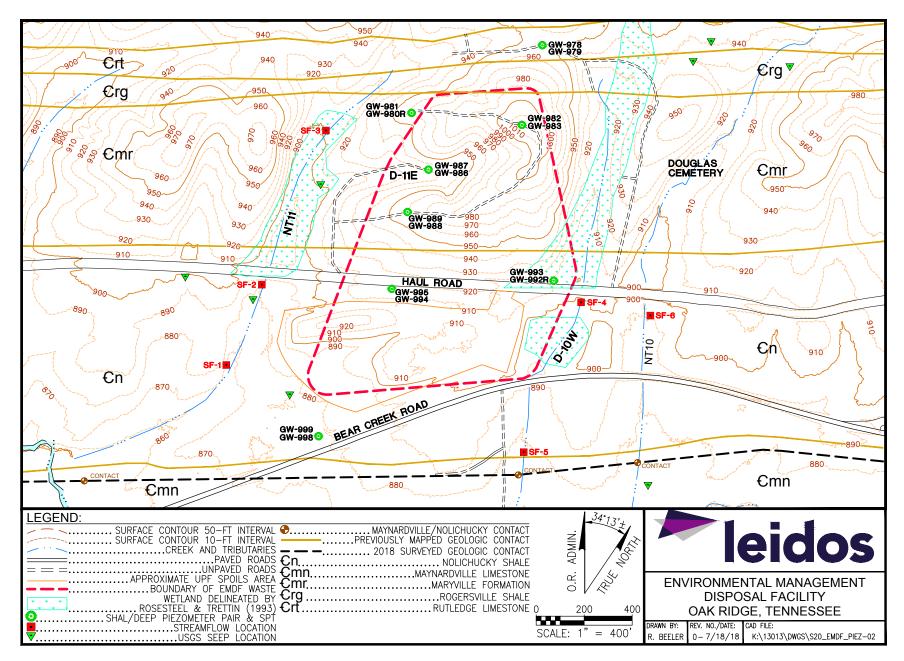


Fig. 6.1. Piezometer locations at the EMDF.

Well ID	Screen depth (ft bgs)	Saturated thickness (ft)	Type of test	Initial displacement (ft)	Static water column height (ft)	Bouwer-Rice hydraulic conductivity (cm/sec)
GW-979	26.3 - 36.3	9.7	Slug in	1.44	21.24	4.17E-04
			Slug out	1.55	21.27	4.96E-04
			Average			4.56E-04
GW-981	22.1 - 32.1	9.7	Slug in	1.01	10.96	6.39E-05
			Slug out	1.2	11.03	4.61E-05
			Average			5.50E-05
GW-983	79.1 - 89.2	9.7	Slug in	0.67	26.14	5.04E-03
			Slug out	1.28	26.16	4.96E-03
			Average			5.00E-03
GW-987	16.1 - 26.1	9.7	Slug in	1.43	19.45	9.52E-05
			Slug out	1.45	18.84	9.75E-05
			Average			9.64E-05
GW-989	33.6 - 43.6	9.7	Slug in	1.35	31.59	1.42E-04
			Slug out	1.49	31.61	6.68E-05
			Geometric mean			9.74E-05
GW-993	23.0 - 33.0	9.7	Slug in	0.63	28.46	5.88E-04
			Slug out	0.68	28.51	6.98E-04
			Average			6.43E-04
GW-995	22.1 - 32.1	9.8	Slug in	1.44	24.05	1.85E-04
			Slug out	1.45	24.07	1.84E-04
			Average			1.85E-04
GW-999	10.3 - 20.3	9.7	Slug in	1.31	18.3	5.14E-04
			Slug out	1.43	18.33	4.54E-04
			Average			4.84E-04

Table 6.1. Slug test results for the EMDF shallow piezometers

bgs = below ground surface. cm = centimeters.

EMDF = Environmental Management Disposal Facility.

ft = feet.

ID = identification.

sec = seconds.

prior to starting the test. The transducer was set to logarithmic data collection mode so that rapid water-level changes in the early part of the slug test could be monitored accurately. The slug bar, transducer, cable, and water-level tape were decontaminated using a non-phosphate detergent solution followed by a distilled water wash, prior to insertion in each well.

6.2 NEW PIEZOMETERS

Eight pairs of piezometers were installed to monitor the shallow and intermediate groundwater within the cell boundary (Fig. 6.1). Piezometers were installed in each designated borehole by Tennessee qualified monitoring well drillers in accordance with ORR requirements as described in Appendix B, Sect. B.3, of the FSP (DOE 2018). Depths and testing requirements for each piezometer are provided in Table 6.2. Piezometers were developed no sooner than 24 hr after installation, and development continued until the piezometer responded to water-level changes and produced clear, sediment-free water to the extent possible.

Boreholes were cored from the surface to total depth to obtain representative lithologic data from across the site and in representative formations, and the cores were described and logged at the drillsite. The borehole logs are provided in Appendix B. Piezometers were placed to obtain representative lithologic and groundwater data from across the site and in representative formations. Because these piezometers could be preferential pathways to groundwater, all piezometers within the footprint of the disposal cells will be plugged and abandoned as per UCOR procedures prior to construction of the EMDF (DOE 2018).

Monitoring wells were constructed with 2-in.-diameter, 0.010-in. slot, schedule 40 polyvinyl chloride (PVC) screen and schedule 40 flush-threaded PVC riser pipe. The installed screen sections were either 5 or 10-ft in length depending on the length of the target interval. All shallow piezometers were constructed with 10-ft screens. Screen caps were constructed of schedule 40 PVC threaded end caps along with a 1-ft section of blank schedule 40 PVC riser pipe. The screen and riser sections are Silver-Line Plastics, Enviro Pure brand and arrived at the site in factory packaging. Packaging was only removed immediately prior to well installation, and casing and screen sections were handled while wearing clean, disposable, nitrile gloves during installation. All well screen and riser components were measured to the nearest 0.01 in., assembled, and lowered into the borehole. The length of casing extending above ground level relative to total screen and casing riser length was calculated to properly position the monitoring well screen. The sand pack consisted of DSI "GP#2" gravel pack specifically packaged for use in the environmental industry. The sand pack was gravity placed into the annular space between the piezometer screen and the borehole wall from the bottom of the well screen to a minimum of 2 ft and a maximum of 5 ft above the top of the screen.

Following sand-pack installation, at least 2 ft of coated bentonite pellets were added as a seal above the sand pack. In the boreholes that required centralizers, the pellets also were installed and measured through the 1-in. tremie pipe, as described above for the sand pack. In the auger boreholes, augers were pulled back exposing the borehole wall as the bentonite pellets were added. The depth to the sand pack and bentonite pellet seal was periodically checked with a sounding tape to verify proper placement. Per application instructions, the bentonite pellet seal requires a minimum of 8 hr to hydrate prior to grouting. In the field, the bentonite pellet seal was given 16 to 24 hr to hydrate, exceeding this requirement. The remainder of the annular space was sealed with a cement-bentonite grout mixed to specifications outlined in the statement of work.

Location ID	Date completed	Drilling method ¹	Location c	coordinates Easting	Boring depth (ft)	Ground elev. (ft-MSL)	Casing ID (in.)	Elevation at top of casing (ft-MSL)	Elevation at bottom of casing (ft-MSL)	Casing stick-up (ft)	Screen interval (ft-bgs)	Top of screen elev. (ft-MSL)	Bottom of screen elev. (ft-MSL)	Sand pack interval (ft-bgs)	Bentonite pellet seal interval (ft-bgs)	Grout interval (ft-bgs)	Total depth of well (ft-TOC)	Depth of water at completion (ft-TOC)
Deep Piezometers																		
GW-978	2/27/2018	HSA/HQ/R	30656.68	38643.59	80.0	953.5	2.0	955.97	882.6	2.3	59.5 - 69.6	894.0	883.9	56.1 - 71.5	53.0 - 56.1	0.5 - 53.0	73.18	10.63
GW-980R ²	3/5/2018	R	30379.90	38138.34	74.4	963.5	2.0	965.63	892.2	2.1	59.9 - 70.0	903.6	893.5	55.0 - 72.3	51.5 - 54.9	0.5 - 51.5	73.44	28.27
GW-982	3/5/2018	HSA/HQ/R	30317.82	38617.04	126.5	1015.6	2.0	1018.02	902.2	2.4	102.1 - 112.1	913.5	903.5	99.2 - 114.5	95.9 - 99.2	0.5 - 95.9	115.82	66.39
GW-986	3/1/2018	HSA/HQ/R	30130.30	38191.80	59.6	930.2	2.0	932.37	882.7	2.2	41.0 - 46.0	889.3	884.2	38.6 - 48.0	35.8 - 38.6	0.5 - 35.8	49.70	6.38
GW-988	3/1/2018	HSA/HQ/R	29952.47	38091.14	78.5	957.0	2.0	958.95	883.8	2.0	61.9 - 71.9	895.1	885.1	59.6 - 74.0	55.1 - 59.6	0.5 - 55.1	75.20	13.56
GW-992R ²	3/3/2018	R	29698.29	38737.35	55.5	908.9	2.0	911.40	863.2	2.5	39.3 - 44.4	869.6	864.5	37.2 - 48.2	33.8 - 37.2	0.5 - 33.8	48.21	4.88
GW-994	3/1/2018	HSA/HQ/R	29644.99	38051.04	55.0	916.7	2.0	918.89	863.4	2.2	42.0 - 52.0	874.7	864.7	37.0 - 54.6	32.3 - 37.0	0.5 - 32.3	55.54	6.98
GW-998	2/27/2018	HSA/HQ/R	29021.82	37742.36	45.0	877.7	2.0	880.18	839.8	2.5	26.6 - 36.6	851.1	841.1	24.0 - 40.0	21.7 - 24.0	0.5 - 21.7	40.37	4.55
									Shalle	ow Piezometer	·s							
GW-979	2/27/2018	HSA/HQ/R	30656.61	38653.90	37.6	953.7	2.0	955.99	916.1	2.3	26.3 - 36.3	927.5	917.4	21.2 - 37.8	19.0 - 21.2	0.5 - 19.0	39.88	14.70
GW-981	3/6/2018	HSA/HQ	30396.70	38148.33	34.0	963.2	2.0	965.74	929.8	2.5	22.1 - 32.1	941.1	931.1	20.0 - 34.0	17.9 - 20.0	0.5 - 17.9	35.85	22.20
GW-983	3/6/2018	HSA/HQ	30325.62	38606.49	92.2	1015.6	2.0	1018.07	925.1	2.5	79.1 - 89.2	936.4	926.4	74.1 - 91.5	70.2 - 74.1	0.5 - 70.2	92.99	65.92
GW-987	3/3/2018	HSA/HQ	30138.34	38194.40	27.9	930.5	2.0	932.94	903.1	2.4	16.1 - 26.1	914.4	904.4	13.3 - 27.9	10.9 - 13.3	0.5 - 10.9	29.77	9.49
GW-989	3/6/2018	HSA/HQ	29950.44	38082.67	45.0	955.7	2.0	957.86	910.8	2.3	33.6 - 43.6	922.1	912.1	30.0 - 45.0	25.7 - 30.0	0.5 - 25.7	47.21	14.03
GW-993	3/3/2018	HSA/HQ/R	29690.50	38724.90	35.5	909.7	2.0	911.76	875.4	2.1	23.0 - 33.0	886.8	876.7	19.8 - 35.5	14.5 - 19.8	0.5 - 14.5	36.37	5.45
GW-995	3/3/2018	HSA/HQ	29646.82	38039.32	34.0	916.3	2.0	918.76	882.9	2.5	22.1 - 32.1	894.2	884.2	19.2 - 34.0	17.0 - 19.2	0.5 - 17.0	35.85	11.93
GW-999	3/5/2018	HSA/HQ	29025.01	37750.58	22.0	877.6	2.0	880.11	856.0	2.5	10.3 - 20.3	867.4	857.3	8.3 - 21.6	1.0 - 8.3		24.10	3.41

Table 6.2. EMDF piezometer construction summary

¹ HSA = Hollow Stem Augers; HQ = HQ Rock Core; and R = Rotary. ² Replacement borehole. Original borehole abandoned and sealed. bgs = below ground surface. EMDF = Environmental Management Disposal Facility.

ft = feet.ID = identification.

in. = inches.

MSL = mean sea level.

TOC = top of casing.

6.3 FINDINGS

Figures 6.2 and 6.3 provide geologic cross-sections constructed from the EMDF boreholes. The completed screen depths are also indicated along with water levels measured at the time of well completion and the first indication of groundwater encountered during drilling based on the drilling logs. These first indications of groundwater may not reflect the groundwater table, but indicate zones where groundwater can be readily released from the formations.

6.3.1 FLUTeTM/Slug Test Results

FLUTeTM Tests

FLUTeTM testing was performed within the open, uncased boreholes in each of the deeper piezometer pairs (GW-978, GW-980R, GW-982, GW-986, GW-988, GW-992R, GW-994, and GW-998) to determine transmissivity (and/or hydraulic conductivity) values within the bedrock (Table 6.3). See Appendix D for a summary of FLUTeTM testing results. It should be noted that GW-982 was nearly impermeable below 54 ft below ground surface, and GW-980R had permeability too low to conduct profiling.

The liner descent-rate or velocity is a measure of T of the entire borehole. As the liner continues down the borehole and seals each permeable feature, changes in the liner velocity indicate the position of each feature and an estimate of T is provided using the Thiem equation (Wenzel and Fishel 1942) for steady radial flow. After the liner reaches the bottom of the hole, the liner acts as a seal preventing borehole cross-connection between transmissive features at different depths.

Slug Tests

Slug tests were performed in shallow piezometers GW-979, GW-981, GW-983, GW-987, GW-989, GW-993, GW-995, and GW-999 (Table 6.1). Slug-test data were analyzed using the Bouwer-Rice method (Bouwer and Rice 1976; Bouwer 1989) within the AQTESOLV software.² Water-level recovery data are plotted semi-logarithmically versus time. The slope of a line defined by the recovery data is then used, along with data on well geometry, to calculate hydraulic conductivity.

The results shown in Table 6.1 indicate that hydraulic conductivity ranged from 4.6E-05 to 5.0E-03 centimeters per second (cm/sec) in the shallow piezometers. The average/mean hydraulic conductivity determined for the two individual tests for each piezometer ranged from 5.5E-05 to 5.0E-03 cm/sec.

² AQTESOLV (AQuifer TEst SOLVer) is a software used for the design and analysis of aquifer tests (pumping tests, slug tests, constant-head tests, groundwater mounding, etc.) in confined, leaky, unconfined, and fractured aquifers.

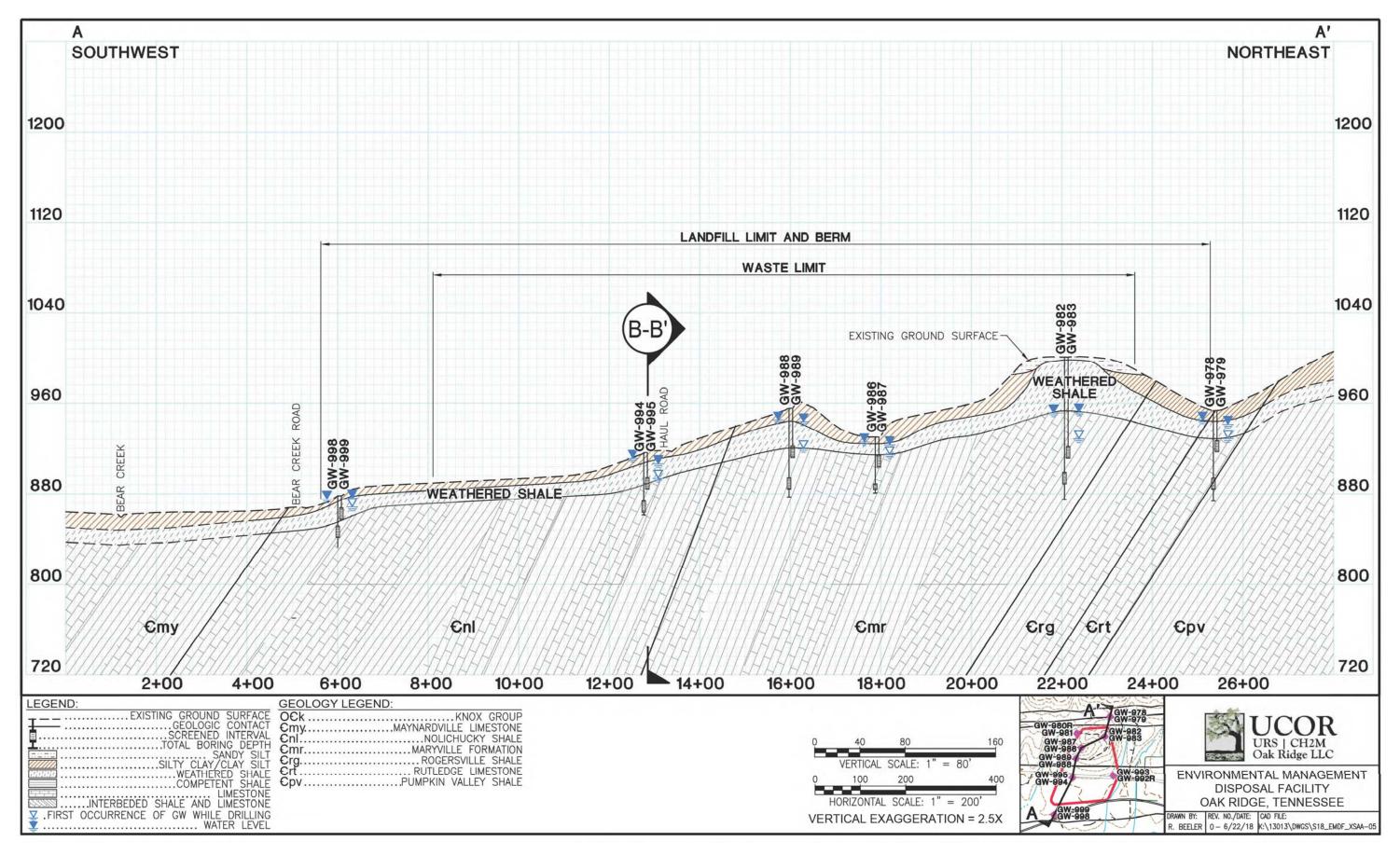


Fig. 6.2. North-south geologic cross-section of EMDF.

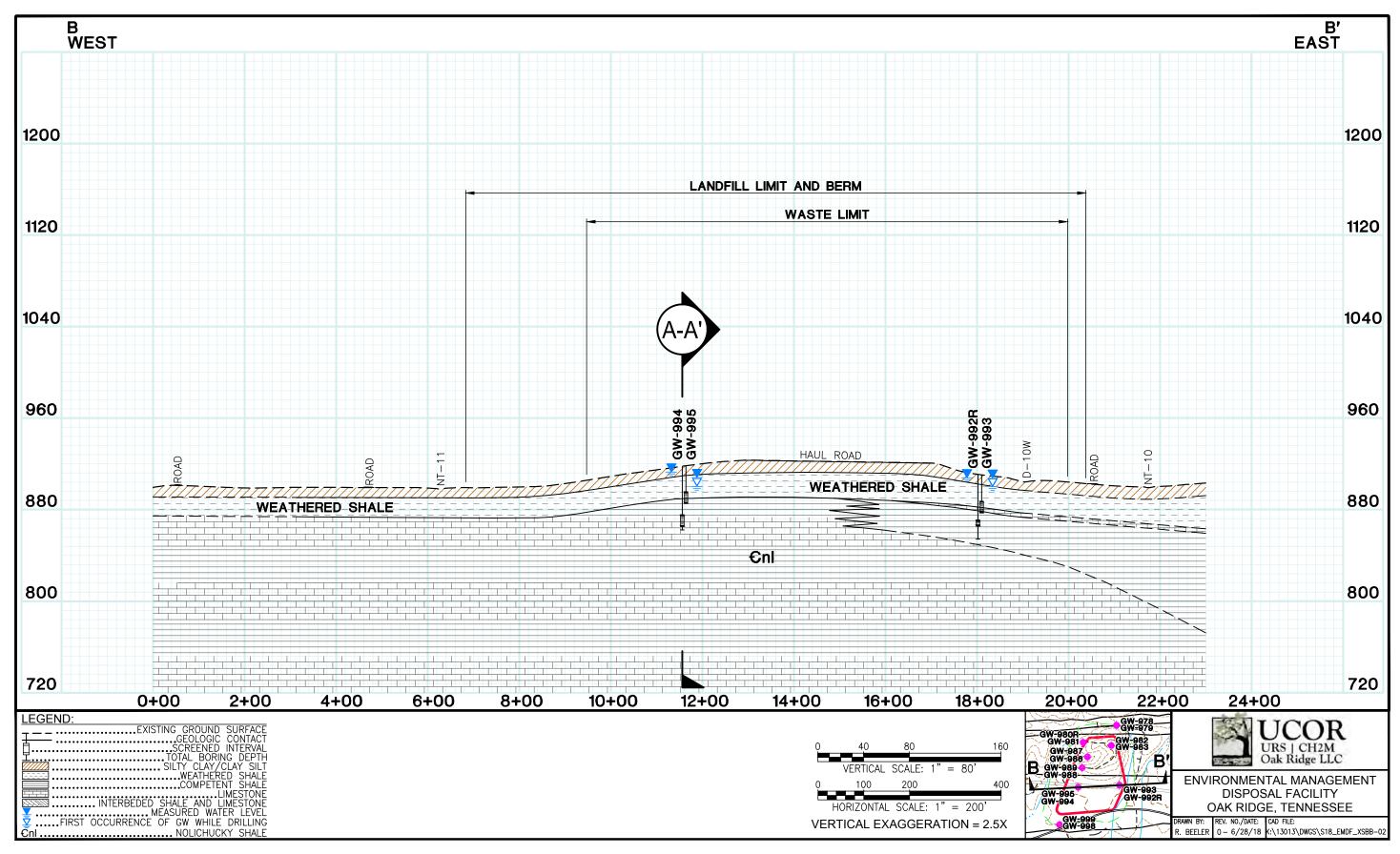


Fig. 6.3. East-west geologic cross-section of EMDF.

Well ID	Depth to water (ft)	Borehole depth (ft bgs)	Casing depth (ft bgs)	Depth of FLUTe [™] profile (ft bgs)	Flow rate per unit driving pressure (gal/min/ft)	Length of borehole remaining (ft)	Transmissivity of remaining borehole (cm ² /sec)	Average hydraulic conductivity for remaining borehole (cm/sec)	Total borehole transmissivity (cm²/sec)
GW-978	10.75	82.1	27	76.85	0.01	5.24	0.02705	1.30E-04	0.16164
GW-980R	28.27	74.4	27						
GW-982	52.38	125.3	50	53.74	0.00217	71.56	0.0045	2.06E-06	0.05181
GW-986	5.00	59.4	20	49.17	0.01538	10.25	0.01538	1.02E-04	0.09862
GW-988	13.9	79	36.5	75.37	0.02739	3.64	0.056714	5.12E-04	0.10648
GW-992R	1.5	54.83	31	51.12	0.02047	3.71	0.04239	3.75E-04	0.10757
GW-994	7.06	54.75	35	52.02	0.03347	2.73	0.,06932	8.34E-04	0.09845
GW-998	1.45	45.1	20	39.92	0.02745	5.16	0.05684	3.62E-04	0.19806

Table 6.3. FLUTe[™] test result summary for the EMDF piezometers

.

Note: Permeability of the GW-980R borehole was too low to adequately measure flow into the bedrock using the FLUTeTM technology. bgs = below ground surface.

cm = centimeters.

EMDF = Environmental Managaement Disposal Facility.

 $FLUTe^{TM} = Flexible Liner Underground Technologies, LLC.$

ft = feet.

gal = gallons.

ID = identification.

min = minutes.

sec = seconds.

-- = not available/applicable.

6.3.2 Groundwater Monitoring Findings

Data collected for the piezometers is shown on Figs. 6.4 through 6.11. These graphs represent the water level, pH, and specific conductivity measured in the wells at 30-min intervals. The precipitation recorded at the the nearby Spallation Neutron Source site is also illustrated on the graphs. This precipitation gauge location was selected due to its closer proximity to the CBCV site than the gauge at the EMWMF.

In general, the EMDF wells show typical fluctuations in specifc conductivity and pH in response to precipitation events. However, of particular interest is the behavior at well GW-993 (Fig. 6.9). This well is the shallow well paired with GW-992R completed in the deeper bedrock. GW-993 monitors the alluvial groundwater in the D-10W valley. The curious behavior of the monitored parameters at GW-993 appears to indicate that the rising groundwater from bedrock into the shallow well has higher specific conductivity and higher pH that disappears when the shallow alluvial groundwater enters the screen during a precipitation event decline cycle. Thus, GW-993 appears to monitor exactly on the hydrogeochemical interface between bedrock and the unconsolidated alluvial zone groundwater.

Specific conductivity at the shallow piezometers at EMDF has ranged from 194 to 1266 μ S/cm over the period from March to early May 2018. As would be expected, the bedrock wells showed less fluctuation in specific conductivity with a range of 299 to 892 μ S/cm over the same period. The measured pH in shallow piezometers ranged from 6.45 to 8.97 from March to early May. With the exception of GW-978 (11.47) and GW-982 (10.78), the pH in the bedrock piezometers ranged from 6.74 to 7.95 over the period from March to early May 2018. The initial high pH measured in GW-978 appears to represent early effects from well construction, and since March 17, 2018, the pH at this piezometer has ranged from 7.9 to 8.5. The sudden increase in both pH and specific conductivity over approximately 10 days in late March and early April at GW-982 does not appear to be related to precipitation, but the initial increase does correspond to a field adjustment of the transducer. Since the second week of April the pH at GW-982 has ranged from 7.9 to 8.9.

In general, groundwater temperatures ranged from 14 to 15.5° C over the late March to early May period in the EMDF piezometers. Overall, temperature data show little fluctuation in response to precipitation events in the EMDF piezometers. This is especially true for the bedrock piezometers, but also for most of the shallow piezometers. Exceptions to this occurred in the shallow piezometers GW-993 and GW-999, which show obvious response to precipitation.

6.3.3 Groundwater Elevation Data

Groundwater elevations determined from depth-to-water measurements are used to: (1) estimate the groundwater surface elevations across the entire footprint of EMDF prior to construction, and (2) provide information to develop the engineering design.

Groundwater elevation data also were collected by using downhole monitors placed in each piezometer. Data were collected continuously and recorded every 30 min with downloads every two weeks. This TM includes data from the continuous monitoring of these 16 piezometers during the March/April time frame. The water level data for the eight EMDF well pairs that have been monitored during March and April 2018 are shown on Figs. 6.4 through 6.11. Monitoring of the EMDF water levels will continue for at least one year to ensure seasonal high-water levels are captured for evaluation in the design of the EMDF.

Water level elevations for the paired wells, and elevation of the ground surface at the well pair, are shown in Figs. 6.12 through 6.19. The water level data collected to date at EMDF show that, in general, there are significant downward gradients beneath the knoll (GW-980R/GW-981), little to no gradient between the shallow and deeper piezometers nearer the streams (GW-992R/GW-993), and slight upward gradients in

the southern part of the footprint (GW-.994/GW-995). Table 6.4 provides a summary of the vertical gradients observed at the EMDF well pairs.

Well pair	Vertical gradient direction, Spring 2018
GW-978/GW-979	Slight downward
GW-980R/GW-981	Downward
GW-982/GW-983	None
GW-986/GW-987	Downward
GW-988/GW-989	Downward
GW-992R/GW-993	None
GW-994/GW-995	Slight upward
GW-998/GW-999	Slight upward

Table 6.4.	Vertical l	nvdraulic	gradients a	t EMDF.	Spring	2018
1 abic 0.4.	v ci ticai i	iy ui aunc	Si autonto a	. பாபப,	Spring .	2010

EMDF = Environmental Management Disposal Facility.

Groundwater levels show responses to rainfall events in most shallow and deep piezometers beneath the knolls, indicating some recharge is occurring on the site.

6.3.4 Comparable Existing Piezometers

Quarterly groundwater elevation data are available for many of the EMWMF wells since 2002 or before, including recent wetter periods. Continuous groundwater elevation monitors were installed in March 2017 in EMWMF wells and, therefore, have more specific data to forecast responses to precipitation over the year. In addition, continuous groundwater elevation monitors were installed prior to completing and instrumenting the CBCV piezometers (Fig. 6.20). Data from these wells provide additional, comparable, wet season data to augment what was collected for the CBCV piezometers. Groundwater elevation data for an appropriate BCV well were matched to the groundwater elevation data for a given EMDF well to help predict the wet season data for that well to date, during this calendar year. The water level elevation data for an appropriate match in water level behavior were normalized to the EMDF well elevations and used to extrapolate the water level fluctuations back during February 2018 to represent the wet season fluctuations (see Figs. 6.21 through 6.36). The water level graphs with extrapolated data and comparison of the graphs of the selected representative well are presented in Appendix E.

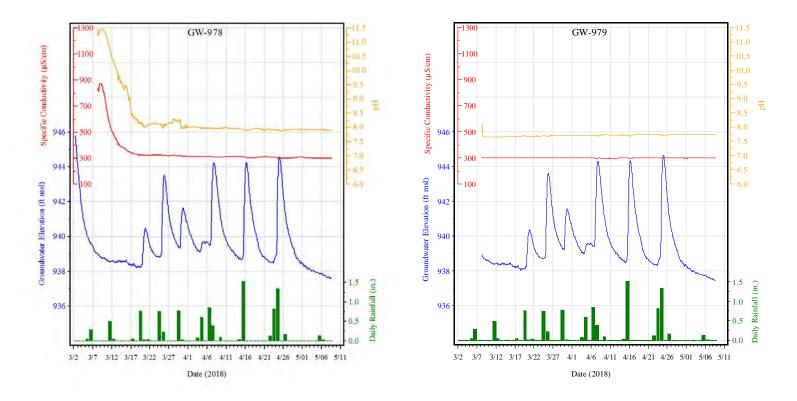


Fig. 6.4. Time trend plot of groundwater elevation, specific conductivity, and pH with daily rainfall for well pair GW-978/GW-979.

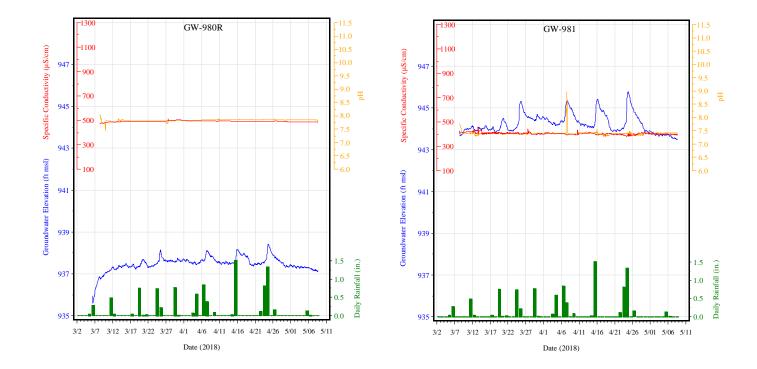


Fig. 6.5. Time trend plot of groundwater elevation, specific conductivity, and pH with daily rainfall for well pair GW-980R/GW-981.

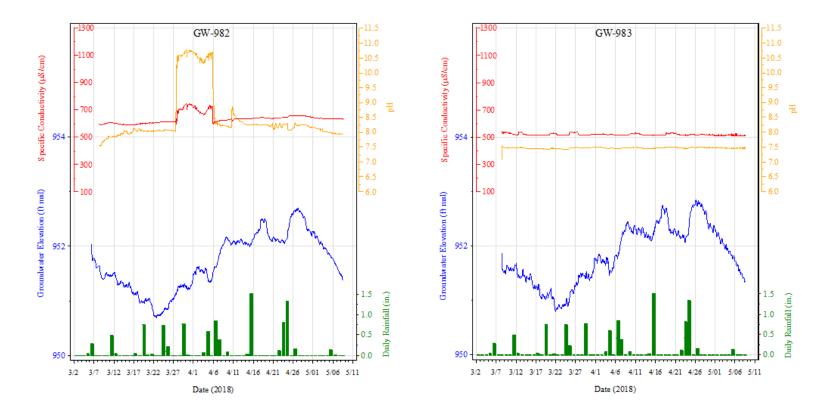


Fig. 6.6. Time trend plot of groundwater elevation, specific conductivity, and pH with daily rainfall for well pair GW-982/GW-983.

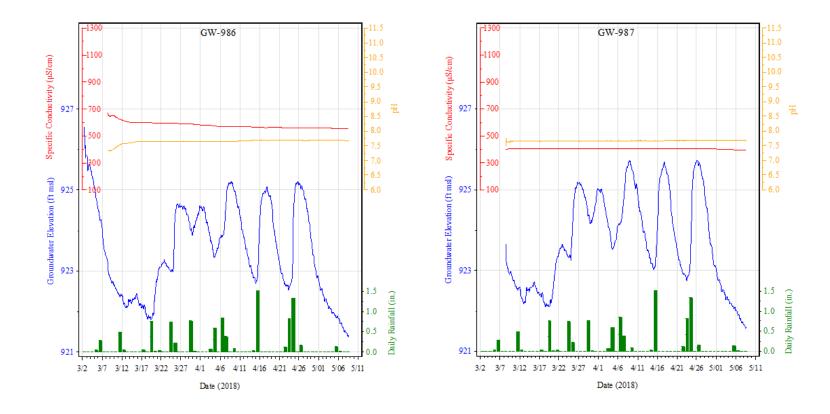


Fig. 6.7. Time trend plot of groundwater elevation, specific conductivity, and pH with daily rainfall for well pair GW-986/GW-987.

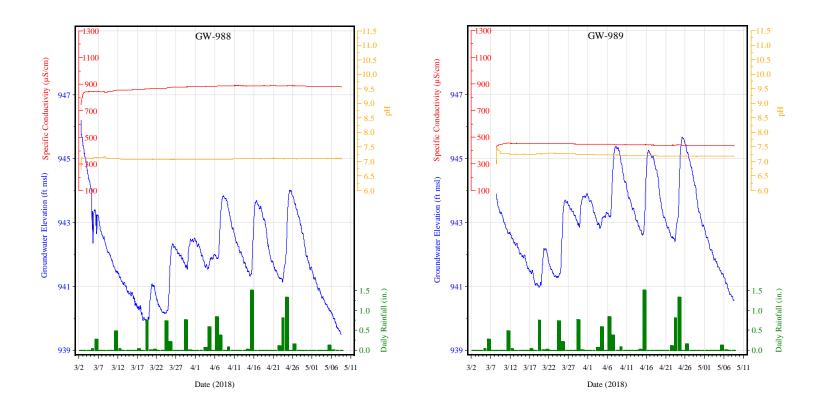


Fig. 6.8. Time trend plot of groundwater elevation, specific conductivity, and pH with daily rainfall for well pair GW-988/GW-989.

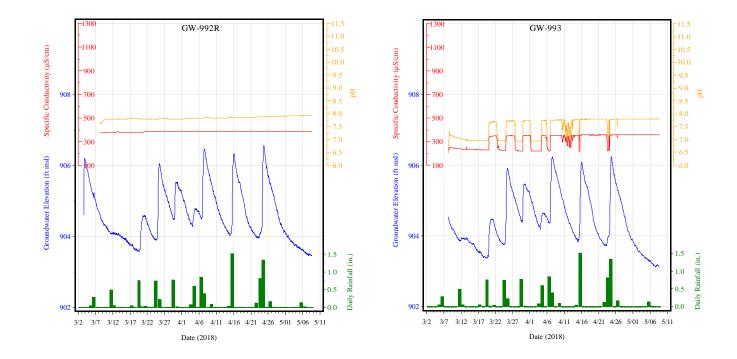


Fig. 6.9. Time trend plot of groundwater elevation, specific conductivity, and pH with daily rainfall for well pair GW-992R/GW-993.

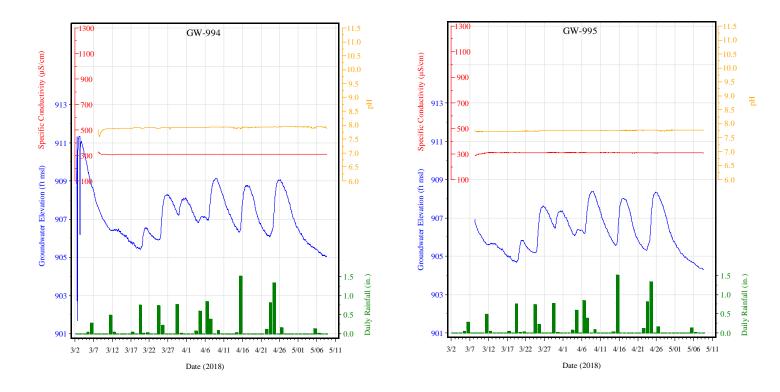


Fig. 6.10. Time trend plot of groundwater elevation, specific conductivity, and pH with daily rainfall for well pair GW-994/GW-995.

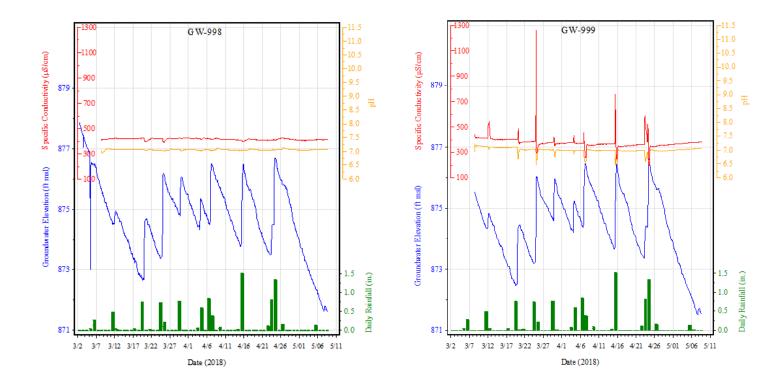


Fig. 6.11. Time trend plot of groundwater elevation, specific conductivity, and pH with daily rainfall for well pair GW-998/GW-999.

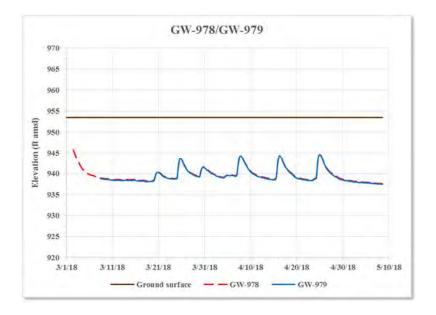


Fig. 6.12. Water levels at well pair GW-978/GW-979.

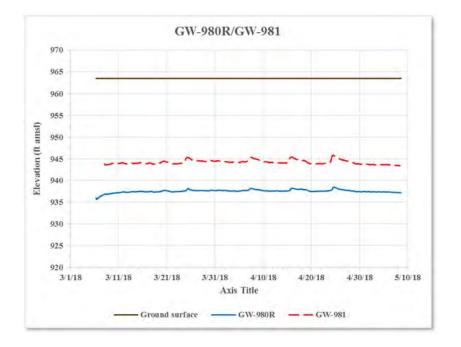


Fig. 6.13. Water levels at well pair GW-980R/GW-981.

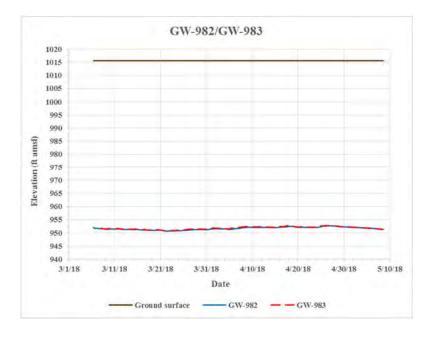


Fig. 6.14. Water levels at well pair GW-982/GW-983.

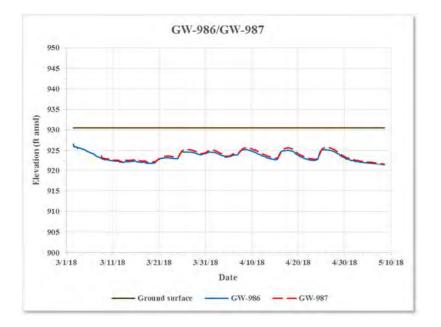


Fig. 6.15. Water levels at well pair GW-986/GW-987.

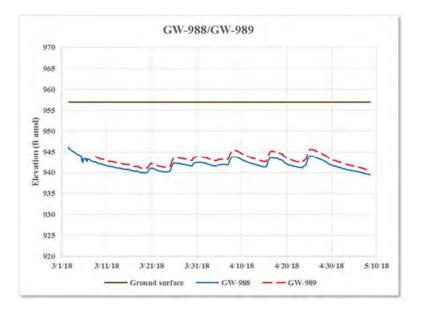


Fig. 6.16. Water levels at well pair GW-988/GW-989.

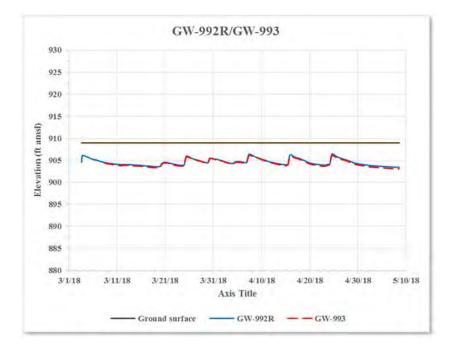


Fig. 6.17. Water levels at well pair GW-992R/GW-993.

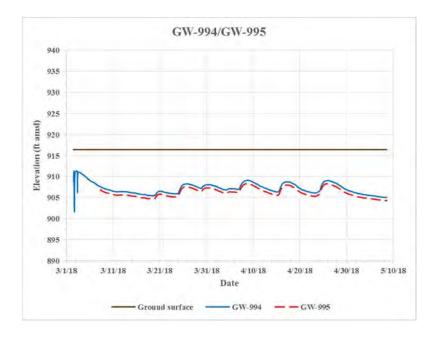


Fig. 6.18. Water levels at well pair GW-994/GW-995.

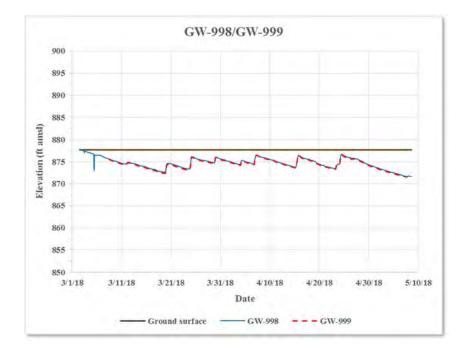
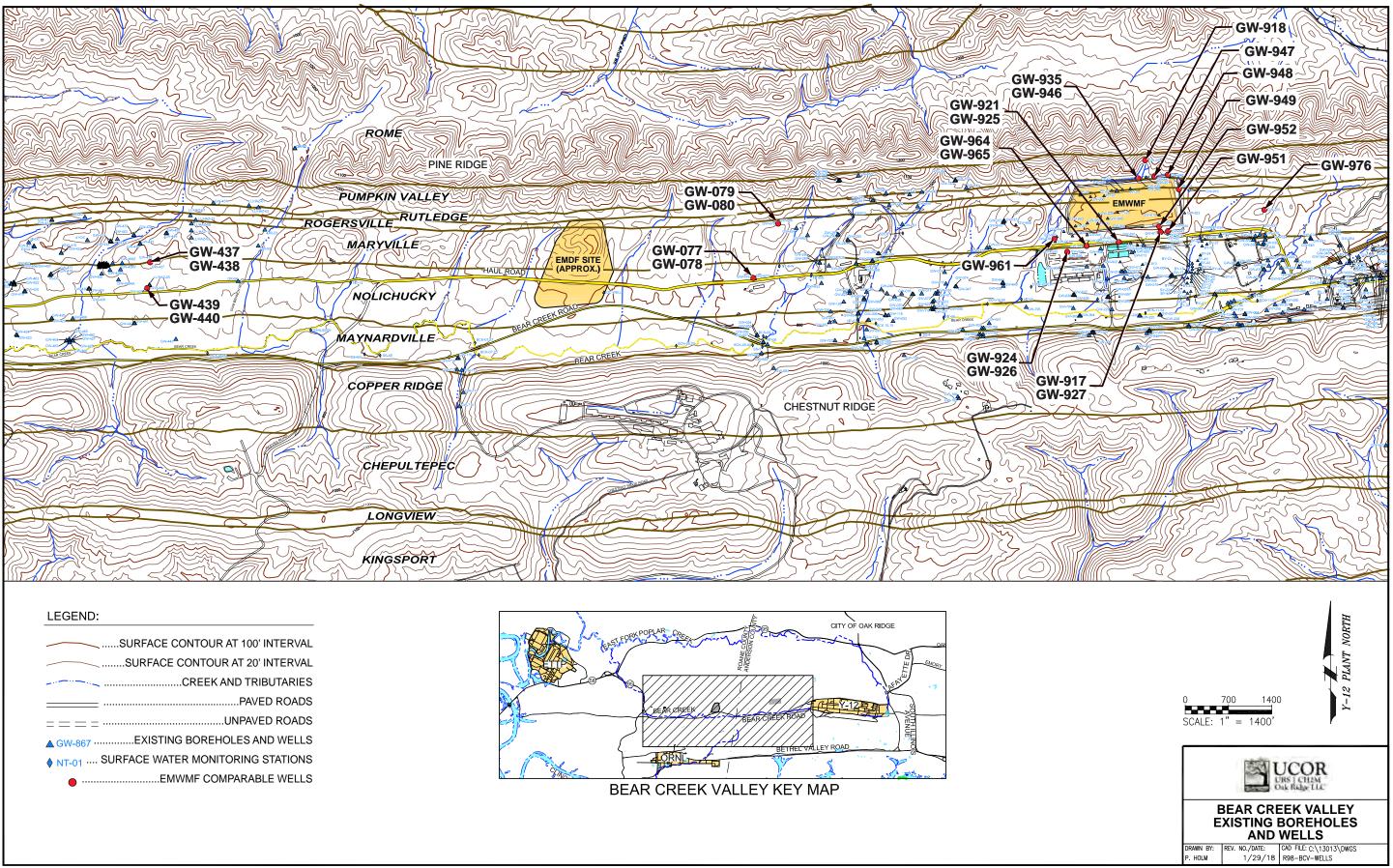
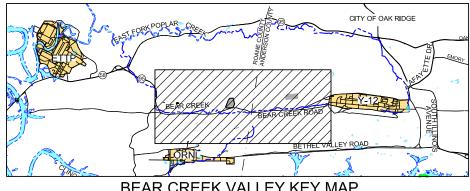




Fig. 6.19. Water levels at well pair GW-998/GW-999.

LEGEND:
SURFACE CONTOUR AT 100' INTERVAL
SURFACE CONTOUR AT 20' INTERVAL
CREEK AND TRIBUTARIES
PAVED ROADS
= $=$ $=$ UNPAVED ROADS
▲ GW-867EXISTING BOREHOLES AND WELLS
♦ NT-01 SURFACE WATER MONITORING STATIONS
EMWMF COMPARABLE WELLS

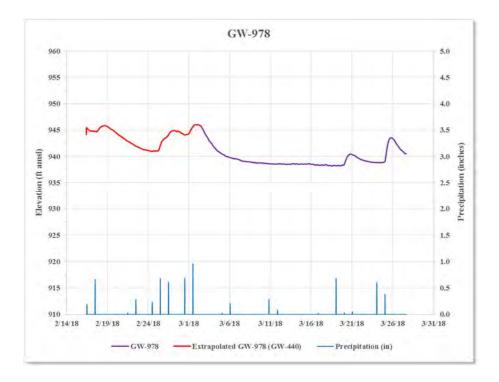


Fig. 6.21. Extrapolated water levels for GW-978.

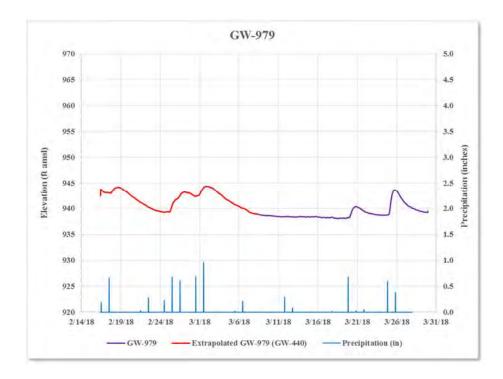


Fig. 6.22. Extrapolated water levels for GW-979.

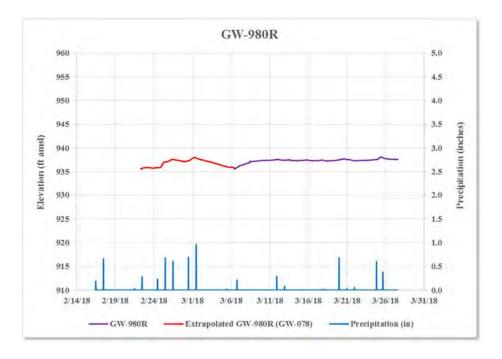


Fig. 6.23. Extrapolated water levels for GW-980R.

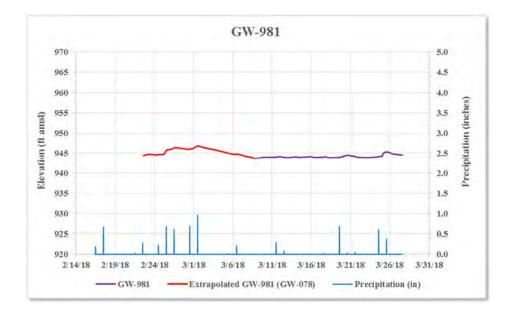


Fig. 6.24. Extrapolated water levels for GW-981.

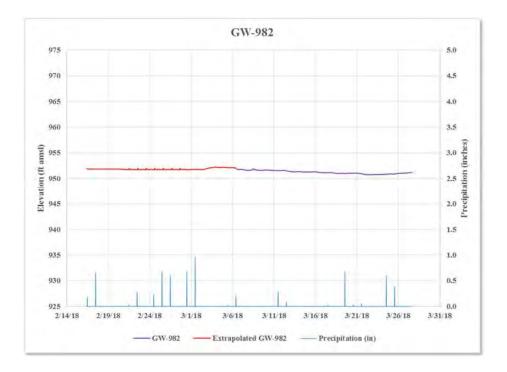


Fig. 6.25. Extrapolated water levels for GW-982.

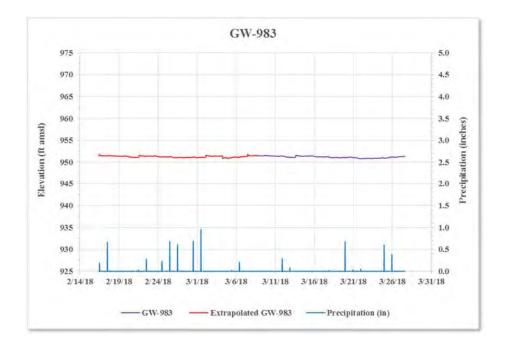


Fig. 6.26. Extrapolated water levels for GW-983.

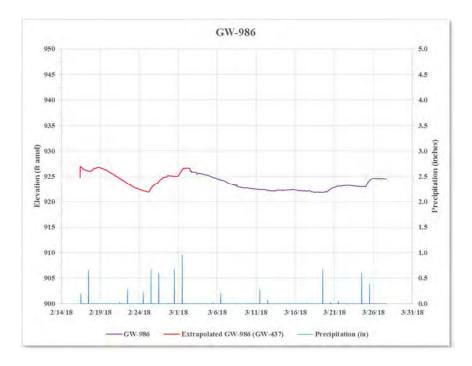


Fig. 6.27. Extrapolated water levels for GW-986.

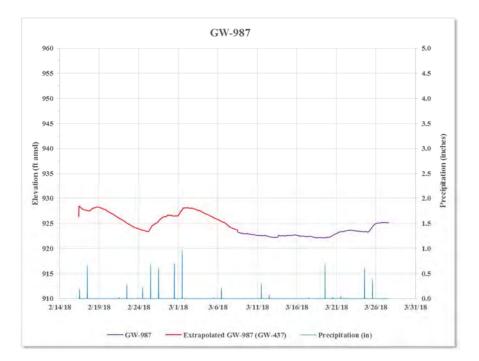


Fig. 6.28. Extrapolated water levels for GW-987.

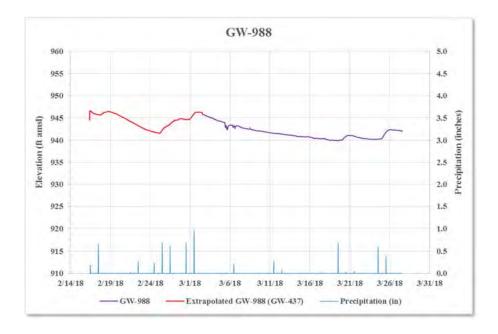


Fig. 6.29. Extrapolated water levels for GW-988.

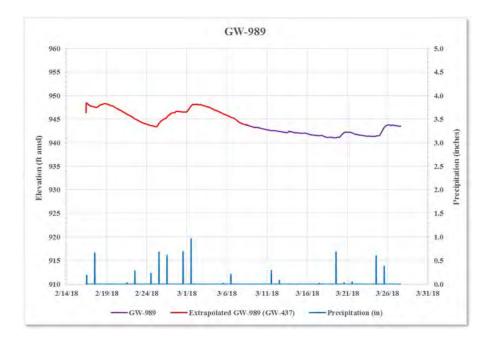


Fig. 6.30. Extrapolated water levels for GW-989.

Fig. 6.31. Extrapolated water levels for GW-992R.

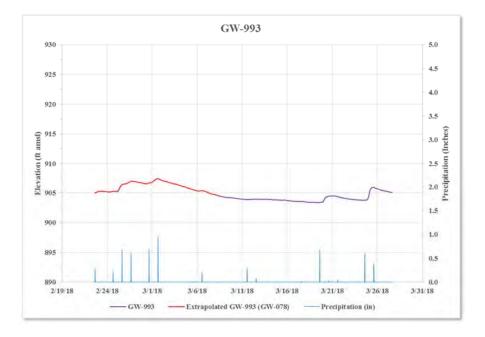


Fig. 6.32. Extrapolated water levels for GW-993.

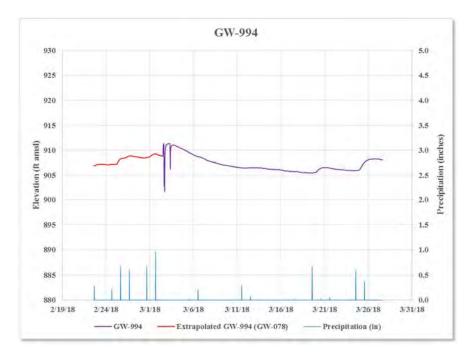


Fig. 6.33. Extrapolated water levels for GW-994.

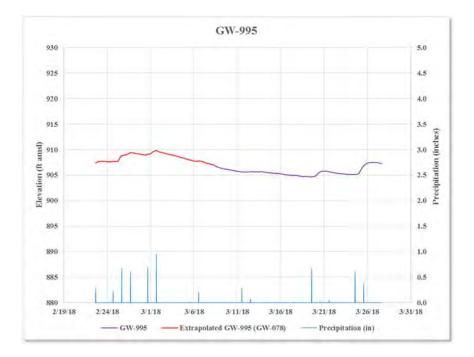


Fig. 6.34. Extrapolated water levels for GW-995.

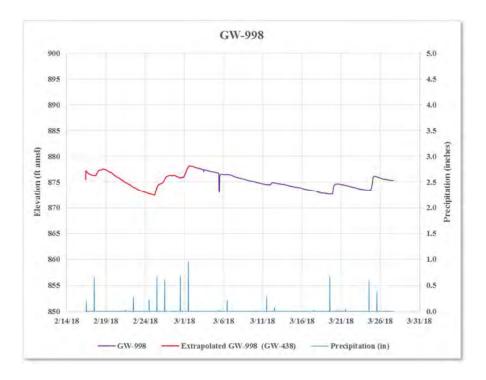


Fig. 6.35. Extrapolated water levels for GW-998.



Fig. 6.36. Extrapolated water levels for GW-999.

7. GEOTECHNICAL TEST RESULTS

7.1 APPROACH

The laboratory testing program was directed toward determining the general soil classification, physical properties, shear strength, and compressibility of the soil pertinent to the engineering analysis and design of the EMDF. Limited permeability testing was also conducted on both relatively undisturbed samples (tube samples) and from recompacted bulk samples taken from auger cuttings. Samples tested in the laboratory included those from split spoons, thin-walled tube samples, rock core, and bulk samples of auger cuttings. All laboratory testing was performed in accordance with applicable American Society for Testing and Materials Standards as detailed in Table 7.1. In total, 18 thin-walled (Shelby tube) samples, 69 split-spoon soil samples, 10 bulk soil samples, and 10 rock core samples were shipped to laboratories for testing.

7.2 SUMMARY OF KEY RESULTS

Table 7.1 provides a summary of the key index test results obtained from the split-spoon sampling and from bulk samples taken from borehole cuttings. Appendix F provides the complete laboratory reports for all geotechnical laboratory testing conducted on the split-spoon samples, the thin-walled tube samples, and rock cores. The EMDF design will provide more information/detail on interpretation of the geotechnical tests.

Boring No.	Sample No.	Moisture content (%)	Liquid limit (%)	Plastic limit (%)	Plasticity index	% Gravel	% Sand	% Fines	USCS group symbol ¹	Dry unit weight (lbf/ft ³)	Water content (%)
	SS-1	21.8									
	SS-3	19.3									
	SS-4	24	45	21	24	0.5	34.2	65.3	CL		
GW-978	SS-5	21									
	SS-8	11.5									
	SS-9	11.7									
	SS-10	11.1									
GW-979	BS-S01									114.8^{2}	13.5^{2}
	SS-2	13.8				45	32	23	SM		
	SS-3	15.1	N/A	NP	NP						
	SS-4	15									
	SS-6	12.6									
GW-980R	SS-8	14.5									
	SS-9	10.2									
	SS-10	4.3									
	SS-12	11.7									
	SS-13	12.3									
GW-981	BS-S02									120.7^{2}	13.9 ²
	SS-2	11									
	SS-3	13.1									
	SS-4	12.5									
	SS-5	12.3	33	23	10	2.2	47	50.8	CL		
	SS-8	13.9				4.8	65.9	29.3			
GW-982	SS-10	10.8									
	SS-13	11.9									
	SS-16	4.7									
	SS-18	8.9									
	SS-21	7	28	19	9	14.7	56.8	28.5	SC		
	SS-23	5.5									

Table 7.1. Summary of EMDF split-spoon and bulk sample laboratory index test results

Boring No.	Sample No.	Moisture content (%)	Liquid limit (%)	Plastic limit (%)	Plasticity index	% Gravel	% Sand	% Fines	USCS group symbol ¹	Dry unit weight (lbf/ft ³)	Water content (%)
GW-983	BS-S03					4	37	59		120.2 ²	11.3 ²
		20.4		10	10					112.2^{3}	11.7^{3}
	SS-2	20.4	37	18	19						
	SS-3	21.1									
GW-986	SS-4	14.6				7.8	52.8	39.4	SC		
	SS-6	8.4									
	SS-7	8.7									
	SS-9	4.3									
	SS-2	34.6									
	SS-3	25.1									
GW-988	SS-4	33.6	41	27	14	0.6	42	57.4	ML		
	SS-6	29.8									
	SS-8	26.2									
	SS-11	21.5									
	SS-13	16									
	SS-16	9.9	32	19	13	3.3	66.9	29.8	SC		
	SS-18	9.9									
GW-989	BS-S04					1.4	22.9	75.7		107.8^{2}	12.5 ²
	SS-1	29.3	38	20	18			-		-	
	SS-2	23.9				7	36	57	CL		
	SS-4	37.1									
	SS-5	13.4									
GW-992R	SS-7	21.3									
	SS-8	16.2									
	SS-10	15.5				1	62	37			
	SS-12	17.6									
	SS-12 SS-13	10.8									

Table 7.1. Summary of EMDF split-spoon and bulk sample laboratory index test results (cont.)

Boring No.	Sample No.	Moisture content (%)	Liquid limit (%)	Plastic limit (%)	Plasticity index	% Gravel	% Sand	% Fines	USCS group symbol ¹	Dry unit weight (lbf/ft ³)	Water content (%)
	SS-2	22.8	47	18	29						
	SS-3	23.6									
	SS-4	21.7				0.6	9.4	90	CL		
	SS-6	39.2									
	SS-8	24.4									
GW-994	SS-10	16.6									
	SS-12	18.7									
	SS-14	13.6				9.2	56.9	33.9			
	SS-15	13.3									
	SS-17	15.9									
	SS-18	14.6									
	SS-1	18.9	38	22	16						
	SS-2	22									
	SS-3	27.4									
GW-998	SS-4	18.6				4.3	58.4	37.3			
	SS-5	26									
	SS-7	23.8									
	SS-9	15.4									
GW-999	BS-S06					3.5	35.4	61.1		110.6 ²	12.1^{2}

Table 7.1. Summary of EMDF split-spoon and bulk sample laboratory index test results (cont.)

¹USCS symbol based only on laboratory results. See the borehole logs in Appendix B for complete descriptions.

² Determined by method ASTM D 1557.

³ Determined by method ASTM D 698.

Soil Classification: CL = lean clay; ML = silt; SC = clayey sand; and SM = silty sand.

ASTM = American Society for Testing and Materials.

BS = bulk sample.

EMDF = Environmental Management Disposal Facility.

N/A = not applicable.

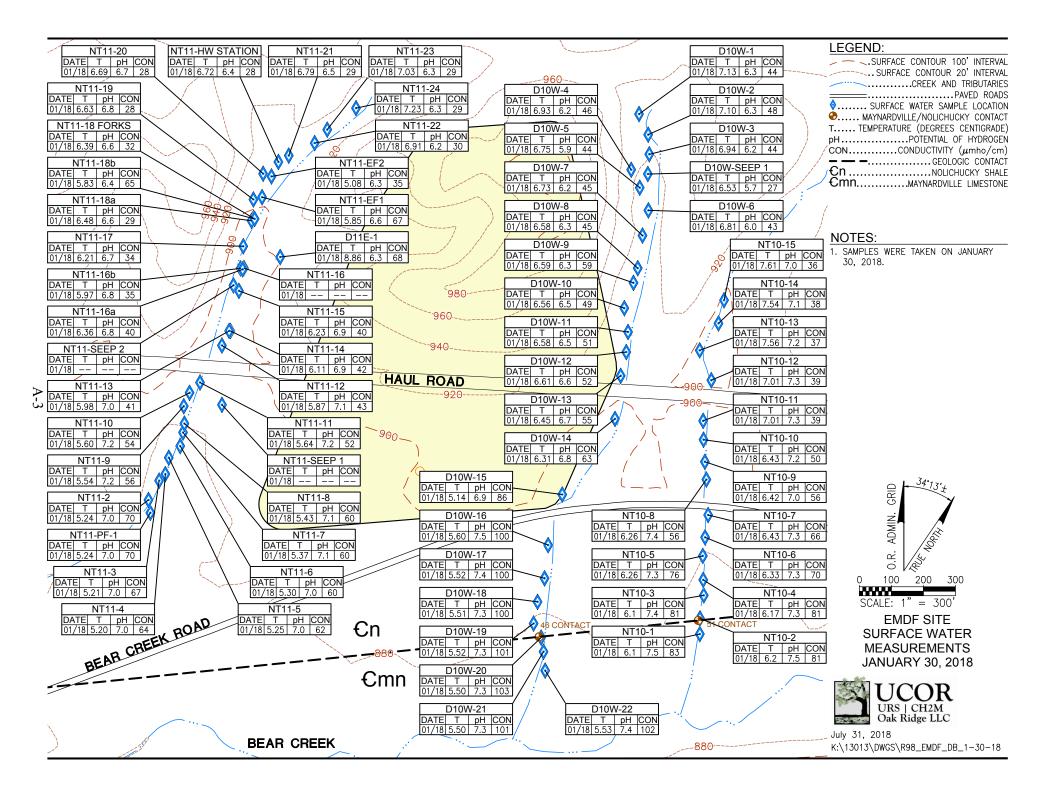
NP = non-plastic.

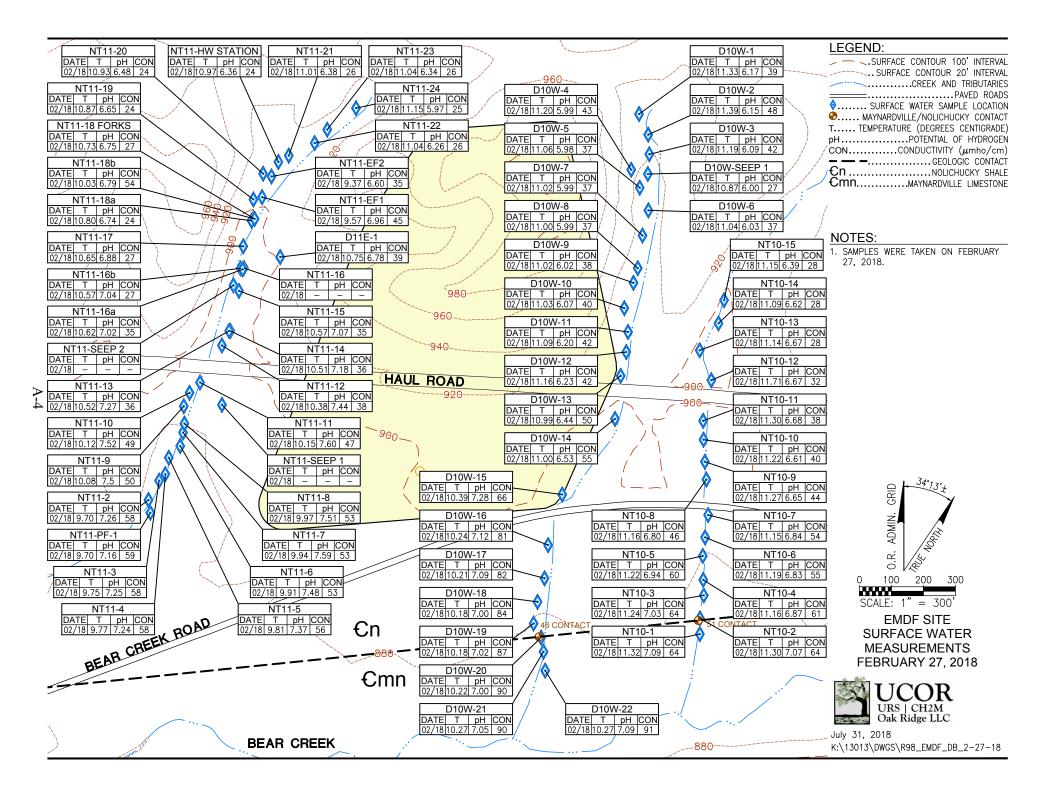
USCS = Unified Soil Classification System.

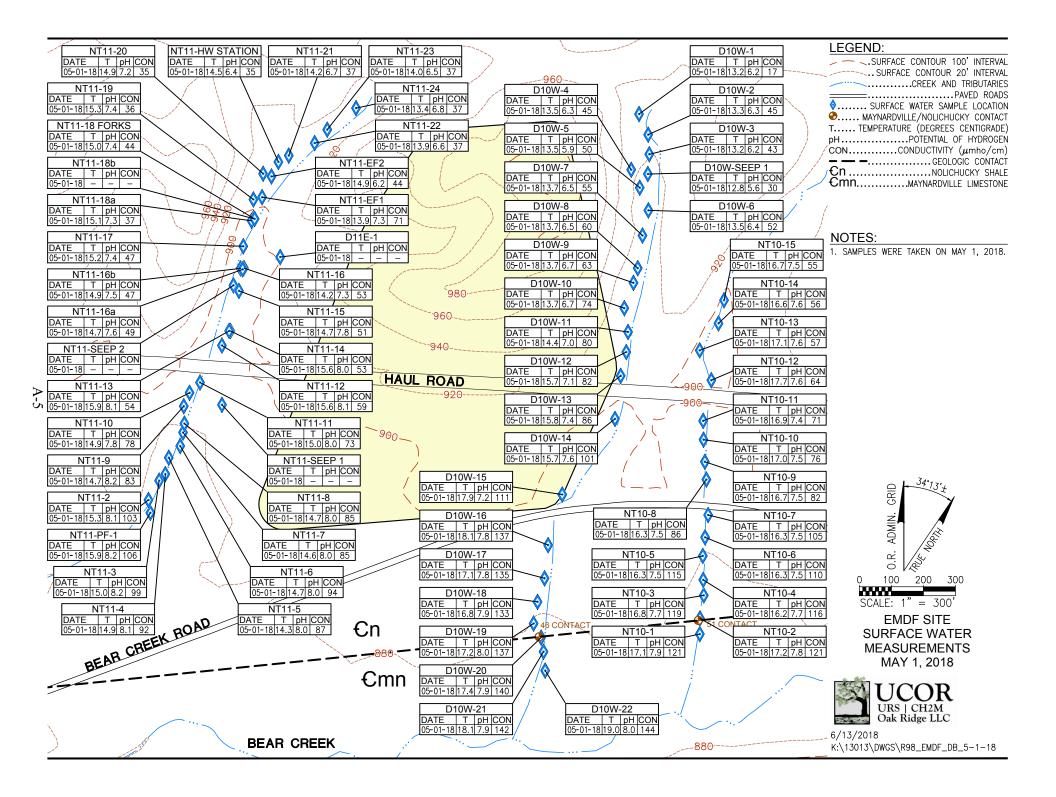
8. VALIDATION OF KEY ASSUMPTIONS

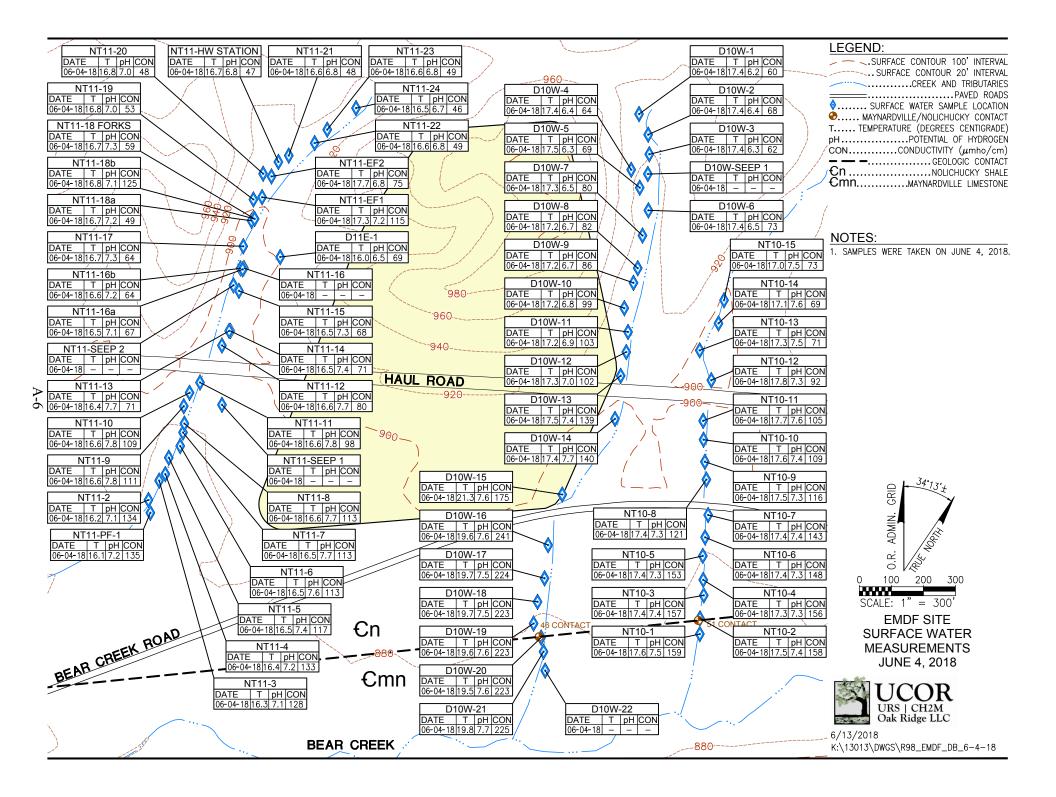
Key assumptions developed for the EMDF, and the validation of those assumptions, are as follows:

- Geology is typical of BCV with steeply dipping, fractured bedrock, and there are no major karstic features in the Maryville, Nolichucky, or Rogersville formations underlying the CBCV site.
 - Core drilling for the EMDF piezometers confirmed the presence of typical BCV geologic structures in the subsurface, including steeply dipping beds; interbedded shales, siltstones, and some limestone; and the presence of joints and fractures in bedrock.
- The contact with the Maynardville Limestone is located south of the currently proposed EMDF footprint.
 - The location of the Maynardville was confirmed in field surveys that located the Maynardville/Nolichucky geologic contact approximately 50 ft further south of the proposed EMDF than previously mapped. The EMDF footprint and buffer zone are, therefore, north of this formation.
- Precipitation primarily runs off as surface water and shallow groundwater in the stormflow zone.
 - Site walkovers confirmed the presence of abundant macropores—such as result from decayed trees—and an active stormflow zone in the area of the EMDF. Flow through macropores and the resurgence of shallow underflow were observed to occur.
 - Flumes record higher stream flows following precipitation, indicating that most precipitation is running off as stormwater. Flow rates rapidly decrease when precipitation is over, indicating a smaller influence from groundwater.
 - Walkovers confirmed the location of existing seeps and did not locate additional seeps in the EMDF area.
- Groundwater elevations are typical of other BCV wells in similar settings.
 - Groundwater levels measured in both deep and shallow piezometers during the Phase 1 characterization confirmed that prior to landfill construction, groundwater discharges as seeps in the valleys and drainages. Mirroring topography, groundwater is higher beneath knolls/ridges. However, the groundwater elevation beneath the largest knoll in the site is deeper below ground surface than predicted in the RI/FS. Groundwater levels show responses to rainfall events and downward gradients beneath the knoll, indicating minor recharge is occurring on the site.


Results of the Phase 1 site characterization validate the key assumptions regarding the hydrogeologic setting (groundwater and surface water conditions) at the site. The results confirm the acceptability of the CBCV site for a new, low-level waste landfill and support final site selection.


9. REFERENCES


- Bouwer, H., and Rice, R. C. 1976. "A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells," *Water Resources Research* **12**(3): 423–428.
- Bouwer, H. 1989. "The Bouwer and Rice Slug Test An Update," Groundwater 27(3): 304–309.
- Clapp, R. B. 1997. *Estimating groundwater recharge to the shale aquifers in Eastern Tennessee using a topography-based, water-budget model* (in) Extended Abstracts from Seventh Tennessee Water Resources Symposium, Nashville, Tennessee, February 24–26, pp. 151–153.
- DOE (U.S. Department of Energy) 2014. Groundwater Strategy for the U.S. Department of Energy, Oak Ridge Reservation, Oak Ridge, Tennessee, DOE/OR/01-2628/V1&D2, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- DOE 2016. 2016 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee, DOE/OR/01-2707&D2, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- DOE 2017. Remedial Investigation/Feasibility Study for the Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee, DOE/OR/01-2535&D5, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- DOE 2018. Phase 1 Field Sampling Plan for the Proposed Environmental Management Disposal Facility for Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee, DOE/OR/01-2739&D2, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- ORNL (Oak Ridge National Laboratory) 1989. *Geology of the West Bear Creek Site*, ORNL/TM-10887, R. R. Lee and R. H. Ketelle, Oak Ridge National Laboratory, Oak Ridge, TN, January.
- ORNL 2006. Oak Ridge Reservation Physical Characteristics and Natural Resources, ORNL/TM-2006/110, P. D. Parr and J. F. Hughes, Oak Ridge National Laboratory, Oak Ridge, TN, September.
- Wenzel, L. K., and Fishel, V. C. 1942. Methods for determining permeability of water-bearing materials, with special reference to discharging-well methods, U.S. Department of the Interior, Geological Survey, Water-Supply Paper 887, U.S. Govt. Printing Office, Washington, D.C.


APPENDIX A

SURFACE WATER MEASUREMENTS

APPENDIX B

BORING LOGS

				BC	REHOLE	LOG					
Site Na	ame cation:	E	MDF Ch	aracterization Project	Drilling Methods	: , HQ3 Core w/wa	tor 10" hamme	or bit	w/air 5 7/8"	Boring Nur	nber:
	cation.		C	Dak Ridge, TN	tricone bit v					GW	-978
Drilling	Firm: 7	Fri-State D	Drilling		DATE	TIME	DEPTH DRILLED	H (ft)	WATER LEVEL (ft)	011	//0
Driller /	/ Rig: <i>Fi</i>	red Reynd	olds/Mobil	e 42C	2/12/18	0910	18.3		9.81	Page	1 of 4
oggeo	d by: <i>R</i> y	van Hanse	əl		ST = Shelby Tub	Sampling		S = SI	plit Spoon	-	
Coordii	nates: 3	80656.681	V 38643.	59E	WS = Waxed Sar SP = Sand Pump	mple	CS		ontinuous Sampler	Start	Finish
Surface	e Elevati	ion: 953.	5 ft/MSL		GP or DP = Direc CT = Cuttings		NS		ot Sampled	Time 0849	Time 1658
Surface	e Condit	ions / We	ather: Gr	avel road base, wet / 45°F, Cloudy,						Date 2/10/18	Date 2/18/18
Remar	ks:										
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTI	ON	Graphic	Log	Rema	arks	nscs
				ROAD BASE.			X	*	Ran 2 1/4" HSA (
- 1	NS								w/center plug whi Continuous 2" OE spoons, 140 lb hy), 2' drive sp	
-			2	Yellowish brown to dark yellowish	brown (10YR 5/6	6 - 4/6) CLAYEY	SILT.		hammer. HQ3 Co (OD) w/water.		CL
2-	SS-1	1.0' 66.7%	2	Trace fine grained sand. Trace a Medium to high plasticity. Cohesi stiff. High dry strength. No dilata	ive. Mottled appe	arance. Stiff to	very		SS-1 Lab results: Content (MC) 21.		
3-			3	and manganese oxide on surface Moist. RESIDUAL SOIL.	s of shale clasts.	No reaction with	HCI.				
-	-	1.9'	5	WOISI. RESIDUAL SOIL.					On 2/15/18, used		
4	SS-2	95%	6						Ingersoll-Rand T3 to ream borehole		
- 5—			7						10" air hammer bi permanent 6" ID I		
-	_		5	Below 5' roots (trace). Siltstone c Clay content increasing with dept		ce, up to 1" diam	eter.		Casing sealed wit bentonite grout.		
6-	SS-3	2.0' 100%	7 9				_		SS-3 Lab results:	MC 19.3%	.
-			11	Underlying contact is transitional.							
7-			4	Change at 7.4'.							
8	SS-4	1.9'	7	Pale yellow to pale gray (5Y 8/2 - SILTY CLAY. Trace fine grained	sand. Trace ang	ular shale and s					CL
-		95%	9	clasts. Medium to high plasticity. appearance. Very stiff. High dry	Cohesive. Color strength. Weather	gives mottled ered. Iron and/or			SS-4 Lab results: 0.5% Gravel; 34.2		
9-			11 4	manganese oxide throughout. No becoming oriented in same direct	o reaction with HC	I. Shale clasts	_		65.3% Fines.		
-		2.0'	8	Change at 9.9'.			-				
10	- SS-5	100%	16	Gray to dark gray (10YR 5/1 - 4/1 (SAPROLITE). Trace fine grained				_	SS-5 Lab results:	MC 21%.	CL
11-			19	Shale clasts are comprised most into angular/subangular gravel-siz	y of silt and clay.	Some shale bro					
-	_		9	manganese oxide on shale surfac	e. Shale bedding	j is at ~40°-50° a		-			
12-	SS-6	1.7' 85%	20 34	Very stiff to hard. Cohesive. High dilatancy. Weathered. No reaction							
-	-		40	Below 12.1' some silt beds and pa	artings present						
13—	SS-7	0.9'	14		5 F 56		-+				
- 14		100%	50/5	13.7' - 13.9' Color is olive gray to	olive (5Y 5/2 - 4/3	i).					
-	NS			Below 13.7' becomes moderately becoming more intact. Slickensid	to highly decomp	osed. Shale is shale bedding r	planes				
15—		1.0'	46	Dry to moist.		bodding p			SS-8 Lab results:	MC 11.5%	
- 16—	SS-8	100%	50/6								
-	NS			Becoming less weathered with de	pth.						
17 —		4.01	24						SS-9 Lab results:	MC 11.7%	
- 18	SS-9	1.3' 100%	45								
- 01									2/12/18 at 0910 D BGS.	0TW=9.81	
19—	NS		40	No reaction with HCI.						. MO 11 1	
	SS-10	0.7'	40						SS-10 Lab results	s: MC 11.19	%.

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-978

Remar	ks:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
	NS			Gray to dark gray (10YR 5/1 - 4/1) completely weathered SHALE (SAPROLITE). (Cont'd.)		Water on AW rods when pulling SS-10. Water in hole	CL
21-	SS-11	0.2' 100%	50/2	Below 21.0' shale is mostly intact. Iron oxide and manganese oxide become trace. Sample is mostly pulverized due to sample technique and		may be from surface. ~4" rain over weekend.	
22-	NS			high blow counts. Color becomes gray to dark gray (N 5/ - 4/). Shale		SS-12 No return. Very hard sampling and augering.	
23-	SS-12		50/2	-		calling and adgoing.	
24	NS						
25-	00.40			Underlying contact may be as high as 17.0'. Change at 25.1'.			
-	<u>SS-13</u> C-1	0 0.9' 100%	<u>50/2</u> 0%	Overall structure is a laminated to thinly INTERBEDDED LIMESTONE and SHALE. The shale is very dusky red (10R 2/2). The limestone is dark reddish gray (10GY 4/1). The shale is laminated to thinly bedded.		SS-13 No return. Switching to core to attempt better sample recovery. DTW = 17.85' BGS	
26- - 27-	_			Abundant with slickensides, most along bedding plane. Strong field strength. The limestone is laminated in parts with glauconite grains. Has a strong reaction with HCI. The overall structure is fresh to slightly decomposed. Slightly disintegrated. Intensely to very intensely fractured.		on 2/12/18 at 1055. Added 1/2 bag 3/8" bentonite chips to hole. Lowered 4" ID temporary surface casing to 25.0'.	
28-	C-2	3.1'	0%	Most fractures are along the 45° bedding plane and mechanically induced. Some fractures are completely healed with white to pink/orange calcite and dusky red mudstone. Soft sediment deformation and		C-1 25.1' - 26.0' 1256-1311.	
29-		62%	0 /0	cross-bedding is present throughout and along shale/limestone bedding contact		C-2 26.0' - 31.0' 1326-1429. (Stopped run from 1340 - 1345	
30-	-			At 27.3, iron oxide on fracture perpendicular to the bedding plane Below 27.3' sample is very intensely fractured (pulverized). Probably mechanically induced. Change at 31.0'.		to switch water tanks.)	
31	_			Dusky red to very dusky red (10R 3/2 - 2.5/2) SHALE. Laminated to thinly bedded. Strong field strength. Trace limestone beds and partings. Abundant slickensides mostly along bedding plane. Bedding is ~40°-50°.		C-3 31.0' - 34.6' 1442-1550. 1526-1540 Change water/break.	
33-	C-3	3.6' 100%	28.9%	Trace glauconite grains and stringers. Fresh. Slightly disintegrated. Moderately to intensely fractured. Most breaks/fractures are mechanically induced. Trace to little fractures are healed with calcite. No reaction with		33.0' Fracture perpendicular to bedding plane. 35.6' Fracture along bedding	
34-	_			 31.6', 31.85' - 32.0' Fracture perpendicular to bedding plane. 32.3' Fracture along bedding plane with slickensides and brittle calcite. 32.5' - 33.0' Very intensely fractured. Multiple fractures/breaks along and perpendicular to bedding planes. 		plane healed with calcite. 33.6' - 33.8' Vertical fracture.	
35-	C-4	1.4' 100%	38.6%	37.5' - 37.6' Dark greenish gray limestone parting. Limestone contains angular clasts of limestone (interclasting limestone).		C-4 34.6' - 36.0' 1608-1627.	
34 - 35 - 35 - 36 - 37 - 38 - 38 - 38 - 38 - 39 - 40 - 410 - 41 - 40 - 41 - 41 - 42 - 43 - 44 - 44 -	-			37.6' - 38.8' Shale is pulverized. Dark greenish gray in color. Below 38.8' becoming moderately fractured.		C-5 36.0' - 38.8' 1640-1714. 1649-1655 Change water.	
38-	C-5	2.6' 93%	29.6%	 38.9' - 39.1' Calcite healed fracture perpendicular to bedding. 39.1' - 39.4' Fracture along bedding plane, slickensided with thin calcite precipitate. 			
39-	-			39.4' - 40.2' Trace siltstone/mudstone partings. Irregular breaks in core. Horizontal to core axis. Same color as shale. Strong to moderate – reaction with HCl.		2/12/18 at 1719 DTW = 5.65' BGS. 2/13/18 at 0810 DTW = 9.19' BGS.	
40-	C-6	2.1' 95.5%	45.5%	40.2' - 40.4' Fracture along bedding plane with thin calcite precipitate. Below 41.0' limestone beds and partings become trace to little.			
41-				41.4' - 41.5' Fracture perpendicular to bedding plane with brittle calcite.		C-6 38.8' - 41.0' 0830-0856.	
42-				42.5' Bedding plane fracture with brittle calcite.			
	C-7	5.0'	33.8%	Below 42.6' shale becomes very dark greenish gray (10Y 3/1). Limestone beds and partings increasing with depth. Limestone beds present with bioturbidation.		42.0' Water circulation becomes light gray. C-7 41.0' - 46.0' 0905-0956.	·
		100%	33.0%	\ 42.6' - 42.9 Fracture perpendicular to bedding plane with calcite. \Change at 42.7'. (Transitional). Laminated to thinly INTERBEDDED SHALE and LIMESTONE. The shale	E	0914-0919 Change water.	
				is dark reddish gray to reddish black (2.5YR 3/1 - 2.5/1). Laminated to thinly bedded. Strong field strength. Abundant slickensides. The limestone is gray to dark gray (N 5/ - 4/). Bioturbidation and soft sediment			

EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-978

Remarks: Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method USCS Depth (feet) SAMPLE DESCRIPTION Remarks deformation. Strong field strength. Trace glauconite grains. The contact between the shale and limestone is in most part deformed. Trace At ~45' water circulation turned 5.0' C-7 33.8% brown 100% glauconite veins/stringers. Fresh to slightly decomposed. Intensely to 46 moderately fractured. Most fractures are along bedding planes and ~45.5' Water circulation dark to probably mechanically induced. Trace to some fractures are completely light gray. healed with calcite. 47 44.6' - 45.1' Multiple fractures with and against bedding plane. Iron oxide C-8 46.0' - 51.0' 1020-1200. and manganese oxide present on all fracture surfaces. Iron oxide halo 46 5' Water brown 47 0' from 44.6' - 44.9'. 48 Water light gray. 45.0' - 45.3' Multiple fracture with and against bedding plane. Iron oxide 4 9 C-8 36.6% and manganese oxide on each fracture face. Iron oxide halo ~0.01' 98% around fractures. 49 47.2' Fracture along bedding plane with Iron and manganese oxide. 49.0' and 49.2' Fracture horizontal to core axis with iron and manganese 50 oxide 51 Below 51.0' becomes moderately fractured. Most to all mechanically On C-8 ran out of water at induced. 50.8'. Finish run after lunch. Lunch 1100-1155. 52 52.2' - 53.2' Fracture perpendicular to bedding plane completely healed C-9 51.0' - 56.0' 1210-1320. with calcite. 1237-1309 Stop - out of water. 53 4.7 Below 52.5' trace to little glauconite stringers/veins/partings. Limestone C-9 35.8% 94% has fine grains of glauconite. Limestone and shale interbeds are mostly 54 wavy and deformed. There are some subrounded, reworked limestone clasts oriented with bedding (40° - 50°). Below 54.0' bedding becomes mostly planar with some soft sediment 55 deformation. Shale has a very dark greenish gray color (10GY 3/1). Below 56.0' becomes intensely fractured to very intensely fractured. 56 Multiple fracture/breaks are along calcite healed fractures or bedding planes. Shale becomes dark reddish brown (5YR 3/2). 56.2' - 56.4' Fracture perpendicular to bedding plane healed with calcite. 57 2.7' 57.2' - 59.0' Very intensely fractured. Most/all are mechanical breaks C-10 56.0' - 59.0' 1330-1424. C-10 ٥% 90% along bedding planes/calcite healed fractures. 1356-1413 Change water. 58 59.0' - 59.2' Vertical fracture (mechanical break) healed with calcite. 59.0' - 59.6' Shale is very dark greenish gray (10GY 3/1). 59 Below 59.6' soft sediment deformation becomes trace to little. At 59.0' driller noted spike in water pressure. Stopped run 1.9' at 59.0'. 0% 60 C-11 95% 61.4' - 61.6' Shale is very dark greenish gray (10GY 3/1). Shale beds C-11 59.0' - 61.0' 1435-1450. becoming dominant. 61 61.8' - 62.0' Fracture along bedding plane healed with calcite. 62.6' Mechanical break perpendicular to bedding. C-12 61.0' - 65.6' 1502-1536. 62 63.0' - Mechanical break perpendicular to bedding. Below 63.6' shale becomes dark greenish gray (10GY 3/1). Shale and 3.4' 63 C-12 0% limestone beds become 50/50. Soft sediment deformation becomes few 74% to little. 64 65.0' Driller noted spike in 64.1' - 64.2' Fracture perpendicular to bedding plane healed with calcite. water pressure. Pulled run, thinks lost from bottom of 65 Below 65.1' shale becomes dark reddish brown (5YR 3/2). Fractures C-12 0.7 37.8% C-13 healed with calcite become trace to rare. 77.8% C-13 65.6' - 66.0' 1545-1557. 66 66.6' Horizontal fracture healed with calcite. 1.3' C-14 0% 81.3% 67 67.9' Horizontal fracture with calcite. C-14 66.0' - 67.6' 1608-1628. Multiple fractures along bedding plane are mechanically induced. Spike in water pressure blocked tip. Pulled run at 68 67.6'. Lost from bottom of run. 3.2 69.9' - 70.2' Fracture perpendicular to bedding plane healed with calcite. C-15 67.6' - 71.0' 1636-1714. C-15 0% 94.1% 69 1643-1650 Change water.

BOREHOLE LOG V.2. OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-978

Remarl	ks:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
	C-15	3.2'	0%	Gray to dark gary (N 5/ - 4/) to dark reddish brown (5YR 3/2) INTERBEDDED SANDSTONE and SHALE. (Cont'd.)		2/13/18 at 1710 DTW=21.51 BGS. 2/14/18 at 0802	
71	-			71.0 - 71.5' Highly broken zone. Mechanically induced. Some fractures completely healed with calcite.		DTW=18.05 BGS.	
72—	C-16	2.7	0%	71.9' Fracture horizontal to core axis healed with calcite. Glauconite veins $^-$ and stringers become little.		C-16 71.0' - 73.9' 0922-0948.	
73—	-			- Most breaks are along bedding plane and mechanically induced.			
74—	C-17	1.1	0%			C-17 73.9' - 75.0' 0957-1006.	
75—				-		2/14/18 at 1021 DTW=33.96	
76—	_			-		BGS.	
- 77				-			
- 78—	NS			-	Ē		
- 79—	-			-			
- 80—	-			Bottom of Borehole = 80.0'.		2/18/18 Reamed borehole and	
- 81—	-			Piezometer GW-978 installed in borehole. See Monitoring Well Installation Report GW-978 for details.	-	advanced borehole to 80.0' using Ingersoll-Rand T3W rotary rig with 5 7/8" tricone bit	
- 82 —	-			-	-	with water and air circulation. Completed at 1658.	
- 83—	-			-	-		
- 84 —	-			-	-		
- 85 —	-			-	-		
- 86 —	-			-	-		
- 87 —	-			-	-		
- 88 —	-			-	-		
- 89 —	-			-	-		
- 90 —	-			-	_		
- 91—	-			-	-		
- 92—	-			-	-		
- 93 —	-			-	_		
- 94 –	-			-			
-	-				-		

Eago	on & /	Associa	tes, l	nc.							II Nun GW-97	
		Ν	lonit	oring	Wel	l Inst	allation R	eport				
Site Nam	ne and Lo	cation: EML	DF Chara	cterization F	Project, O	ak Ridge, T	٢N	Completion [Date: 3/8/18			₩ (
Coordina	ites: 306	56.68N 386	43.59E			Bore	hole Depth (ft): 80.0	0				
Elevatior	n Top of C	asing (ft/MS	SL): 955.	97		Bore	hole Diameter (in):1	0" (0'-26.5'), 5 7/8	3" (26.5'-80.0')			
Elevatior	Ground	Surface (ft/N	1SL): 95	3.5		Drillin	ng Methods: 2 1/4" F	ISA, HQ3 Core w	/water, 10" hammer t w/water/air.			10
Installed	By: Fred	Reynolds/T	ri-State D	Drilling			pleted Drilling: 2/18		w/water/air.			
	-	hay Beanlan		-	s. Inc.	Drillin	ng Water Used (gals	5):				
								- /-				
						I Des	ign			-		20
	Com	ponent				Materials		Depth (LSD)	Elevation			
Well P	rotector			4" Squa	re Steel	Protector v	//Locking Lid	-2.8 - 2.2	956.3 - 951.3			
Riser				2" ID Sc	hedule 4	0 PVC		-2.3 - 59.5	955.8 - 894.0			30
Surfac	e Seal			3' x 3' C	oncrete I	Pad		-0.5 - 0.5	954.0 - 953.0			
Condu	ctor Casir	ng		6" ID P\	/C Scheo	dule 40, Flu	ush Threaded	-0.4 - 26.5	953.9 - 927.0			_
Cemer	nt Grout			Cement	Bentonit	e Grout		0.5 - 53.0	953.0 - 900.5			
Benton	ite Seal			Pel Plug	1/4" Co	ated Bento	nite Pellets	53.0 - 56.1	900.5 - 897.4			4
Sand F	Pack			DSI "GF	9 #2" Gra	vel Pack		56.1 - 70.9	897.4 - 882.6			
Screen	ı			2" ID Sc	hedule 4	0 PVC, 10	-Slot	59.5 - 69.6	894.0 - 883.9			4
Well P	oint Blank	(2" ID Sc	h. 40 PV	′C Cap & F	Riser Section	69.6 - 70.9	883.9 - 882.6	-		=
Sand F	Pack Botto	om		DSI "GF	9 #2" Gra	vel Pack		70.9 - 71.5	882.6 - 882.0			5
Bentor	ite Seal			, i			nite Pellets	71.5 - 80.0	882.0 - 873.5	-		
	oth (ft,TO	<u></u>	Dopth	to Water (ft			pment Volume (gals):	Volumo	^o urged (gals):			
73.18		<i></i>		.63	,100).		0.2	467.		8888		_
	ment Meth	nod: <i>Tornado pur</i> r	р									60
Date	Time	Cumulative Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery	Data				
2/26/18	1700	125					100					_
2/27/18	0810	145	14.1	372	8.29	3.6	(%) × %					70
2/27/18	1304	250	14.8	351	7.56	2.7	00 00 00 00 00 00 00 00 00 00 00 00 00					
2/27/18	1314	265	14.8	342	7.57	6.0	ООН 20					
2/27/18	1344	310	14.8	334	7.52	1.8	0 <u></u>	40	80 120			
2/27/18	1555	467.5	15.1	340	7.48	2.0		Time (minute	es)			
Sampling	g Equipme	ent:								1		
Commer	nts:									4		
Stainles	s steel cen						nd pack and pellets in i	using tremie pipe. (Grout mixing and			
placeme	ent informa	tion provided l	oy i ri-Stat	e Drilling. Sci	een slot ir	iterval 59.8 -	69.5 bgs.			Borin	ig depth=	80.0 ft

				BC	REHOLE	LOG					
Site Na and Loo		E		naracterization Project Dak Ridge, TN	Drilling Methods 3 1/4" ID H	: SA, HQ Core with	water, 5 7	7/8" air ha	ammer bit.	Boring Nu	
Drilling	Firm: 7	Tri-State D		Jak Riuge, Th	DATE	TIME	DEI DRILL	PTH ED (ft)	WATER LEVEL (ft)	GW	-979
Driller /	Rig: <i>Fi</i>	red Reynd	olds/Mobil	e Drill B42C						Page	1 of 2
Logged	by: Sh	nay Beanla	and		ST = Shelby Tub	Sampling I	<u>Methods:</u>		plit Spoon	Start	Finish
Coordir	nates: 3	80656.611	V 38653.	90E	WS = Waxed Sau SP = Sand Pump)		C = C		Time	Time
Surface	Elevati	ion: 953.	7 ft/MSL		GP or DP = Direc CT = Cuttings	ct Push		NS = N B = Bai	lot Sampled iler	1112 Date	1358 Date
Surface	e Condit	ions / We	ather: Gr	ravel road base, wet / 70°F, Overcas	st, light sprinkle					2/21/18	2/22/18
Remark	ks: Bore			ne collection of geotech samples and	d installation of sh	allow piezometer					
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTI	ON		Graphic Log	Rema	arks	nscs
- 1— - 2—	NS			See Borehole Log GW-978 for de stratigraphic interpretation.	tailed lithologic de	escription and	-	-	Ran 3 1/4" ID HS plug while augeri borehole.		ər
3— 4— 5—	ST-1	2.0	700 PSI 700 PSI 750 PSI 850 PSI	At base of tube, sample was light SANDY SILTY CLAY. Sand is fin	brown to strong b e grained. Samp	orown (7.5YR 6/4 le is mottled. Mc	- 5/6) -		Pushed Shelby to 5.0'. Let Shelby to set from 1119 to Bucket Sample B	tube (ST-1) 1132.	
6— - 7—	NS								from 4.0' - 5.0' at Bucket Sample B from 5.0' - 6.0' at	1140. S-2 collecte	
- 8	ST-2	1.25	900 PSI 900 PSI				-				
9— _ 10—	NS ST-3	1.6	1000/3 PSI 850 PSI 1100	At base of tube, sample was redd (SHALE). Highly weathered. Eas			LITE		Pushed Shelby tu from 7.5' - 8.75', where refusal wa tube set from 114	which is s. Let Shel	ру
11— - 12—			PSI 1500/4 PSI	At base of tube, sample was light (2.5Y 4/3 - 5/3) SHALE (SAPROL hand. Iron oxide and manganese	ITE). Weathered	. Easily crumble	d with –		Pushed Shelby tu from 9.5' - 10.8'. from 1201 to 120	Let tube se	t
								-			
- 15— - 16—	NS						-				
							-				
18— - 19—							-				
-							-				

EMDF	Characte Oak Ric	rization F lge, TN	roject BOREHOLE LOG	Вог	ring Number GW-979	
Remarks: E	Borehole ins	talled for t	ne collection of geotech samples and installation of shallow piezometer.			
Depth (feet) Sample	Method Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	NSCS
- C-	0.4'	09/			Auger refusal at 20.2'. Switch to HQ core barrel and start	
21 22 23C- 24	-2 3.9' 100%	26.1%	Dark gray to very dark green gray (N 4/ - 5GY 3/1) INTERBEDDED SHALE and LIMESTONE. Limestone tends to be lighter in color - gray greenish gray (N 5/ - 5GY 5/1). Laminated in places with glauconite grains. Overall structure of interbeds is laminated to medium bedded. Shale is laminated. Slickensides observed on bedding plane surfaces due to soft sediment deformation. Bioturbation and other soft sedimen deformation features observed. Bedding is at 40° to 50° angles. No ir staining observed. Field strength is strong. Core is fresh and compete to slightly disintegrated where trace fractures have been healed with calcite. Some fractures that are healed with calcite are at 45° angles a opposite direction of bedding. Intensely to very intensely fractured in p	t	coring and pulled augers at 1359 - 1421 went to get casing. 1421 Attempting to install PVC casing. 1424 WL at 18.55', TD = 20'. 1643 WL at 5.8', TD = 27.1'.	
25 26 C-	-3 2.1' 100%	0%	but breaks are along bedding planes and are likely mechanical.		25.6' - 26.0' Calcite present along fracture face. C-1 Run: recovery has been highly disturbed. Limestone	
27 28 29 					beds intact, shale has been pulverized and did not feed into barrel. Sample destroyed. C1: 20.2 - 21.1' 1445-1455. C2: 26.1' - 25.0' 1500-1522.	
30	s			-	21.1' - 21.3' Very intensely broken along bedding planes and some at an angle perpendicular to bedding direction. Iron staining throughout. No iron staining present below 21.3'.	
33 34 35 36 37					C3: 25.0' - 27.0' 1528-1548.	
38 - 39 - 40 - 41 - 42 - 43 - -			Bottom of Borehole = 37.6'. Piezometer GW-979 installed in borehole. See Monitoring Well Installation Report GW-979 for details.		On 2/22/18 used Ingersoll-Rand T3W rotary rig to ream corehole and advance borehole to 37.6' using 5 7/8" hammer bit. Completed drilling at 1358.	
44			B-10	_	Page	

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

Eago	n & A	Associa	ates, l	nc.							N N	/ell N GW	lumi -979	
		Ν	loni	toring	Wel	l Inst	allation F	lep	ort			f	-	
Site Nam	e and Loo	cation: EM	DF Chara	acterization P	roject, O	ak Ridge, T	ΓN	C	Completion D	ate: 3/8/18				0
Coordina	tes: 3065	6.61N 38	653.90E			Bore	hole Depth (ft): 37	.8						
Elevation	Top of C	asing (ft/M	SL): 955	.99		Bore	hole Diameter (in):	5 7/8"	(0'-37.75')					
Elevation	Ground	Surface (ft/l	MSL): 95	53.7		Drillin	ng Methods: ^{3 1/4} " air hai	ID HS	A, HQ Core i	vith water, 5 7/8"				5
Installed	By: Fred	Reynolds/1	ri-State L	Drilling			pleted Drilling: 2/2							
Supervise	ed By: S/	nay Beanlar	nd/Eagon	& Associates	s, Inc.	Drillin	ng Water Used (ga	ls):						
					Wel	l Des	ian				-			10
	Com	ponent				Materials	.9	Dep	oth (LSD)	Elevation				
Well Pr	otector			4" Squa	re Steel	Protector v	//Locking Lid	-2	2.6 - 2.4	956.3 - 951.3				
Riser				2" ID Sc	hedule 4	0 PVC		-2	.3 - 26.3	956.0 - 927.5				
Surface	e Seal			3' x 3' C	oncrete l	Pad		-0).5 - 0.5	954.2 - 953.2				15-
Cemen	t Grout			Cement	Bentoni	te Grout		0.	5 - 19.0	953.2 - 934.7				
Benton	ite Seal			Pel Plug	1/4" Co	ated Bento	onite Pellets	19	.0 - 21.2	934.7 - 932.6				
Sand P	ack			DSI "GP	#2" Gra	vel Pack		21	.2 - 37.6	932.6 - 916.1				
Screen				2" ID Sc	hedule 4	0 PVC, 10	-Slot	26	.3 - 36.3	927.5 - 917.4				20-
Well Po	oint Blank			2" ID Sc	h. 40 P∖	/C Cap & F	Riser Section	36	.3 - 37.6	917.4 - 916.1				
Sand P	ack Botto	m		DSI "GP	#2" Gra	vel Pack		37	.6 - 37.8	916.1 - 916.0	-			
											_			25
				We		avalo	pment				-			
Well Dep		c):		to Water (ft,		Well	Volume (gals):			Purged (gals):	-			
39.88 Developn	nent Meth	iod:	•	4.70		4	l.1		236.0)				
Surge bl	ock, bailer,	Tornado pur Cumulative	пр	On a sifi s			_				_			30-
Date	Time	Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery	Data	а					
2/27/18	1100	108.5	14.4	311	7.35	41.9	100							
2/27/18	1110	123.5	14.4	306	7.44	13.1	(%) ⁸⁰ ∕≻ 60							35
2/27/18	1150	183.5	14.5	304	7.35	1.0	08 00 (%) 60 40 40 40 40 40 40 40 40 40 40 40 40 40							
2/27/18	1200	198.5	14.5	304	7.30	1.9	입 월 20							-
2/27/18	1210	213.5	14.5	301	7.38	0.9	0 <u></u> 0		40	80 120				40
2/27/18	1225	236.0	14.5	303	7.32	0.7		٦	Fime (minute	es)				
Sampling	Equipme	ent:		<u> </u>		<u>u</u>					1			
Commen	ts:										-			
Grout m	ixing and p	lacement info	ormation p	rovided by Tri-S	State Drill	ing. Screen	slot interval 26.5 - 36	2 bgs.			Br	oring de	nth=37	78ft

B-11

				BC	REHOLE	LOG					
Site Na and Loo		E	MDF Ch	naracterization Project Dak Ridge, TN		: SA, HQ3 Core with icone bit with air/w		ulation	, 10" air hammer	Boring Nur	
Drilling	Firm: 7	ri-State L	Drilling		DATE	TIME	DEP DRILLE	TH ED (ft)	WATER LEVEL (ft)	GW	-980
Driller /	Rig: SI	nannon S	now/CME	-550						Page	1 of 4
Logged	by: Da	vid J. Su	gar		ST = Shelby Tub				plit Spoon	Start	Finish
			V 38138.	34E	WS = Waxed Sau SP = Sand Pump GP or DP = Direc	, [·]		C = C	Continuous Sampler Coring Iot Sampled	Time	Time
		on: 963.4			CT = Cuttings			B = Ba		1525 Date	1202 Date
Surface		ons / We	ather: Gr	avel pad, moist, slopping / 51°F, Ov	rercast					2/13/18	2/17/18
		• <u>≻</u> %	.⊆					0			
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTI	ON		Graphic Log	Rema	arks	nscs
_	NO			Road bed/pad. Gravel.					3 1/4" ID HSA, 7 center bit while a	ugering.	
1—	NS			Dark yellowish brown (10YR 4/4 - some gravel clasts, up to 1 3/8" s					Continuous 2" OI spoons 140 lb au		ML
-2	SS-1	0.5' 83%	4	generally jumbled fabric (no domi medium plasticity. Low to mediur	nant orientation of	clasts). Low to	· –		hammer. Possibly ML-CL o		
-			5	slightly moist. RESIDUUM/COLL			-		Trace to some irc coatings on rock	fragments.	
3—	SS-2	1.6' 80%	10 12						Does not appear fractures, isolated		1
4			17	- ,	(50)(0)0)	B	_		fragments.		
. –		0.01	6 21	Trace to some very grayish green weathered glauconitic rock fragme		Possibly highly	-		No reaction with l On 2/15/18 used	HCI.	
5—	SS-3	2.0' 100%	29						Ingersoll-Rand Ta to ream corehole		
- 6—			30						10" air hammer b permanent 6" PV	it. Set	Ŭ
-		2.01	43 68				-		sealed with ceme grout.		
7—	SS-4	2.0' 100%	73	Below 6.9' primarily slightly moist brown to yellowish brown (10YR §		ght brownish gray	/,		SS-2 Lab results: Content (MC) 13.		
8-			70	,,, _,, _			_		Gravel; 32% San		s.
-	-	2.0'	16 25				-				
9—	SS-5	100%	49								
10—			42								
-		2.0'	6 25				-				
11	SS-6	100%	78	11.1' - 11.2' grayish green glauco	nitic sandstone fra	agment.			Possibly ML-CL o		
12—			100 11	Light yellowish brown to brownish	vellow (10YR 6/4	- 6/8) and greeni	ish		SS-3 Lab results: Zone with rock st		•
-	SS-7	1.4' 70%	39	gray (5G 5/1). Highly to complete Considerable yellowish brown iron	ely weathered SHA	ALE. Thinly bedde	ed. –		Possibly large roo		
13—		10/0	100/4	oxide.					SS-4 Lab results: SS-6 Lab results:		
14 —	NS		39						SS-6 Lab results: SS-8 Lab results: No reaction with I	MC 14.5%	
-		2.0'	59 54	Continues to have low to medium		oossibly medium	-		Appears saprolition	c in places,	
15 — -	SS-8	100%	66	toughness. Possibly ML-CL class	sincation.				may be large flat fragments. Sligh		
16—			51 20						SS-9 Lab results:	MC 10.2%	.
- 17—	SS-9	1.9'	63	Underlying contact is gradational Change at 17.4'.	from 17.2' - 17.5'.				SS-10 Lab result		
-	00-9	95%	57	Gray to greenish gray (N 5/ - 10Y				<u> </u>	No reaction with		
18—	SS-10	0.7'	100/5 92	generally destroyed by sampling position of the sampling position of the sampling position of the sampling position of the same same same same same same same sam	process. Trace ye	ellowish brown iro			Unweathered to s weathered.		
- 19—	33-10	100%	100/2	bedding angle.							
	NS			Below 18.0' primarily gray (N 5/) on near 18.6'.	color. Trace yellov	wish brown iron o	xide		Slightly moist to o mostly disturbed		is

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

BOREHOLE LOG

Boring Number GW-980

Remar	ks:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	USCS
-	SS-11	0.5'/100%	100/5	Very dark gray to black (N3/ - N2.5/) SHALE. (Cont'd.)		sampling process. SS-11 Sample is wet, ~1' of	
21-	NS			Trace yellowish brown iron oxide from 20.2' to 20.3'.		cutter sampler was also wet. After taking SS-11 (1700) measured WL at 19.22' (1705).	
22 –		0.9'	69	Trace white precipitate (?) does not react with HCI. Trace amount	1	SS-12 Lab results: MC 11.7%.	
- 23-	SS-12	90%	100/2	associated with bedding planes.	11	SS-13 Lab results: MC 12.3%.	
-	NS			Below 22.0' oxidation not present. Formation is soft but relatively unweathered.		SS-11 and SS-12 Recovery is broken due to the sampling	
24 —	00.40	0.8'	40	SS-13 Sample has relatively intact bedding. 40° - 45° Bedding angle,	11	process. Bedding appears to be angled but gradation is not	
25-	- SS-13	80%	100/3	appears thinly bedded.	1	apparent. End 2/13/18, 1735, at 25.0'.	
-	NS				+	1746 WL = 20.72' from GS. Begin 2/14/18, 0830, 45°-50°F,	
26-	-			Change at 26.3'.		light rain. 0808 WL = 14.12' _ from GS.	
27				Interbedded dark reddish gray/weak red to dark red (2.5 4/1 - 4/2 and 3/1 - 3/2) SHALE and dark gray to very dark gray (N4/ - N3/) LIMESTONE or calcareous SILTSTONE. Thinly bedded to banded, beds are generally	岸	Auger SS-13 interval and advance augers to 26.0'. Not	
-	0.1		00/	less than 0.1', and up to 0.2'. Trace to few dark green/greenish black	- <u></u>	refusal but formation appears competent to core. Installed 4"	
28-	C-1	2.6 87%	0%	glauconitic beds and partings. Bedding is typically irregular, showing soft sediment deformation features. Limestone content generally varies		temporary casing to 26.3'. Start HQ3 coring at 1053,	
- 29				between 30 to 40%. Healed fractures with white calcite infilling are generally present, but seldom exceed 2mm in width and are often hairline.	F	water circulation.	
- 20				The formation is moderately to intensely fractured, however most of the breaks are associated with bedding plane breaks and are mechanical	1	Bedding generally varies between 35° and 40°.	
30-	-			breaks at planes of weakness. Some surfaces are slickenside, but appear to be depositional, associated with lithification. Limestone beds		C-1 26.3' - 29.3' 1033-1056.	
- 31		2.5'		are moderately hard to hard and shale beds are soft. The formation is unweathered, fresh.	늘	C-2 29.3' - 32.9' 1101-1115. C-3 32.9' - 33.1' 1125-1130.	
-	C-2	81%	13%	27.2' - 27.8' Glauconitic limestone seam. Interclastic, with clasts up to 1/2" diameter, irregular elliptical shape with reddish brown hematitic halo.	+	27.2' - 27.8' Fracture or fracture set, rough face.	
32 —	-			At 31.2' and 31.3' fracture, orientation is approximately 35° to the bedding	╞╤╡	Secondary clear crystals on face, relatively flat crystals,	
-				angle. Face is heavily striated (slickenside) with red clay or hematite on fracture face. Ferrous oxide.	巪	does not react with HCL - possibly gypsum or celestite.	
33-	<u>C-3</u>	0.6' 100%		-		C-3 Run picked up 0.4' from C-2 run.	
34 —	-			Below 32.9' the reddish color hue changes to dark reddish gray/reddish black (7.5R 3/1 - 2.5/1)	- 11	29.9' - 30.0' Calcite filled fractures perpendicular to	
-	-			Below 34.6' generally becoming more competent, moderately fractured	曰	bedding. 31.1' and 33.5' Bedding breaks	
35 -	C-4	3.9'	31%	with most core breaks attributed to mechanical drilling breaks.		with slickenside surfaces, no mineralization present,	
36 —	-	81%	0170		╞╧═╡	probably mechanical.	
-	-				늘	C-4 33.1' - 37.9' 1132-1152.	
37					岸目		
38-				Below 37.9' healed fractures with white calcite infilling are relatively rare and usually less than 1 to 2 mm wide. Limestone/limey siltstone content	-===	37.9' - 39.2' Broken zone, several breaks along bedding	
-	-			is probably closer to 25-30%.		planes with slickenside surfaces.	
39 —	-						
40-	_	4 71				At 38.7' bedding break with slickenside and very fine	
-	C-5	4.7' 94%	9%			secondary pyrite crystals on fracture face.	
41-					╞╤╡		
42-	-				╞╤╡	C-5 37.9' - 42.9' 1249-1314.	
-	-				畐	C-6 42.9' - 47.9' 1323-1339.	
43-	1			Below 42.9' deformation of limestone/limey siltstone appears slightly more pronounced. Most bedding breaks are associated with depositional	F	43.2' - 44.2' Several bedding breaks (0.1' - 0.4' intervals)	
44 —	C-6	5.0' 100%	56%	slickenside surfaces. Most have trace to full thin coatings of calcite. Bedding angle is approximately 40°.		faces are generally slickensided (appears	
-	-					depositional) with trace to full carbonate coatings (calcite).	

			je, TN	BOREHOLE LOG		GW-980	
Remark	(S:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	000
- 46 - 47 -	C-6	5.0' 100%	56%	Interbedded dark reddish gray to reddish black (7.5R 3/1 - 2.5/1) SHALE and dark gray to very dark gray LIMESTONE to LIMEY SILTSTONE. (Cont'd.)		Moderate to slightly fractured.	
48— _ 49—				Continues to be fresh, no observed oxidation. Thinly bedded and competent. Bedding contacts are deformed, wavey structure.		Bedding angle is approximately 45°.	
- 50 -	C-7	5.0' 100%	77%			Fracture at 49.8' has a white calcite coating.	
51— 						C-7 47.9' - 52.9' 1347-1358.	
54 — 55 — 56 — 57 —	C-8	5.0' 100%	65%	Bedding angle approximately 47°.		C-8 52.9' - 57.9' 1405-1417.	
58 — _	C-9	1.0' 100%	71%	Bedding angle varies between 35° - 40°.		C-9 57.9' - 58.9' 1428-1440. 59.2' - 60.1' Zone with healed	
59 — 60 — 61 —	C-10	3.2' 80%	28%	59.2' - 64.3' Moderate to intensely broken. Most breaks correspond with bedding breaks/depositional slickenside surfaces. Slightly higher concentration of calcite healed fractures are perpendicular to bedding. By 60.5' bedding angle is approximately 50°.		(calcite filled) fractures, generally oriented perpendicular to bedding angle. At 59.2', 59.5', and 59.8' fractures are open but appear broken by the drilling process. C-10 58.9' - 62.9' 1445-1457.	
62 				62.2' - 63.5' Bedding turns (deformed) to vertical and back to normal (~45°) bedding angle.		No weathering or oxidation observed. C-10 recovery loss appears associated with this zone.	
64 — 65 — 66 —	C-11	4.8' 96%	39%	Below 64.3' slightly fractured to unfractured. Continues to be fresh, no oxidation, competent. Bedding angle is approximately 45°.		C-11 62.9' - 67.9' 1503-1517.	
67 — - 68 —				Bedding angle is approximately 50°.		67.0' - 67.3' Bedding plane break with apparent depositional slickensides. Trace calcite coating and fine	
- 69	C-12	5.0' 100%	86%	68.0' - 68.2' Bedding plane break, weak slickenside surface, calcite generally coats face. Probably mechanical break.		C-12 67.9' - 72.9' 1529-1540.	

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

EMDF Characterization Project Oak Ridge, TN				Project	BOREHOLE LOG	Bor	ing Number GW-980	
Remark								
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD		SAMPLE DESCRIPTION	Graphic Log	Remarks	NSCS
- 71— 72— 73—	C-12 NS	5.0' 100%	86%	Interbeddo and dark ((Cont'd.)	ed dark reddish gray to reddish black (7.5R 3/1 - 2.5/1) SHALE gray to very dark gray LIMESTONE to LIMEY SILTSTONE. - -		Continues to be very competent, fresh, relatively unfractured. Bedding angle is approximately 50°. 72.4' - 72.5' Bedding plane break, weak slickensides (depositional). Trace calcite on face.	
				Borehole	Borehole = 73.6'. - sealed with cement bentonite grout due to damage to the asing at the beginning of reaming activities. Installation borehole	-	Finished coring at 1540, 2/14/18. Prior to removing core from C-12 run, flushed borehole	
75— - 76—				for piezon borehole.	eter GW-980 installed approximately 7' north of original	-	from 1540 to 1550. Returns were free of cuttings.	
					-	_	On 2/17/18 used Ingersoll-Rand T3W rotary rig to ream corehole and advance borehole to 73.6' using 5 7/8" hammer bit. Finished at 1202.	
78—					-	_	nammer bit. Finished at 1202.	
79— _					-	-		
80— -					-	_		
81 — _					-	-		
82 — - 83 —					-	_		
- 84 –					-	_		
- 85					-	-		
- 86					-	_		
87 —					-	_		
88 — _					-	_		
89 — -					-	-		
90 — - 91 —					_	-		
91— - 92—					-	_		
- 93 —					-	-		
- 94					-	-		
-						1		

				BC	REHOLE	LOG					
Site Nar and Loc		E		naracterization Project Dak Ridge, TN	Drilling Methods 10" Air Han	s: nmer, 5 7/8" tricor	ne bit with v	water an	d air.	Boring Nu	
Drilling	Firm: 7	ri-State D			DATE	TIME	DEF	PTH ED (ft)	WATER LEVEL (ft)	GW-	980R
Driller /	Rig: <i>Tr</i>	avis Morg	an/Inger	soll-Rand T3W						Page	1 of 4
Logged	by: Ne	lson Nova	ak		ST = Shelby Tub	<u>Sampling</u>	Methods:	SS = S	plit Spoon	Start	Finish
Coordin	ates: 3	0379.901	I 38138.	34E	WS = Waxed Sau SP = Sand Pump)		C = C		Time	Time
		on: 963.5			GP or DP = Direc CT = Cuttings	ct Push		NS = N B = Bai	lot Sampled iler	1525 Date	1152 Date
Surface	Conditi	ons / Wea	ather: Da	amp gravel road / 55°F, Cloudy						2/22/18	2/27/18
Remark	s: Drille			' north of borehole GW-980.							
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DE	SCRIPTION	I		Graphic Log	Rema	arks	nscs
$ \begin{array}{c} $	NS			GW-980 R is a replacement well a Log GW-980 for detailed lithologic interpretation.	R_17	stratigraphic			Straight drilled us hammer bit to 27. permanent 6" PVu sealed with ceme grout.	0'. Set C casing ar	

			SAMPLE DESCRIPTION	Graphic Log	GW-980R Remarks	nscs
21 22 23 24 25	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
- 22 - 23 - 24 - 25 -						
- 27	NS				Below 27.0', straight drilled to 74.4' using 5 7/8" tricone bit with air and water circulation.	
42 - 43 - 44				-		

E	MDF C	haracteri Oak Ridg	zation P e, TN	roject BOREHOLE LOG	Во	ring Number GW-980R						
	Remarks: Drilled approximately 7' north of borehole GW-980.											
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs					
46-	-				_							
47 —					_							
48-					_							
49-	-				_							
50-					-							
51 — - 52 —					-							
- 53 —					_							
- 54 —					_							
55-												
56					_							
57	NS											
58 — - 59 —					_							
- 60 —					_							
61-					_							
62-					_							
63-												
64 — - 65 —					_							
60 61 61 62 63 64 65 66 67 68 69 69 69	-				_							
- 67 —					_							
68-												
69-					_							
L				B-19			e 3 of 4					

EMD	DF Char Oal	racteriz k Ridge	zation P e, TN	roject	BOREHOLE LOG		Boring N	GW-980R	
Remarks:				north of bore	ehole GW-980.				
Depth (feet)	Method Sample	Recovery (feet or %)	Blows/6 in or RQD		SAMPLE DESCRIPTION	Graphic	Log	Remarks	
_ 71 —						_			
72-	NS					_			
73—						_			
_ 74 —						_			
75—					Borehole = 74.4'.	_			
- 76—				Piezomete Installatior	r GW-980R installed in borehole. See Monitoring Well Report GW-980R for details.	-			
77—						-			
78-						-			
- 79						_			
_						-			
80						-			
81—						-			
82—						-			
83 <i>—</i> -						-			
84—						-			
85 — _									
86 — _									
87 — _						_			
88						_			
89—									
90 —						_			
91—									
92—									
93—									
94 —						_			
					B-20				Page 4

Eago	on & A	Associa	ntes, l	nc.						Well Nu GW-98	
		Ν	loni	toring	Wel	l Ins	tallation R	leport		F	
Site Nam	ne and Lo	cation: EM	DF Chara	acterization P	roject, O	ak Ridge	TN	Completion E	Date: 3/8/18		0
Coordina	ates: 3037	79.90N 381	138.34E			Bo	ehole Depth (ft): 74	.4			
Elevatior	n Top of C	asing (ft/M	SL): 965	.63		Во	ehole Diameter (in):	10" (0'-27.0'), 5 7/8	3" (27.0'-74.4')		
Elevatior	Ground	Surface (ft/l	MSL): 90	63.5		Dri	ing Methods: 10" Air and air	Hammer, 5 7/8" tr	icone bit with water		10
Installed	Bv: Fred	Reynolds/T	ri-State I	Drillina			npleted Drilling: 2/2				
	-	-		& Associates	s Inc		ing Water Used (ga				
Caporno	ou by: 0,	lay Douman	a, Eagon								
					vvei	I Des	sign				20
	Com	ponent				Materials		Depth (LSD)	Elevation		
Well P	rotector			4" Squa	re Steel	Protector	w/Locking Lid	-2.4 - 2.6	965.9 - 960.9		
Riser				2" ID Sc	hedule 4	0 PVC		-2.1 - 59.9	965.6 - 903.6		30
Cemer	nt Grout			Cement	Bentonit	te Grout		-0.5 - 51.5	964.0 - 912.0		30
Surfac	e Seal			3' x 3' C	oncrete I	Pad		-0.5 - 0.5	964.0 - 963.0		
Condu	ctor Casir	ng		6" ID Sc	h. 40 PV	/C, Flush	Threaded	963.9 - 936.5			
Bentor	nite Seal			Pel Plug	1/4" Co	ated Ben	tonite Pellets	51.5 - 54.9	912.0 - 908.6		
Sand F	Pack			DSI "GP	9 #2" Gra	vel Pack		55.0 - 71.3	908.5 - 892.2		40
Screer	ı			2" ID Sc	hedule 4	10, 10-Slo	t	903.6 - 893.5			
Well P	oint Blank	ζ.		2" ID Sc	h. 40 PV	/C Cap &	Riser Section	70.0 - 71.3	893.5 - 892.2		
Sand F	Pack Botto	om		DSI "GP	9 #2" Gra	vel Pack		71.3 - 72.3	892.2 - 891.2		
Bentor	nite Seal			Enviro P	lug Med	ium Chip	3	72.3 - 74.4	891.2 - 889.1		50
				We	ell De	evelo	opment				
	oth (ft,TOC	C):		to Water (ft,			ll Volume (gals):		Purged (gals):		
73.44 Developr	ment Meth	nod:		8.27			7.4	61.0			
Bailer, s	surge block,	Tornado pun Cumulative	,	Specific			Bacovoru	Data			60
Date	Time	Volume Removed (gals)	Temp (°C)	Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery	Dala			
3/5/18	0908	27	14.6	324.7	8.50	17.4	100				
3/5/18	1025	35	13.9	325.1	8.78	15.3					70
3/5/18	1340	46	14.9	317.6	8.23	7.2	- 00 8% - 00 8% - 00 8% - 00 8%				
3/5/18	1532	54.5	14.6	330.2	8.48	7.3					
3/5/18	1535	57	14.7	328.5	8.37	9.7	0	40	80 120		80
3/5/18	1537	59	14.4	328.0	8.45	12.1		Time (minute	es)		00
Sampling	g Equipme	ent:								┨ │	
Commer	nts:									┥ │	
Stainles	s steel cen			24.5 from groun te Drilling. Scr			sand pack and pellets i	n using tremie pipe.	Grout mixing and		
							B-21			Boring depth	<u>1-14.4 Π.</u>

MONITOR WELL INSTALLATION 2 OAK RIDGE .GPJ EAGON.GDT 4/4/18

Site Name a Location EMDP Characterization Project Diffing Methods and Location The PIRA PLAD Core with value. Boing Nurvier. Boing Nurvier. Diffing Firm. Th-State Dulling DATE TIME DEBUTE(T) LWATE(T) GW-981 Diffing Firm. Th-State Dulling DATE TIME DEBUTE(T) LWATE(T) GW-981 Diffing Methods 1 = State Dulling Data I IME Debute(T) LWATE(T) GW-981 Diffing Methods 1 = State Dulling Data I IME Debute(T) LWATE(T) GW-981 Diffing Methods 1 = State Dulling Data I IME Debute(T) LWATE(T) Firsthate Surface Conditions / Weather: State I Firsthate State I Firsthate Time Time Time Time Time Time Time Time		BC	REHOLE	LOG						
Drilling Firm: Tri-State Drilling DATE TIME DEPTH (R) WATER (R) COW-901 Driller / Rig: Shannon Snow/CME-550 Image: Continuous Sample Sampling Methods: SS = Split Spoon SS = Split Spoon Co-coring Start Finish Coordinates: 30396.70N 38148.33E SS = Split Spoon SS = Split Spoon SS = Split Spoon CS = Corting Start Finish Surface Elevation: 963.2 th/MSL GP or DP = Direct Push B = Selit Sample SS = Not Sample Date 223/18 Date Surface Conditions / Weather: Gravel pad, relatively flat / 78°F, Mostly sunny Image: Start Finish Time Time Time Time Time Time Time 223/18 Date 23/18 Date 23/18 Date 23/18<		aracterization Project			h water.			-		
Driller / Rig: Shannon Snow/CME-550 Sampling Methods: Sampling M		Jak Riuge, Th	DATE	TIME	DEF	PTH ED (ft)	WATER LEVEL (ft)	GW	-981	
Logged by:David J. SugarSampling Methods:Coordinates:30396.70N38148.33EST = Shelby Tube WS = Waxed Sample GP c DP = Direct PushST = Shelby Tube C = Coning MS = Not Sampled B = BailerStatFinsh 709Surface Conditions / Weather:Gravel pad, relatively flat / 79'F, Mostly sunnyCoordinates:Not Sampled 228/18StatTime 0955Remarks:Borebee Installed for the collection of geotech samples and installation of shallow piezometer.RemarksStatTeggeStatStatSee Borehole Log GW-980 for detailed lithologic description and stratigraphic interpretation.See Borehole Log GW-980 for detailed lithologic description and stratigraphic interpretation.4 1/4" ID HSA, ran auger plug while augering. 7 1/2" OUSee See Borehole Log GW-980 for detailed lithologic description and stratigraphic interpretation.4 1/4" ID HSA, ran auger plug while augering. 7 1/2" OUSee Borehole Log GW-980 for detailed lithologic description and stratigraphic interpretation.4 1/4" ID HSA, ran auger plug while augering. 7 1/2" OUA 1/4" ID HSA, ran auger plug while augering. 7 1/2" OUTegeStratigraphic interpretation.See Borehole Log GW-980 for detailed lithologic description and stratigraphic interpretation.A 1/4" ID HSA, ran auger plug 	Driller / Rig: Shannon Snow/CME	-550			DIGE			Page	1 of 2	
Coordinates: 30396.70V 38148.33E WS = Wared Sample C = Corling Burdace Elevation: Set Software 9 - DP = Direct Push B = Baler C = Continuous Sample C = Corling NS = Not Sample Date Date Date D220/18 Surface Conditions / Weather: Gravel pad, relatively flat / 79°F, Mostly sunny Date Date Date Date D220/18 Date Date Date Date D220/18 Remarks: Borehole installed for the collection of geotech samples and installation of shallow piezometer. \$\$\$ \$\$\$ 800 \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$	Logged by: David J. Sugar		ST = Shelby Tub		Methods:	SS = S	plit Spoon			
Sufface Elevation: 9622 tr/MSL CT = Cuttings B = Bailer Pail Pail Sufface Conditions / Weather: Gravel pad, relatively flat / 79°F, Mostly sunny Date Date Date Remarks: Borehole installed for the collection of geotech samples and installation of shallow piezometer. Image: Conditions / Weather: Second State Second State </td <td>Coordinates: 30396.70N 38148.</td> <td>33E</td> <td>WS = Waxed Sa SP = Sand Pump</td> <td>mple</td> <td></td> <td>CS = C C = C</td> <td>ontinuous Sampler oring</td> <td></td> <td></td>	Coordinates: 30396.70N 38148.	33E	WS = Waxed Sa SP = Sand Pump	mple		CS = C C = C	ontinuous Sampler oring			
Surface Conditions / Weather: Gravel pad, relatively flat / 79°F, Mostly sunny 2223/18 2223/18 Remarks: Borehole installed for the collection of geotech samples and installation of shallow piezometer. Image: Conditions / Weather State Conditions / Weather Conditions / Weather State Conditions / Weather Condition	Surface Elevation: 963.2 ft/MSL			ct Push						
understand understand <td>Surface Conditions / Weather: Gr</td> <td>avel pad, relatively flat / 79°F, Mosti</td> <td>ly sunny</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Surface Conditions / Weather: Gr	avel pad, relatively flat / 79°F, Mosti	ly sunny							
See Borehole Log GW-980 for detailed lithologic description and stratigraphic interpretation.		ne collection of geotech samples and	d installation of sh	allow piezomete	r.					
See Borehole Log GW-980 for detailed lithologic description and stratigraphic interpretation.	Depth (feet) Sample Method Sample Recovery (feet or %) Blows/6 in RQD	SAMPLE DE	SCRIPTION	I		Graphic Log	Rema	arks	nscs	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	stratigraphic interpretation. RESIDUUM/COLLUVIUM. Description based on inspection of yellowish brown (10YR 4/4 - 4/6)	of bottom of ST-1 highly (completely	recovery. Dark /) weathered SH	ALE gment - - - - - - - - - - - - - - - - - - -		while augering. 7 borehole. Auger cuttings bu BS-1 collected fro	r 1/2" OD licket sample im 4.0' - 6.0	e; /.	

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

EMDF Cł C	naracteriz)ak Ridge		oject BOREHOLE LOG	Bor	ing Number GW-981	
emarks: Bore	hole instal	led for th	e collection of geotech samples and installation of shallow piezometer.			
(feet) Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	USCS
21 - NS 22 - 23 -			Based on C-1 recovery, contact with overlying saprolite is above 23.0'. Change at 23.0'. Interbedded dark reddish gray to weak red/dusky red (2.5YR 4/1, 4/2 - 3/2) SHALE and dark gray to very dark gray (N 4/ - N 3/) LIMESTONE		End 2/23/18, 1536 at 20.5'. Begin 2/24/18, 0915. 0900 Augers measured dry. Trace (rare) calcite filled/healed fractures below	
24— C-1 -	2.0' 100%	0%	calcareous SILTSTONE. Thinly bedded, generally less than 0.1' interv partings are not uncommon. Bedding angle is approximately 45°. Limestone beds are generally less than 1/2" thick and have wavey deformed bedding contacts, comprises approximately 40% of formation		26.0'. Very thin, less than 1 mm to hairline. Limestone reacts strongly to	
25 - 26 - 27 - 27 - 28 - 29 - 30 - 31 - 32 - NS - 33 -	5.0' 100%	39%	 deformed bedding contacts, comprises approximately 40% of formation Fresh, no indication of weathering. Limestone beds are hard (strong) a shale beds are soft (very weak to weak). Moderate to intensely fractur Trace glauconite partings and thin seams. 24.0' - 24.9' Broken zone, fractures oriented perpendicular to bedding (possibly associated with healed fractures where the calcite infilling has been removed). Trace thin secondary calcite on fracture faces. 25.5' - 26.7' Bedding is horizontal. Becomes very deformed from 26.4' 26.7' Possible breaks near top and bottom of zone. Below zone 26.7' 27.0' - 27.2' Calcite filled fracture along bedding plane. Face is striated No oxidation. May be healed. Possibly depositional slump (slickenside At 27.7' 1/2" glauconitic seam. 28.1' - 28.4' Broken zone. Appears mechanical, but there is no obvious change in rock to explain breakage. Several slickenside surfaces (not appear oriented with bedding). No apparent secondary mineralization. Below 28.7' all breaks appear mechanical. Trace very fine mica on sor of the mechanical breaks. 	and	 HCl, shale does not react. C-1: 23' - 25.0' 0930-0941. Top of C-2 run 25.0' - 25.4' is highly broken, probable mechanical. Mechanical breaks along bedding planes are common. C-2: 25.0' - 30.0' 0959-1015. 25.4' - 26.3 High angle fracture, jagged/rough face. Trace secondary calcite and possibly celestite. 25.9' - 26.0' Limestone seam fractured roughly 90° to bedding. Trace glauconite nodules (<1 mm). At 27.4' bedding break, face has slickensides. Trace calcite and pyrite on face. Finished coring at 1015, 2/24/18. Overdrilled corehole with HSA and advanced borehole to 33.5'. End 2/24/18, 1113 at 33.5'. 	
- 			Bottom of Borehole = 34.0'.		2/26/18, 0921, WL = 14.77'. Finished drilling 2/26/18 at 0955, advanced borehole to 34.0'. 2/24/18 at 1247 WL = 12.0'.	
35 — - 36 — - 37 — - 38 — - 39 — - 40 — - 41 — - 42 — - 43 — - - - - - - - - - - - - -			Piezometer GW-981 installed in borehole. See Monitoring Well Installation Report GW-981 for details.			

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

Eago	on & A	Associa	ates, l	nc.								ll Nu GW-9	mber 81
		Ν	/loni	toring	Wel	l Inst	allation R	ep	ort			f	
Site Nam	ne and Loo	cation: EM	DF Chara	acterization F	Project, O	ak Ridge,	TN	(Completion E	Date: 3/8/18			
Coordina	ites: 3039	96.70N 38	148.33E			Bore	hole Depth (ft): 34	.0					
Elevation	n Top of C	asing (ft/M	SL): 965	.74		Bore	hole Diameter (in):	7 1/2"					
Elevatior	n Ground S	Surface (ft/	MSL): 90	63.2		Drilli	ng Methods: 4 1/4"	ID HS	A, HQ3 Core	e with water.			
Installed	Bv: Shan	non Snow/	Tri-State	Drillina		Con	pleted Drilling: 2/2	6/18					
	-			& Associates	s. Inc.		ng Water Used (gal		500				
								-)-			-		
					vvei	I Des	sign				-		10
	Com	ponent				Materials		De	pth (LSD)	Elevation			
Well P	rotector			4" Squa	re Steel	w/Locking	Lid	-2	2.8 - 2.2	966.0 - 961.0			
Riser				2" ID Sc	hedule 4	0 PVC		-2	.5 - 22.1	965.7 - 941.1			
Surfac	e Seal			3' x 3' C	oncrete			-().5 - 0.5	963.7 - 962.7			1
Cemer	nt Grout			Cement	Bentonit	e Grout		0	.5 - 17.9	962.7 - 945.3			
Bentor	ite Seal			Pel-Plug	j 1/4" Co	ated Bent	onite Pellets	17	.9 - 20.0	945.3 - 943.2			
Sand F	Pack			DSI "GF	9 #2" Gra	vel Pack		20	0.0 - 33.4	943.2 - 929.8			
Screer	ı			2" ID Sc	hedule 4	0 PVC, 10)-Slot	22	2.1 - 32.1	941.1 - 931.1		38888	20
Well P	oint Blank	,		2" ID Sc	h. 40 PV	′C Cap &	Riser Section	32	2.1 - 33.4	931.1 - 929.8			
Sand F	Pack Botto	om		DSI "GF	9 #2" Gra	vel Pack		33	8.4 - 34.0	929.8 - 929.2	1		_
													=
							pment						
Well Dep 35.8	oth (ft,TOC 5	C):		to Water (ft, 2.20	TOC):		Volume (gals): 2.2		Volume F 89.0	Purged (gals):			
Developr	ment Meth	nod: <i>Tornado pur</i>	mp								1 =		3
20		Cumulative		Specific		Turkiditu	Recovery	Dat	2		-		=
Date	Time	Volume Removed (gals)	Temp (°C)	Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery	Dat	a				
3/2/18	1655	15	15.2	322.7	8.14	>1000	100						
3/3/18	1224	25	14.8	271.9	8.50	>1000	80				· · . · ·		3
							08 0 60 0 40 0 20 20 4 20 5 20						
3/5/18	1624	60.5	14.8	302.0	7.99	185.0							
3/6/18	1550	82.0	15.2	257.9	7.88	163.0	- //						
3/6/18	1553	85.0	15.5	271.8	7.90	-	0 <u>/</u>		40 Time (minut	80 120			4
3/6/18	1632	88.0	15.1	255.2	7.79	153.0			Time (minute	es)			
Sampling	g Equipme	ent:		I							1		
Commer	nts:										-		
		1000m1 ! . *	mactic	vovide -1 to T'	04a4- D ""		alat interral 00.0	0 +					
Grout m	iixing ana p	acement info	ormation p	oviaea by Tri-	State Drilli	ng. Screer	slot interval 22.3 - 32.	u bgs.			Borin	ng depth	=34.0 ft.

B-25

				BC	REHOLE	LOG					
Site Nar and Loc		E		naracterization Project Dak Ridge, TN		:: SA, HQ3 Core with icone bit with air/w		ation,	10" air hammer		
Drilling I	Firm: 7	ri-State D	rilling		DATE	TIME	DEPTI	H)(ft)	WATER LEVEL (ft)	GW	-982
Driller /	Rig: SI	hannon Si	now/CME	-550						Pane	1 of 6
.ogged	by: Da	ivid J. Sug	gar		ST = Shelby Tub	Sampling N		9 – 9r	blit Spoon		
Coordin	ates: 3	80317.821	I 38617.	04E	WS = Waxed Sal	mple	C		ontinuous Sampler	Start	Finish
Surface	Elevati	on: 1,01	5.6 ft/MSL	-	GP or DP = Direc CT = Cuttings		N		ot Sampled	Time 1135	Time 0945
Surface	Conditi	ions / We	ather: <i>Gr</i>	ravel road bed, relatively flat, moist /				Dan		Date 2/7/18	Date 2/18/1
Remark	s:										
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTI	ON	Graphic	Log	Rema	arks	nscs
_	NS		_	Gravel road bed. Topsoil remove	d during road con	struction.			3 1/4" ID HSA, 7 Continuous 2" OI		olit
1—	NO			Change at 1.2'.					spoons, 140 lb au hammer. Ran ce	itomatic	e
_	SS-1	0.8' 100%	1, 4	Brown to yellowish brown (10YR clay. Trace to some gravel size (1	fine to coarse) sha	ale fragments, an	gular,		augering to samp On 2/15/18 used		ML
2			6	increasing content with increasing not appear to have preferred orier			Does	-11	Intersoll-Rand T3 to ream borehole	W rotary rig	
3—	SS-2	1.85'	11	contact. Low plasticity. Low toug dilatancy. Very stiff. Moist. Wea					10 air hammer bit	and set	^{ig} Cl
-		92.5%	15	Change at 2.5'.				_	permanent 10" P Casing sealed wi		
4 —			21 12	Light yellowish brown (2.5Y 6/3 - highly weathered to completely we	eathered SHALE	(SAPROLITE). S	Shale ′ – –		bentonite grout. 1.2' - 1.6' Trace re	oots. No	
_		1.35'	20	structure is intact, does not appealess than 1/2"), 40°-50° bedding a					reaction with HCI SS-2 Lab results:		
5—	SS-3	67.5%	29	some areas). Sample can be mol to silty clay composition. Trace to			clay	—	Content (MC) 119	6.	
6—			39	toughness, and dry strength. No Slightly moist to moist. Highly we	dilatancy with add	led water. Hard.			SS-3 Lab results: SS-4 Lab results:	MC 12.5%	
-			28	Signay moist to moist. Thighly we	allereu. OAFNO				No reaction with I Trace dark brown		
7—	SS-4	2.0' 100%	38 44	At 6.9' and 8.0' - 8.4' Trace light g	rav incorporations	s and deformed			brown to black irc manganese oxide		s
_			44	partings. Fine sandstone/silty sar			ons [follow fracture pla bedding breaks.	tes and	
8—			28					-	traces are general defined or difficult	lly not well	
9_	SS-5	2.0'	56	Bedding angle appears to be fairly continues to be thinly bedded.	y consistent, betw	een 40° to 50° ar	nd		over distance.		
-		100%	71						SS-5 Lab results: 2.2% Gravel; 47%		;
10-			60 10	Below 10.0' dark brown/black mar	nganese oxide de	position increase	s —		50.8% Fines. 4.2' - 4.4' High an	ale fracture	
_		1.7'	32	continues to be associated with be perpendicular to bedding. Traces	edding breaks an	d fractures oriente	ed	_	with iron oxide co Below 5.1' increa	ating.	
11 —	SS-6	85%	41	destroyed by the sampling proces			"	_	dark brown iron/n	nanganese	.0
12—			48					_	oxide, generally (intervals.		
-			12	12.1' - 14.4' Zone with mottling, da and light gray/greenish gray inclus				—	Sample continues at intervals less the	nan 1/2".	en
13—	SS-7	2.0' 100%	18 20	sandy zones).			-[-		12.1' - 14.4' Sligh moisture content,		
-			20 26	13.5' - 13.8' Zone with very high c	lav content light	vellowish brown a	and $+$		with no visible wa		
14 —			11	olive gray (weak mottled appeara Moist.					0.0' - 20.0' No ind		
_ 15—	SS-8	1.75'	23	14.6' - 15.0' Dark gray brown to b			/		water. Sample is slightly moist to n	noist. No fre	ée
		87.5%	33	sandstone or sandy siltstone remi glauconite bed.	nant. May be a hi	gniy weathered			water observed o sampler.	n drill rods (or
16			68 29						SS-8 Lab results:	MC 13 9%	.
-		2.0'	29 66	Below 16.5', trace reddish brown	iron oxide, less m	anganese oxide.	-[4.8% Gravel; 65.9 29.3% Fines.		,
17 —	SS-9	2.0 100%	89			-	+_		SS-10 Lab results		%.
_ 18—			80/4						Becoming difficul sample. Gravel/s	and sized	
-01			41	18.4' - 19.0' Dark brownish gray to saprolite.	o black seams, no	t well defined, sa	indy		rock fragments w sample.	thin molded	1
		2.0	42						No reaction with I	HCI.	
19—	SS-10	100%	71					— I			

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

EI		haracteri Dak Ridg		BOREHOLE LOG	Bor	ing Number GW-982	
Remarl	ks:			· · · · · · · · · · · · · · · · · · ·			
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	NSCS
- 21-	SS-11	1.5	62 100/5	Light yellowish brown (2.5Y 6/3 - 6/4) and light olive brown (2.5Y 5/3 - 5/6) highly weathered SHALE (SAPROLITE). (Cont'd.)		No reaction with HCI. SS-11, SS-12, SS-13, and SS-14 greater recovery than, all looked in-place. Slightly less	CL
-	NS					weathered, becoming more competent. Still appears to be	
22— 	SS-12	1.4	30 38 50/1	Below 19.0' trace (light) reddish brown and black iron oxide and manganese oxide.		saprolite. Continues to be thinly bedded, broken <0.05' (1/2"). Sampling process is	
24 —	NS			Below 24.0' iron oxide not apparent, considerable dark brownish gray to	1	altering/disturbing the rock structure.	
- 25—	SS-13	1.4	20 71 73/2	black manganese oxide. Trace to few sand, probably associated with sandy partings and seams.		SS-13 Lab results: MC 11.9%. End 2/7/18, 1440, at 27.0' while augering below 26.0',	
26— - 27—	NS SS-14	1.0	37 50/2			stopped to repair a hydraulic line on the drill rig. 2/7/18, 1610 Borehole measured dry.	
- 28	NS SS-15	1.35	63			2/8/18 Borehole sounded dry at 0808. 0900 Start augering below 26.0'. No reaction with	
29— - 30—	NS		100/5	Difficult to mold sample with added water, becoming more competent with depth. High plasticity, toughness, and dry strength. Continues to be highly weathered shale (saprolite). Dry to slightly moist.		HCI. Below 28.0' sample is generally disturbed from sample process. Bedding	
- 50	SS-16	0.8	100			appears to still be in the range of 40° - 50°.	
31— - 32—	NS					SS-16 Lab results: MC 4.7%.	
	SS-17	1.0	82 100/4				
- 34 —	NS SS-18	1.1	32			SS-18 Lab results: MC 8.9%.	
35 — -	NS		100/6				
36 — - 37 — -	- SS-19	1.8	41 65 70	Below 36.0' slightly higher degree of weathering. Continues to be highly weathered shale, saprolite. Continues to have trace manganese oxide, bedding is mostly disturbed by the sampling process.			
38 — - 39 —	SS-20	1.6	55 32 84 100/5				
- 40	NS SS-21	1.3	40			SS-21 Lab results: MC 7%; 14.7% Gravel; 56.8% Sand;	
41	NS		100/5			28.5% Fines.	
-	SS-22	1.0	28 100/4				
43- - 44-	NS		60	Trace iron and manganese oxide. Sample continues to be mostly pulverized/broken from the sampling process.		Continues to be dry to slightly moist. No reaction with HCl.	
-	SS-23	1.0	60 100/3			SS-23 Lab results: MC 5.5%.	

Page 2 of 6

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-982

Remarl	KS:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	NSCS
-	NS			Light yellowish brown (2.5Y 6/3 - 6/4) and light olive brown (2.5Y 5/3 - 5/6) highly weathered SHALE (SAPROLITE). (Cont'd.)		No indication of water on drilling rods or sampler to 47.3'.	CL
46	SS-24	0.2	50/1	Trace calcite appears to be 1 to 5 mm fracture infilling. Sample is pulverized.		SS-24 Strong reaction with HCI.	
47 —	NS			Change at 47.3'. Olive gray to dark olive gray (5Y 4/2 - 3/2) and gray dark gray (5Y 5/1 -		1128, 2/8/18, Auger refusal at	
48	-			4/1) SHALE and LIMESTONE. Limestone beds appear sitty in places and may classify as a calcareous siltstone. Thinly bedded, sample is very broken (40° bedding angle). Trace white calcite veins (up to 5 mm). Trace black and brownish yellow iron/manganese oxide precipitate along		47.3'. 1308 Borehole measured dry at 46.2'. Set up to core. Set temporary 4 1/2" steel flush threaded casing,	
49 — - 50 —	C-1	1.5' 32%	0%	bedding breaks and possible fractures. Gray-grayish beds are limestone. Olive colored beds are generally shale. Highly weathered. Moderate to very strong strength. Most of the lost recovery is expected to be within shale beds that have low field strength.		HQ3 core, water circulation. 1425 Start washing core bit to depth. C-1 47.3' - 52.0' 1450-1536.	
- 51 <i>—</i> -	-			C-1 recovery, bottom piece has reddish brown interbeds (<0.05'). Beds appear deformed with slight displacement along healed fractures (white calcite in-fill). Bottom of recovery has a fracture face that is perpendicular to bedding.		Cannot position C-1 core loss, sample is too broken. No reaction with HCl within shale, strong reaction with calcite	
52—				Below 52.0' higher percentage of shale, mostly shale. Limestone beds	-	fracture infilling and within limestone beds.	
- 53—	C-2	2.8' 100%	0%	generally have calcite veins or healed fractures. Continues to be highly weathered. Predominate olive gray to dark olive color. Trace thin limestone interbeds below 54.1'.		C-2 Run, fractured throughout, faces are coated with iron and/or manganese oxide. C-2 52.0' - 54.8' 1555-1655.	
54 — -	-					C-3 54.8' - 55.8' 1710-1730. End 2/8/18, 1730 at 55.8'. Water level at 10.1', 1745 most if not all drilling water was	
55 — -	C-3	1.0' 100%	0%			recirculated during drilling. Begin 2/9/18 0830, driller	
56 — - 57 —	C-4	1.1' 92%	0%	Below 55.8 slight increase in brown color. Some dark olive gray to olive gray (5Y 4/2 - 3/2). Primarily shale or mudstone composition. Bedding angle is approximately 40°. Continues to be thinly bedded with limestone partings and thin seams (<0.05'). Moderate field strength. Limestone		changing out bit style, HQ3 still. Start coring at 0955. 0840, WL: 16.82 from GS. No reaction with HCI.	
	-			layers are strong to very strong. Moderately decomposed/weathered.		Continues to be highly fractured with iron oxide precipitates on fracture faces.	
- 59—	C-5	2.7'	0%	Below 57.4' Trace to few dark greenish gray to very dark greenish gray (5GY 4/1 - 3/1) layers. Becoming less weathered. Stronger olive color associated with weathered areas.		Breaks along bedding planes and angular fractures. Intensely to moderately fractured. Sample is generally	
60 —		54%	0,0	Core is very broken from 58.0' - 59.7'. Lost core probably from bottom of run.		very broken and fracture orientation and fracture traces are hard to follow.	
61—				Below 58.4' limestone interbeds are deformed (soft sediment) irregular surfaces and thickness, generally less than 0.1' thick.			
62—				Near 59.7', trace pink calcite, up to 5mm thick, appears to be fracture infilling.		C-6 Run, bedding angle varies	
- 63 — -	-			Below 62.4' predominately dark gray to very dark gray (N 4/ - 3/) with trace olive gray/dark olive gray (5Y 4/2 - 3/2) zones associated with weathered areas. Trace gray (5Y 6/1 - 5/1) partings/thin limestone seams. Continues to be intensely fractured.		between 45° to 50° limestone seams are typically deformed and have wavy surfaces/contacts.	
64	C-6	4.5'	0%			62.9' - 63.4' Oxidized bedding break, 3/4" olive gray	
65 <i>—</i> -	-	90%		64.6' - 64.8', 65.2' - 65.4', 65.6' - 65.8' bedding plane fractures/breaks with iron oxide and trace calcite. 65.6' - 65.8' Fracture is polished (slickenside).		weathering have faces coated with iron oxide.	
66 — -				65.9' - 66.5' Recovery is very broken, some angular pieces with slickenside surfaces.		63.6' - 64.0' Bedding break, calcite coating on face, no oxidation . Possible indication	
67 — - 68 —				Below 67.0' primarily limestone and siltstone recovery. Few shale seams. Lost recovery (C-7 run) may be mostly shale. Highly broken interval, intensely fractured/broken. Fracture/bedding break faces are all oxidized		of saturation. Broken oxidized fractures above and below.	
	C-7	2.3' 46%	0%	with mostly iron oxide coatings; trace black manganese oxide. Mostly olive gray to dark olive gray (5Y 4/2 - 3/2). Some dark gray to very dark	E	C-4 55.8' - 57.0' 0955-1010. C-5 57.0' - 62.0' 1018-1124.	
69—		.070		gray areas.	╞╧╡	C-6 62.0' - 67.0' 1133-1220.	
-	1				1-1	C-7 67.0' - 72.0' 1429-1541.	

EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG V.2. OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

BOREHOLE LOG

Boring Number GW-982

Remarks: Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method Depth (feet) USCS SAMPLE DESCRIPTION Remarks Interbedded olive gray to dark olive gray (5Y 4/2 - 3/2), dark gray to very dark gray (N 4/ - 3/) SHALE and LIMESTONE. (Cont'd.) Lost recovery in C-7 run is assumed to be shale. Trace to few limestone seams (<0.2' thick). 23 71 C-7 0% 46% 72.7' - 73.1', 0.15' Thick silty limestone seam. Strong reaction with HCI. Bedding angle is between 45° - 50° 72 Highly fractured and broken. Generally has associated iron oxide Most of C-8 recovery is shale. coatings. Trace calcite precipitates. 1.2' C-8 72.0' - 73.2' 1555-1621. C-8 0% 100% 73 Change at 73.3'. 73.3' - 73.5; fracture oriented perpendicular to bedding. Dusky red (5R 3/3) OOLITIC LIMESTONE. Trace to few glauconite Face appears oxidized. nodules (~1mm). Red color possibly associated with hematite. Massive. 74 Field strength is strong, competent. Trace white calcite healed fractures. End 2/9/18, 0710 at 77.0' WL at 1724 = 23.72' from ground. C-9 73.2' - 77.0' 1633-1710. Fresh to slightly weathered. Change at 74.0 3.8' 75 2/10/18, 0805, WL = 63.0'. Begin 2/10/18, 0830, 45°F, C-9 16% Very dark gray to black (N 3/ - 2 1/2/) SHALE. Thinly bedded, ~45° - 50° 100% angle. Trace gray ~1mm siltstone partings. Fresh. Intensely fractured or broken, mostly along bedding planes (some may be mechanical). overcast, tract light rain. 76 Unweathered/no oxidation. Continue HQ core, using core barrel liner. C-10 77.0' - 79.9' 0833-0920. Below 77.0' bedding angle is between 55° - 60°. Moderately to intensely fractured 77 Broken zones are identified 77.0' - 77.3' Bedding break, slickenside surface. No weathering or fractures in C-10 interval precipitates. 77.7' - 77.9' Bedding break surface has white noncarbonate precipitate, appear to be mechanical, 78 Trace fine (<1mm) pyrite. Slickenside surface.
 77.9' - 78.2' Bedding break, slightly polished surface. Trace thin (<1mm) probably associated with 29 wedging and difficulty with 35% C-10 100% calcite and clay (maybe from drilling) on face. No oxidation. Maybe open. 79.0' - 79.3' Set of bedding breaks, polished (slickenside) surfaces. sample. Feeding, typically core wear indicates core was 79 Within interval, perpendicular fracture appears healed with white turning. Bottom of C-10 noncarbonate infilling (hairline). recovery mechanically 80 Change at 79.9'. fractured Interbedded gray to very dark gray (N5/ to N3/) SHALE and LIMESTONE. (broken), bit plugged at end of Thinly bedded, generally between 0.1' - 0.3'. Limestone and shale partings are common. Shale beds are typically darker gray and soft while run. End 2/10/18, 1004, rain, 1.5' 0% C-11 81 71% at 80.2' limestone beds are lighter gray and hard. Bedding appears to vary between 50° to 60°. Trace healed fractures, while calcite filled, generally Begin 2/12/18, 0920 continue C-11 run. 0907 WL = 35.05' 82 from GS. 45°F, Overcast, wet. oriented perpendicular to bedding, hairline to 2 mm width. Unweathered to slightly weathered (fresh). Mostly shale, 20 - 30% limestone. C-11 Run, lost recovery mostly from bottom of run. 83 ~55° - 60° bedding angle At 81.4' fracture at 90° to bedding, iron oxide on face. 84 Adjacent rock is not oxidized. 4 2 C-12 38% 83.1' - 83.5' Broken zone, 84% Below 82.0' primarily shale, trace lighter (gray) limestone or siltstone probable fracture or fractures, partings (<1/4"). 85 no oxidation. 85.0' - 85.9' Bluish gray to dark bluish gray (5PB 5/1 to 4/1) Interclastic 83.3' - 83.5' 1/4" to 1/2" thick Limestone Seam - elongated elliptical, clasts oriented parallel with pink calcite filled fracture. 86 bedding (long axis), up to 1" high and 1 3/4" wide. 45° - 50° bedding 84.7' - 84.9' Set of fractures angle. Hard, unweathered except for lower contact which is oxidized 45° to bedding angle, surfaces yellowish brown. Trace fine (<1 mm) glauconite nodules. have slickensides. No 87 Below 87.8' becomes interbedded limestone and shale, thinly bedded, precipitate or oxidation. C-11 79.9' - 82.0' 0920-0935. somewhat deformed. Trace glauconitic beds/partings. Change at 87.8'. C-12 ~50° bedding angle. 88 Bluish gray to dark bluish gray (5PB 5/1 - 4/1) LIMESTONE. Fine At 87.8' oxidized (iron oxide) grained. Few 1 mm or less glauconite nodules. Trace stylolites, dark gray to black, jagged, trace. Thinly bedded. Fresh. bedding contact. Strong reaction with HCl. 89 At 88.0' fracture, 45° to Basal contact has rip up clasts, elliptical and elongated with bedding. 3.2 35% C-13 Becoming interclastic. bedding, oxidized (iron oxide 64% Change at 89.5'. on face). 90 Interbedded very dark gray to black (N 3/ - N 2 1/2) SHALE and gray to dark gray (N 5/ - 4/) LIMESTONE. Generally thinly bedded (0.1' or less). Limestone reacts strong with HCI. Shale has no reaction. Trace white calcite filled fractures (healed). Limestone seams are 91 92.0' - 92.3', 93.1' - 93.4', and generally deformed, wavey, uneven bedding. Fresh, no oxidation. 93.4' - 93.7' Bedding plane Intensely broken along bedding planes, most are mechanical. Limestone breaks, slickenside surface. is hard to moderately hard. Shale is soft. 92 No oxidation or precipitates. 92.0' - 93.7' Predominately shale, trace limestone partings. 93 92.85' - 92.95' ~45° fracture. slickenside surface. No 4.0' C-14 10% 100% oxidation or precipitates. Below 93.7' trace bioturbation. 45° - 50° Bedding angle. C-12 82.0' - 87.0' 1044-1105. C-13 87.0' - 92.0' 1140-1159. 94

B-30

EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-982

Remarks: Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method Depth (feet) USCS SAMPLE DESCRIPTION Remarks Interbedded very dark gray to black (N 3/ - N 2 1/2) SHALE and gray to very dark gray (N 5/ - 4/) LIMESTONE. (Cont'd.) C-14 92.0' - 95.9' 1342-1356. C-15 95.9' - 97.0' 1436-1445. 4.0' 10% C-14 100% C-16 97.0' - 98.2' 1451-1505. 96 95.9' - 96.5' Bluish gray to dark bluish gray (5PB 5/1 - 4/1) Interclastic LIMESTONE. Clasts up to 0.2', generally less than 0.1', elongated and elliptical. Clasts oriented parallel with bedding. Hard. Fresh. C-17 98.2' - 102.0' 1524-1545. 0.6' C-15 46% 55% 97 C-16 Run highly broken, 0.7' C-16 0% fractured faces with 58% slickenside surfaces, too 98 broken to determine position. No oxidation or precipitation. Change at 98.9'. 99 Strong reaction with HCI. 99.6 Bluish gray to dark bluish gray (5PB 5/1 - 4/1) LIMESTONE. Fine crystalline. Trace glauconite nodules (up to 1mm). Trace stylolites. - 99.8' and 100.0' - 100.3' bedding breaks, no oxidation Fresh, unweathered. Hard. Trace pyrite. 3.1 100 C-17 33% or precipitates. 81% 98.5' - 98.9' Rip up clasts or deformation, up to 0.1' diameter, elongated. Change at 100.6'. Shale does not react with HCI. 101 Interbedded very dark gray to black (N 3/ - N 2 1/2) SHALE and gray to very dark gray (N 5/ - 4/) LIMESTONE. Thinly bedded. Shale is soft, Limestone has a strong reaction. 45-50° Bedding limestone is hard. Generally fresh, unweathered. Limestone beds are angle. 102 generally thin (<0.1' thick). Shale beds are up to 0.3' thick. Limestone is hard, fresh, unweathered. Shale is soft, fresh, unweathered. 20 to 40% C-18 Recovery is poor, appears to have started run in limestone. Continues to be intensely fractured. Bedding angle is near a fracture zone cannot position 103 45° lost recovery interval. 102.0' - 102.3' Fracture zone/bedding breaks. Faces are oxidized with iron oxide coatings. 1.2' 0% C-18 104 31% C-18 102.0' - 105.9' 1617-1649. C-19 105.9' - 106.8' 105 Trace very dark greenish gray (10GY 3/1) thin seams, less than 0.1' thick, 1705-1710. possibly glauconitic. C-20 106.8' - 107.0' 1720-1722. 106 Bedding angle ~45°. C-21 107.0' - 108.3 0.8' C-19 0% 89% 0847-0900. End 2/12/18, 1720 at 107.0'. C-20 0.2 107 0% 1730 WL = 14.02' from GS. 107.6' - 107.9' Fracture 90° to bedding plane. Face has thin coating of Begin 2/13/18, 0847, 40°F, 1.3' calcite. No oxidation. 0% overcast, light rain. 2/13/18, 0830 WL = 21.65' GS. C-21 100% 108 Underlying contact is relatively sharp color change. Continues to be intensely 0.9' 40% C-22 fractured. Most bedding 100% 109 Change at 109.2'. breaks have slickenside Dark reddish gray (2.5YR 3/1 - 4/1) SHALE. Trace gray to very dark gray surfaces. No oxidation or shale partings (generally <2mm). Soft. Thinly bedded, 40-45° angle, weathering. 110 beds generally <0.1'. Fresh, unweathered. Moderately fractured. Breaks No reaction with HCI. 109.9' appear to be mechanical. Trace glauconitic partings (greenish color, no 110.1'. 110.1' - 110.3' Bedding 2.8' C-23 22% reaction with HCl.) 100% break with gray precipitate/clay 111 on face. Below 110.5' broken along Change at 112.0'. bedding contacts at 0.3' to 0.4' 112 Interbedded very dark gray to black (N 3/1 - N 2-1/2/) and dark reddish gray (2.5YR 3/1 - 4/1) SHALE and LIMESTONE. Noticeable change to intervals. Face of break has slickensides, no oxidation or reddish color hues. Thinly bedded, color variation, highlights thinly precipitates/mineralization. 113 bedded character. Limestone beds typically have stronger gray color hues, are hard and react strongly with HCI. Shale beds are soft, generally Most if not all breaks below 112' appear mechanical. have stronger red color hues. Bedding is generally 0.1' or less, partings Trace slickenside surfaces, but 114 are common. Bedding contacts are generally wavy, have a deformed no oxidation or mineralization 4.9' appearance. May in part be due to bioturbation. Beds or partings with 54% observed. Possibly C-24 98% green color hues are also present, appear to be glauconitic. Unweathered/fresh. Commonly broken along bedding, but generally depositional. 115 attributed to mechanical breaks 112.4' - 112.6' Limestone seam. Trace fine glauconite nodules, trace 116 rare pyrite. C-22 108.3' - 109.2' Below 113.5' thinly bedded. Limestone and shale beds are generally 0.1' 0913-0920. or less. Limestone beds are hard, typically gray to dark gray and shale 117 beds are reddish gray, soft. Most limestone beds have deformed upper C-23 109.2' - 112.0' and lower surfaces, convoluted bedding. 0934-0951. 118 C-24 112 0' - 117 0' 5.0' C-25 63% 1000-1022. 100% 119 C-25 117.0' - 122.0' 1033-1048.

	EN	MDF C	haracteri Dak Ridg	ization F je, TN	Project	BOREHOLE LOG	Bor	ing Number GW-982	
Re	mark								
Depth	(feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD		SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
12	- 21 — -	C-25	5.0' 100%	63%	Interbedde dark gray	ed dark reddish gray (2.5YR 3/1 - 4/1) SHALE and gray to very (N 3/ - N 2 1/2/) LIMESTONE. Thinly bedded. (Cont'd.)		Unweathered. Core breaks are along bedding planes. Most if not all appear mechanical.	
	22								
	23 — - 24 —								
	24 — - 25 —	NS							
12	_ 26 —								
12	 27				Piezomete	Borehole = 126.5'. er GW-982 installed in borehole. See Monitoring Well	_	2/13/18, 1156 WL = above GS. Probably drilling water. 2/13/18 1247 WL = 12.51'.	
12	28				Installatio	n Report GW-982 for details.	_	1250 Start pulling drill rods. 1320 Drill rods removed. 1326 WL = 33.43' GS. On 2/18/18 used Intersoll	
	29 —							Rand T3W rotary rig to ream corehole and advance borehole to 126.5' using 5 7/8"	
	30 — - 31 —						-	tricone bit with air and water circulation. Finished drilling at 0945.	
	32-						_		
13	_ 33—						-		
13	_ 34 —						_		
D.GDT 4/	35 —						_		
	36 — _						-		
13 12 13	37 — - 38 —								
ER CRAFT	30 — 39 —								
CONTAIN 14	_ 40 —						-		
GE .GPJ	41-								
BOREHOLE LOG V.2. OAK RIDGE .GPJ. CONTAINER CRAFT TEMPLATE WITH PID.GDT. 4/4/18 71 71 71 71 71 71 71 71 71 71 71 71 71 7	42						_		
14 12 14	43 — -						-		
14 Ja	44 — _						_		

Eagon	& A	ssocia	ites, i	Inc.						-	Numl W-982	
		Μ	onit	oring	Wel	l Ins	allation Re	eport			6	
Site Name a	and Loc	ation: EM	DF Char	acterization l	Project, (Oak Ridg	e, TN	Completion I	Date: 3/8/18			
Coordinates	s: 3031	7.82N 38	617.04E			Bo	ehole Depth (ft): 126.	5				
Elevation To	op of Ca	asing (ft/Ms	SL): 1,0	18.02		Bo	hole Diameter (in):10	" (0'-50.3'); 5 7/	(8" (50.3'-126.5')			-
Elevation G	round S	Surface (ft/N	MSL): 1,	015.6		Dri	3 1/4" ID ng Methods: circulatio	HSA, HQ3 Co n, 10" air hamr				20
Installed By	: Shan	non Snow/	Tri-State	Drilling		Co	tricone b pleted Drilling: 2/18/	it with air/water 18				-
				& Associate	es, Inc.	Dri	ng Water Used (gals)	: ~2000				
•			0									
												40
	Comp	onent				Materials		Depth (LSD)	Elevation			
Well Prote	ector			4" Squar	re Steel v	w/Lockin	Lid	-2.7 - 2.3	1018.3 - 1013.3			1
Riser				2" ID Sc	hedule 4	0 PVC		-2.4 - 102.1	1018.0 - 913.5			 60
Surface S	Seal			3' x 3' C	oncrete			-0.5 - 0.5	1016.1 - 1015.1			
Conducto	r Casin	g		6" ID Sc	h. 40 PV	′C, Flush	Threaded	-0.4 - 50.3	1016.0 - 965.3			l
Cement G	Grout			Cement	Bentonit	e Grout		0.5 - 95.9	1015.1 - 919.7			
Bentonite	Seal			Pel-Plug	1/4" Co	ated Ber	onite Pellets	95.9 - 99.2	919.7 - 916.4		×==	
Sand Pac	:k			DSI GP	#2 Grave	el Pack		99.2 - 113.4	916.4 - 902.2			80
Screen				2" ID Sc	hedule 4	0 PVC, 7)-Slot	102.1 - 112.1	913.5 - 903.5			1
Well Poin	t Blank			2" ID Sc	h. 40 PV	′C Cap &	Riser Section	112.1 - 113.4	903.5 - 902.2			
Sand Pac	k Botto	m		DSI GP	#2 Grave	el Pack		113.4 - 114.5	902.2 - 901.1			
Bentonite	Seal			Pel-Plug	1/4" Co	ated Ber	onite Pellets	114.5 - 126.5	901.1 - 889.1			100
				We	ll De	evel	pment					
Well Depth 115.82		, 	· ·	to Water (ft, 5.39			Volume (gals): 8	Volume 64.5	Purged (gals):			
Developme Surge block		Tornado pu	mp, bladd	er pump		1						120
Date	Time	Cumulative Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidit (NTU)	Recovery I	Data				l
3/3/18	0858	39.0	12.2	374	10.38	41.0	100					
3/3/18	1408	50.0	15.8	354.3	9.35	24.8	 (%) 80 → ∞ 					140
3/5/18	0837	51.0	12.7	414.2	8.37	397.0	(3) 80 (40) 60 (40) 60 (40) 70 (40) 70					
3/5/18	1257	61.5	15.1	359.9	9.17	29.0						
3/5/18	1415	63.5	15.3	391.2	8.92	21.0		40	80 120			160
3/5/18	1455	64.5	14.5	395.6	8.87	17.5		Time (minut	es)			
Sampling E	quipme	nt:				1	1			1		
Comments:										-		
Stainless s	teel cen						ellets in using tremie pipe	. Grout mixing ar	nd placement			
information	ı provide	u by Tri-Stat	e urilling.	Screen slot in	uervai 102	2.3 - 112.0	bgs. B-33			Boring	depth=12	6.5

MONITOR WELL INSTALLATION 2 OAK RIDGE .GPJ EAGON.GDT 4/4/18

Site Name EUCP Characterization Project Diming Methods: In 10 1963, M20 Core with valuer dicutation, 5 70° hummer Max Boding Number: Diming Methods: METHOD 1964, M20 Core with valuer dicutation, 5 70° hummer Max Boding Number: Diming Methods: METHOD 1964, M20 Core with valuer dicutation, 5 70° hummer Max Boding Number: Diming Methods: METHOD 1964, M20 Core with valuer dicutation, 5 70° hummer Max Boding Number: Diming Methods: METHOD 1964, M20 Core with valuer dicutation, 5 70° hummer Max Boding Number: Diming Methods: METHOD 1964, M20 Core with valuer dicutation, 5 70° hummer Max Boding Number: Diming Methods: METHOD 1964, M20 Core with valuer dicutation, 5 70° hummer Max Boding Number: METHOD 1964, M20 Core METHOD 1964, M20				BC	REHOLE	LOG					
Differ Fire: Tri-State Dulling DATE TiMe DEFINIT Level (I) Description for the state of		E	MDF Ch	aracterization Project	4 1/4" ID H		th water cir	culation,	5 7/8" hammer	-	
Driller / Rig: Samona Show/CME-660 Samolax Methods: Page 1 of 4 Lagged by: David J. Sogar Samolax Methods: Date: Date	Drilling Firm: T	ri-State D				TIME	DEF	PTH FD (ff)	WATER	GW	-983
Logge Up: Devide L Suger Start Print	Driller / Rig: Sh	nannon Sr	now/CME	-550			DIGE			Pane	1 of 4
Coordinate: 2025 62/J 38066 49E IV Provide Sample (CT = Contrange CT = CT =	Logged by: Da	vid J. Sug	ar		ST = Shelby Tub		Methods:	SS = S	plit Spoon		
Surface Elevator: 1:016 AbuSt. 100 bit of the country.	Coordinates: 3	0325.62N	38606.	49E	WS = Waxed Sa SP = Sand Pump	mple o		CS = C C = C	ontinuous Sampler oring		
Surface Conditions / Weather: Flat grave/ and bed / 24*F, Mostly sunny 222/16 221/16 222/16 221/16 221/16 221/16 221/16 221/16 221/16	Surface Elevation	on: <i>1,015</i>	5.6 ft/MSL			ct Push				1030	1257
Base Base <th< td=""><td>Surface Conditi</td><td>ons / Wea</td><td>ather: <i>Fla</i></td><td>at, gravel road bed / 74°F, Mostly su</td><td>inny</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Surface Conditi	ons / Wea	ather: <i>Fla</i>	at, gravel road bed / 74°F, Mostly su	inny						
See adjacent Borehole Log GW-982 for detailed lithologic description and stratugraphic interpretation. ST-1 1.7 1200 PSI 1.7 1200 PSI 1.7 1200 Description from bottom of ST-1. Brown to yellowish brown (10/R 5/3 - 5) Sightly molet. Description from bottom of ST-1. Brown to yellowish brown (10/R 5/3 - 5) Sightly molet. Description from bottom of ST-1. Brown to yellowish brown (10/R 5/3 - 5) Sightly molet. Auger cutting Bucket Sample BS-2 collected from 6.5' to 8.5. Auger cutting Bucket Sample BS-2 collected from 6.5' to 8.5. Cutting returns are slightly molet. Cutting returns are slightly Cutting returns are slightly Cutting returns are slightly	Remarks: Bore			ne collection of geotech samples and	d installation of sh	allow piezomete	er.				
See adjacent Borehole Log GW-982 for detailed lithologic description and stratugraphic interpretation. Sec. 1 1.7 1200 PSI 1.7 1200 PSI 1.7 1200 Description from bottom of ST-1. Brown to yellowish brown (10YR 5/3 - 5/5) Sightly moist. Description from bottom of ST-1. Brown to yellowish brown (10YR 5/3 - 5/5) Sightly moist. Description from bottom of ST-1. Brown to yellowish brown (10YR 5/3 - 5/5) Sightly moist. Auger cutting Bucket Sample BS-1 collected from 6.5' to 6.5. Cutting returns are slightly moist to moist. Cutting returns are slightly Cutting returns are slightly	Depth (feet) Sample Method	Sample Recovery feet or %)	slows/6 in or RQD	SAMPLE DE	SCRIPTION	I		Graphic Log	Rema	arks	nscs
	NS 2 3 2 3 - 5 6 7 6 7 8 9 10 11 12 NS 13 14 15 16 17 18 -	1.7		stratigraphic interpretation. Description from bottom of ST-1. 5/6) SANDY SILT. Trace little cla fragments, appears in-place, high	Brown to yellowis y. Mostly gravel :	sh brown (10YR size rock (shale)			bit while augering Auger cutting Buc BS-1 collected fro Auger cutting Buc BS-2 collected fro Cutting returns ar moist to moist.	ket Sample m 4.0' to 6. ket Sample m 6.5' to 8.	5'.

E	MDF C	haracter Oak Ridg	ization P ge, TN	Project	BOREHOLE LOG	Bor	ing Number GW-983	
Remar	ks: Bor	ehole insta		he collection	of geotech samples and installation of shallow piezometer.			
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD		SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
21-	_			Augered w detailed st	vithout sampling, see adjacent Borehole Log GW-982 for ratigraphic interpretation		No indication of water with cutting returns.	
22-	_				- -			
23-	_				-		End 2/21/18 at 23.5', 1700.	
24	_			Cutting ret smooth an	turns are damp (slightly moist) to dry. Augered relatively nd consistent		Begin 2/22/18, 0855. Borehole measured dry.	
25-	-				-			
26-	_				-		Auger cuttings continue to be slightly moist to dry.	
27-	_				-			
28-	_				-			
29-	-							
30-	_							
31-								
32-	- NS				-			
33-					-			
34 -					-			
35 -	_				-			
36 -					_			
37 –					_			
38-					_			
39-	-							
40-	-							
41-	_				-			
42-	-				-		No indication of water in cutting returns (damp to dry) to 45.0'.	
35	-			At 45.0' at	ugered hard and rough, probable limestone or siltstone seam.		Below 45.0' switch over to HQ3 core, water circulation.	
					D-30		Page	e 2 of 4

Eľ		haracter Oak Ridg		Project	BOREHOLE LOG	Boi	ring Number GW-983	
Remark	ks: Bore	ehole insta	alled for tl	he collection	of geotech samples and installation of shallow piezometer.			
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD		SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
46 47 48	C-1	3.7	0%	SHALE and seams had generally 0.1' thick. moderate moderate along frace	ed olive gray to dark olive gray to olive (5Y 4/2 - 4/3 and 3/2) ad LIMESTONE to CALCAREOUS SILTSTONE. Limestone ve stronger gray color hues (5Y 4/1 - 4/2). Thinly bedded, less than 0.2' beds, with common partings and seams less than Limestone content estimated at 30%. Shale seams are soft, y to highly decomposed. Limestone seams are hard, y decomposed. Considerable iron oxide precipitates/coatings tures (bedding breaks and fractures oriented perpendicular to Weathered bedrock.		HQ3 core, water circulation. C-1 45.0' - 49.3' 1047-1129. Highly fractured, broken along bedding planes and perpendicular to bedding. All fractures are oxidized with iron oxide/manganese oxide coatings. Approximate 45° bedding	
- 49—	-			Limestone reaction v	e/calcareous siltstone beds react strong with HCl. Shale has no //ith HCl		angle. Sample (core) is relatively broken. At 46.8' probable glauconitic \seam ~ 1/4" - 1/2".	
50 —	-				-	-	Finished coring at 1129. WL = 1.98' at 1157, 2/21. Removed augers.	
51— - 52—	-				-	_	On 2/27/18, Ingersoll-Rand T4 rotary rig reamed corehole and advanced borehole to 92.2' using 5 7/8" hammer bit.	
- 53—	-				-	-		
54 — - 55 —	-				-	_		
56 —	-				-	_		
- 57 —	-				-	-		
58 — - 59 —	-				-	_		
- 60	NS				-	_		
- 61 — -	-				- -	-		
62— - 63—	-					-		
64 —	-				-			
65 — -	-				- 			
66 — - 67 —	-				-	-		
68	-				-			
69 — -	-				-	-		

Boring Number EMDF Characterization Project **BOREHOLE LOG** GW-983 Oak Ridge, TN Remarks: Borehole installed for the collection of geotech samples and installation of shallow piezometer. Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method USCS Depth (feet) SAMPLE DESCRIPTION Remarks 71 72 73 74 75 76 77 78 79 80 Driller noted borehole making water between 80' - 81'. 81 NS 82 83 84 BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18 85 86 87 88 89 90 91 92 Bottom of Borehole = 92.2'. Finished drilling to 92.2' at 1257. 93 Piezometer GW-983 installed in borehole. See Monitoring Well Installation Report GW-983 for details. 94

Eago	on & /	Associa	tes, I	nc.						W	ell Nu GW-9	mber 983
		N	lonit	oring	Wel	l Insta	allation Re	port			- M	
Site Nam	ne and Lo	cation: EML	DF Chara	cterization F	Project, O	ak Ridge, T	N	Completion [Date: 3/8/18			(
Coordina	ates: 3032	25.62N 386	06.49E			Boreł	ole Depth (ft): 92.2					
Elevatior	n Top of C	asing (ft/MS	SL): <i>1,01</i>	8.07		Boreł	ole Diameter (in):5 7	/8" (0'-92.2')				
Elevatior	n Ground	Surface (ft/N	1SL): 1,0	015.6		Drillin	g Methods: 4 1/4" ID circulation	HSA, HQ3 Core	e with water			20
Installed	By: Fred	Reynolds/Ti	ri-State D	Prilling			leted Drilling: 2/27/1					
Supervis	ed Bv: Si	hay Beanlan	d/Eaqon	& Associate	s. Inc.	Drillin	g Water Used (gals):					
					-							
					vvei	I Desi	<u> </u>					40
	Com	ponent				Materials		Depth (LSD)	Elevation			
Well P	rotector			4" Squa	re Steel I	Protector w	Locking Lid	-2.8 - 2.2	1018.4 - 1013.4			
Riser				2" ID Sc	hedule 4	0 PVC		-2.5 - 79.2	1018.1 - 936.4			60
Surfac	e Seal			3' x 3' C	oncrete F	Pad		-0.5 - 0.5	1016.1 - 1015.1			
Cemer	nt Grout			Cement	Bentonit	e Grout		0.5 - 70.2	1015.1 - 945.4			
Bentor	nite Seal			Pel Plug	1/4" Co	ated Bento	nite Pellets	70.2 - 74.1	945.4 - 941.4			
Sand F	Pack			DSI "GF	9 #2" Gra	vel Pack		74.1 - 90.5	941.4 - 925.1	-		80
Screer	ו			2" ID Sc	hedule 4	0 PVC, 10-	Slot	79.2 - 89.2	936.4 - 926.4			
Well P	oint Blank			2" ID Sc	h. 40 PV	'C Cap & R	ser Section	89.2 - 90.5	926.4 - 925.1	- E		
Sand F	Pack Botto	om		DSI "GF	9 #2" Gra	vel Pack		90.5 - 91.5	925.1 - 924.1	<u>ان این این</u> 		
Natura	ll Fill			Natural	Fill			91.5 - 92.2	924.1 - 923.4	_		100
				We	ell De	evelo	oment			1		
	oth (ft,TOC	C):		to Water (ft		Well	/olume (gals):		Purged (gals):	1		
	ment Meth	nod:	65	.92		4	4	50.0		-		
<i>Tornado</i> Date	Time	Cumulative Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery D	ata				120
3/6/18	1059	(gais) 5	14.4	402.6	7.21	127.0	100					
3/6/18	1113	15	14.3	410.5	7.13	97.8	(%) 80					140
3/6/18	1126	25	14.3	408.4	7.11	44.2	00 00 00 00 00 00 00 00 00 00 00 00 00					
3/6/18	1133	30	14.3	406.9	7.12	22.7	80 뀙 20					
3/6/18	1139	35	14.2	406.5	7.12	14.7	0	40	80 120			160
3/6/18	1201	50	14.5	405.7	7.11	3.1		Time (minute	es)			160
Sampling	g Equipme	ent:		<u> </u>		· <u> </u>]		
	ss steel cen	tralizers set at tion provided b					d pack and pellets in us 89.1 bgs.	ing tremie pipe.(Grout mixing and	Bor	ing dent	1=92.2 ft.
							B-39					

				BC	DREHOLE	E LOG					
Site Na and Lo		E	MDF Ch C	naracterization Project Dak Ridge, TN		s: SA, HQ3 Core with ricone bit with air/w		rculation,	10" air hammer	Boring Nu	^{mber:}
Drilling	Firm: 7	ri-State D	rilling		DATE	TIME		PTH ED (ft)	WATER LEVEL (ft)	Gw	-700
Driller /	Rig: SI	hannon Sr	now/CME	-550						Page	1 of 3
ogged	by: Da	ivid J. Sug	ar		_ ST = Shelby Tul	Sampling M	lethods:	SS = S	plit Spoon		1
Coordir	nates: 3	80130.30N	38191.	80E	WS = Waxed Sa SP = Sand Pump	mple			ontinuous Sampler	Start <i>Time</i>	Finish <i>Time</i>
Surface	e Elevati	on: <i>930.2</i>	ft/MSL		GP or DP = Directory CT = Cuttings				ot Sampled	1050	1240
Surface	e Conditi	ions / Wea	ather: Fla	at gravel drilling pad / 57°F, Overcas	st					Date 2/15/18	Date 2/20/18
Remarl	ks:										
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTI	ON		Graphic Log	Rema		nscs
_	NS			GRAVEL. Road bed/drilling pad.			-		3 1/4" ID HSA, ra while augering. (
1—			3	Change at 1.0'. Brown to strong brown (7.5 YR 5/	4, 5/6, 4/4 - 4/6) \$				OD, 2' drive split Ib automatic ham		.0 / CL
-	SS-1	0.0	1	highly weathered shale and sand subrounded to subangular. Unso	stone fragments,	up to 1/2" diamete	er, -		No reaction with		
2—			2	dark reddish brown to black mang High plasticity and toughness. No	ganese oxide/iron	oxide. Trace root	ts.		1.0' - 2.0' Sample with root fragmen		
3-	SS-2	1.6' 80%	3 4	Weathered. SUBSOIL.			_		SS-2 Lab results:		
-		0070	4				=		Content (MC) 20. SS-3 Lab results:	4%.	
4—			5						Underlying conta		
5-	SS-3	1.15'	4				_		On 2/19/18 used Ingersoll-Rand T3	3W rotarv ri	a
-		57.5%	5 4				-		to ream borehole 10" air hammer b	to 20.0' usi	ng
6-			4	Change at 6.0'. Light yellowish brown, olive yellow					permanent 6" PV Casing sealed wi	C casing.	ML
7	SS-4	1.8'	9	and 5/4 - 6/6) highly to completely Trace bluish gray (5G 6/1 - 10GY	6/1) and light gre	enish arav to liaht	t		bentonite grout.		
-	00-4	90%	19	bluish gray (10Y 7/1 - 10GY 7/1) to black iron/manganese oxide co	patings, appear as	sociated with frac	tures, -		Remnant bedding	g angle is	
8—			23 39	but are difficult to follow. Sample medium plasticity and toughness.	Dry strength. N	o dilatancy. Thinly	v	+]	Possibly ML-CL i		
-		2.0'	47	bedded. Very hard when classifie to completely weathered. SAPRO		y moist to dry. Hig	ghly -				
9—	SS-5	100%	51				-		Carbonates leach formation.	ned from	
10-			70				_		SS-4 Lab results:	MC 14 6%	.
-	-	1.8'	6 24				-		7.8% Gravel; 52.8 39.4% Fines.		,
11—	SS-6	90%	56				_	드리	SS-6 Lab results: SS-7 Lab results:		
12—			100	Below 11.5' color is primarily bluis bluish gray/light greenish gray (10	DY 7/1 - 10GY 7/1						
-			16 52	Transitioning into weathered bedr			-	듣	SS-8 No reaction Trace wet on SS-	-8 sampler t	ip
13—	SS-7	1.4' 70%	52 44						and within sample SS-9 Lab results:		
- 14 —			84	00.0						oo ci ii "	
-	SS-8	0.3'/100%	100/5	SS-8 recovery is wet.			-		After augering to measured at 13.9	94' from GS	at
15	NS			Underlying contact may be as hig Change at 16.0	h as 14.3'.		-		1341 (1 hr. 31 m drilling stopped). at 1445, TD = 20.	WL = 10.8	5'
16—		4.01	21	Interbedded greenish gray to dark 5/1 - 4/1) SHALE and LIMESTON	k greenish gray (5	BG 5/1 - 4/1 and	10BG	E	SS-9 1.5' of split wet.	barrel was	
17 —	SS-9	1.3' 92.3%	89 100/4	as calcareous siltstone. Trace to associated with fractures with poor	some reddish bro orly defined trace.	own iron oxide, Structure is also	lost		16.0' - 16.5' is we	et.	
- 18	NS			with the sampling process. Soft to weathered. At least partially wet				一	0		
	SS-10	0.2'/100%	100/2	moist, SS-10 recovery was wet).			-		Strong reaction w End 2/15/18, 121		to
19 <i>—</i>	NS						-		18.2'. Augered to 2/17/18 and swite	o 20.0' on ch over to	
					B-41				HQ3 core, water	circulation.	

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-986

Remark	(S:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	NSCS
- 21— - 22—	C-1	1.3' 65%	0%	Interbedded dark gray to very dark gray (N 5/ - 4/) SHALE and gray to dark gray (N 4/ - N 3/) LIMESTONE. Thinly bedded, beds generally less than 0.2', partings and very thin seams <1/4". Trace, healed, calcite (white) filled (<2 mm) fractures oriented perpendicular to bedding. Medium hard to hard limestone. Field strength is moderate to strong, but core generally breaks easily along bedding contacts between shale and		Shale, no reaction with HCI. Limestone, strong reaction with HCI. Bedding angle is approximately 45° (very broken sample). Below 22.0' bedding angle is approx. 40°.	
23 — 24 — 25 — 26 —	C-2	2.3' 46%	0%	limestone beds. Soft shale. Generally fresh with oxidation on some broken bedding contacts. Highly fractured, but most appear to be bedding breaks. Mechanical breaks along bedding is common. Bedding is deformed, wavey contacts between beds. Some thin limestone beds have discontinuous beds. Trace bioturbidation along some bedding breaks.		22.25' - 22.35, 22.7' - 22.85', and 22.9' - 23.05' Bedding breaks with reddish brown to yellowish brown oxidation on bedding plane. Iron oxide precipitate. C-1 20.0' - 22.0' 1030-1040. C-2 22.0' - 27.0' 1058-1134. 23.6' - 24.3' Highly broken gravel size fragments. Trace iron oxide faces. C-2 Lost recovery, most likely	
27 28 29 30 31	C-3	0.0' 0%	0%	C-3 Run, core barrel did not latch. No recovery.		from bottom of run. C-3 27.0' - 32.0' 1157-1232. C-4 32.0' - 32.9' 0914-0930. C-5 32.9' - 34.6' 1010-1027. C-6 34.6' - 36.1' 1113-1119. C-3 and C-4 runs cutting returns were gray.	
32— - 33—	C-4	0.0' 0%	0%	Oxidation/weathering not observed below 33.0'. 33.0' - 33.2' Limestone seam. Unweathered.		End 2/17/18, 1232 at 32.0'. Stopped due to rain. Begin 2/18/18, 35°F, sunny, 0800. WL = 2.15' at 0801. Start coring at 0914.	
- 34 — - 35 —	C-5	1.5' 88.2%	0%	Below 34.6' approximately 50% limestone, 50% shale. Thinly interbedded. Soft sediment deformation. Wavey to discontinuous bedding is more prominent.		Below 35.1' healed (white	
36 —	C-6	1.5' 100% 1.2'	0%	35.1' - 35.4' Gray to dark gray interclastic limestone. Elongated clasts oriented with bedding angle, up to 1 1/4" long by 3/4" high. Trace calcite filled/healed fracture, oriented perpendicular to bedding. Trace, very fine (<1 mm) pyrite and possibly glauconite nodules.		calcite filled) fractures are more prominent, generally less than 1 mm width. Often the fractures are associated with	
37 — 38 — 	C-8	100% 2.4' 86%	0%	Below 37.9' primarily dark bluish gray to very dark bluish gray (5B 4/1 - 3/1) to greenish black (5GY 2/1) shale with gray to dark gray (N 5/ - N 4/1) limestone partings. Approx. 45° bedding angle. Continues to be thinly		limestone seams and terminate in shale beds. C-6 Recovered 0.3' of C-5 run. Bedding angle ~45°.	
39 - 40 -	- - -	2.01		bedded. Trace bioturbidation. Bedding continues to be deformed, wavey, and discontinuous in places.		Core breaks easily along bedding contacts between shale and limestone.	
41— - 42—	C-9	2.2' 100%	54.1%	40.7' - 41.8' Shale seam. Trace white calcite filled/healed fractures, perpendicular to bedding.		Bedding angle ~45°. C-7 36.1' - 37.0' 1127-1131. C-8 37.0' - 39.8' 1250-1305.	
43— 	C-10	2.6' 100%	0%	Below 42.6' bedding changes from 45° to 70° by 42.8'. By 43.2' bedding angle changes back to 45° -50°.		C-8 37.0 - 39.8 1250-1305. C-9 39.8' - 42.0' 1314-1324. C-10 42.0' - 44.6' 1330-1344. C-11 44.6' - 47.0' 1355-1406.	
	C-11	2.4'	0%				

EI	MDF C		ization P	roject BOREHOLE LOG	Bor	Boring Number GW-986			
Remarl			<i>j</i> e, m						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs		
46-	C-11	2.4' 100%	0%	Interbedded dark bluish gray to very dark bluish gray (5B 4/1 - 3/1) and greenish black (5G 2/1) SHALE and gray to dark gray (N 5/ - N 4/) LIMESTONE. (Cont'd.)		Continues to be broken along bedding planes. Calcite precipitates are usually present, and generally the surfaces have depositional slickenside surfaces. Breaks			
47 — 48 — 49 —	C-12	2.3' 100%	0%	47.8' - 48.1' Interclastic limestone seam. Trace to few glauconite nodule (<1 mm). Trace (rare) pyrite nodules (<1 mm). Clasts elongated and oriented with bedding.	**************************************	appear to be mechanical, typically at intervals between 0.3' to less than 0.1'. C-12 47.0' - 49.3' 1412-1423.			
50 — - 51 —	C-13	2.7' 100%	13%	At 49.8' fracture (appears mechanically broken), 2 mm calcite filled, broken face is striated at an orientation 30° from the fracture angle. At 50.2' fracture following bedding plane, face is polished with very fine pyrite on face.		C-13 49.3' - 52.0' 1431-1502. Stopped for water from 1430' - 1454'.			
52— 53—	C-14	2.9' 97%	0%	At 50.5' horizontal break, rough face. Trace pyrite.		C-14 52.0' - 55.0' 1508-1520. 45° Bedding angle. 52.7' - 53.3' ~50° Bedding angle.			
54 — - 55 — - 56 —	-					Finished coring 2/18/18 at 1520. WL = 10.5' from GS at 1534.			
 57 58	NS								
59 —									
60	-			Bottom of Borehole = 59.6'. Piezometer GW-986 installed in borehole. See Monitoring Well Installation Report GW-986 for details.	-	On 2/20/18 using Ingersoll-Rand T3W rotary rig, reamed corehole and advanced borehole using 5 7/8" tricone bit with air and water circulation. Finished at 1240.			
- 63 — - 64 —									
65 — 66 — -	-								
67 — 68 — - 69 —									
-					_				

BOREHOLE LOG V.2 OAK RIDGE GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

Eago	n & A	Associa	tes, I	nc.							Well N GW	lumb -986	
		Ν	Ionit	oring	Wel	l Inst	allation Re	epo	rt		T f		
Site Nam	e and Lo	cation: EMI	DF Chara	cterization F	Project, O	ak Ridge,	TN	Cor	mpletion [Date: 3/8/18			(
Coordina	tes: 3013	30.30N 381	91.80E			Bore	hole Depth (ft): 59.6						1
Elevation	Top of C	asing (ft/MS	SL): 932.	37		Bore	hole Diameter (in):10	8 (20.0'-59.6')			1		
Elevation	Ground	Surface (ft/N	/ISL): 93	0.2		Drill	3 1/4" ID ng Methods: circulatic			e with water her bit, 5 7/8" tricone			1
		Reynolds/T	-			Con	<i>bit with a</i> bit with a bit with		er.				1
	-	-		& Associate	s Inc		ng Water Used (gals)						1
	eu Dy. Or	lay Deaman	u/Lagon					-			- 🕅 🕷		1
					wei	l Des	lgn			1			20
	Com	ponent				Materials		Depth	ı (LSD)	Elevation			1
Well Pr	otector			4" Squa	re Steel	Protector		-2.5	- 2.6	932.7 - 927.7			1
Riser				2" ID Sc	hedule 4	0 PVC		-2.2	- 41.0	932.4 - 889.3			
Surface	e Seal			3' x 3' C	oncrete I	Pad		-0.5	- 0.5	930.7 - 929.7			3
Conduc	ctor Casir	ng		6" ID Sc	h. 40 PV	C, Flush	Threaded	-0.4 - 20.0		930.6 - 910.2			
Cemen	t Grout			Cement	Bentonit	e Grout		0.5 - 35.8		929.7 - 894.4			1
Benton	ite Seal			Pel Plug	j 1/4" Co	ated Bent	onite Pellets	35.8	- 38.6	894.4 - 891.6			
Sand P	ack			DSI "GP #2" Gravel Pack				38.6	- 47.6	891.6 - 882.7			4
Screen				2" ID Schedule 40 PVC, 10-Slot				41.0	- 46.0	889.3 - 884.2			1
Well Po	oint Blank	<u> </u>		2" ID Sc	h. 40 PV	C Cap &	Riser Section	46.0 - 47.6 884.		884.2 - 882.7			1
Sand P	ack Botto	om		DSI "GF	9 #2" Gra	vel Pack		47.6 - 48.0		882.7 - 882.2			
Benton	ite Seal			Pel Plug	j 1/4" Co	ated Bent	onite Pellets	48.0 - 59.6 882.2 - 870.6					50
				We	ell De		pment						1
Well Dep 49.70	th (ft,TOC)	C):	Depth 6.3	to Water (ft 38	,TOC):		Volume (gals): 7.1		Volume I 156.0	Purged (gals): 0			1
	nent Meth ock, bailer,	nod: <i>mega purger</i>	whale pur	np				1					60
Date	Time	Cumulative Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery D	Data					
3/1/18	0848	89	15.4	520	7.42	24.8	100						1
3/1/18	1422	97	14.9	560	7.37	210.0							7(
3/1/18	1557	139	14.6	486	7.41	229.0	06 (%) 06 K 09 K 00 K 04 V 04 V 04 V 05 K 05 K 05 K 05 K 05 K 05 K 05 K 05 K						1
3/1/18	1612	145	15.1	494.6	7.43	82.2		-					I
3/1/18	1627	149	15.0	495	7.44	119.0		40		80 120			
3/1/18	1652	156	14.8	488	7.45	28.2	-	Tin	ne (minut	es)			80
Sampling	l Equipme	ent:				1	1						1
Commen	ts:										-		1
	,	la a amant infa	rmation	ovidod by Tri	Stata D-:	ing Caroo	slot interval from 41.1	150 h~	-		Boring de		

				В	OREHOLE	LOG					
ite Nan nd Loca		E	MDF Ch	aracterization Project Dak Ridge, TN		: SA, HQ3 Core wi icone bit with air/	water.			Boring Nur	^{nber:} - 987
rilling F	Firm: 7	ri-State D	rilling		DATE	TIME	DE DRILL	PTH .ED (ft)	WATER LEVEL (ft)		/0/
riller / F	Rig: Si	hannon Si	now/CME	-550						Page	1 of 2
ogged	by: Da	avid J. Sug	gar		ST = Shelby Tub		Methods:	SS = S	plit Spoon	Start	Finish
oordin	ates: 3	30138.341	I 38194.	40E	WS = Waxed San SP = Sand Pump	•		C = C		Time	Time
urface	Elevati	on: 930.5	5 ft/MSL		GP or DP = Direc CT = Cuttings	t Push		NS = N B = Bai	lot Sampled iler	1410 Date	1102 Date
urface	Condit	ions / Wea	ather: <i>Fla</i>	at, gravel pad / 65°F, Mostly sunn	y					2/20/18	2/21/18
emark	s: Bore			ne collection of geotech samples a	and installation of sha	allow piezomete	er.				
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	EDESCRIPTIO	NC		Graphic Log	Rema	arks	nscs
- 1-	NS			See adjacent Borehole Log GW stratigraphic interpretation.	/-986 for detailed lith	ologic descriptio	on and - 	-	4 1/4" ID HSA, ra while augering. 8 Borehole.	n auger plug 5 1/2") CL
2	ST-1	0.90	700	Description based on bottom of (7.5YR 5/4 - 4/6) SILTY CLAY. shale fragments, coarse sand to toughness, and dry strength. M No reaction with HCI.	Trace highly to com o gravel size. Unsor	pletely weather ted. high plasti	ed -		ST-1 recovery wa blocked, not usab Discarded.		
4— _ 5—	NS			ST-3 Collected after completing pressed sample from 2.0' - 4.0'	g GW-987; moved rig Recovered 2.1', 70	1 3' off of GW-98 0 PSI press.		-	Auger cuttings, b BS-1 collected fro		
6-				Change at 6.0'.					Auger cuttings bu		
- 7	ST-2	1.75	1000	Description based on bottom of yellowish brown to light olive br completely weathered SHALE (bedding angle. Highly fractured	own (2.5Y 6/4 - 6/6) (SAPROLITE). Thinl	highly weathere y bedded (<1/2	ed to – ") high		BS-2 collected fro No reaction with I to mold sample w water.	om 6.0' - 8.5 HCI. Difficul	'.
8—				Moist.			-				
9—							_				
_ 10 —							-				
-							=				
11—											
12—							_				
-	NS						-				
13—											
14 —							_				
-							-				
15—							-		Below 17.5' switc core, water circul		
16—							_				
- 17							-				
" -				Change at 17.5'.	1rav (5Y 1/1 . 1/2) QL	HALE and		$\left \right $	Highly fractured.	Primarily	
18—	C-1	1.8'	0%	Interbedded dark gray to olive of LIMESTONE to CALCAREOUS fractures, oriented perpendicula bedded, generally less than 0.1	ar to bedding, <2 mm ' thick, oriented at a	n width. Thinly relatively high a			along bedding, tra oriented perpend bedding. Fractur	ace fracture icular to e faces are	6
19—		72%	0/0	Moderate to highly decompose					generally coated		1

EMDF Characterization Project Oak Ridge, TN					BOREHOLE LOG	Bor	ing Number GW-987	
Remark				ne collection	of geotech samples and installation of shallow piezometer.			
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD		SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
21-	C-2	1.2' 32%	0%	Interbedde dark gray	gray (N 5/ - 4/). ed dark gray to very dark gray (N 4/ - N 3/) SHALE and gray to (N 5/ - 4/) LIMESTONE. 3' relatively unweathered. Thinly bedded and generally broken		Becoming unweathered. Limestone reacts strong with HCI. Shale does not react. 20.0' - 20.3' Trace yellowish	
22-	C-3	0.7'/100%	0%		ding planes. Breaks appear mechanical.		brown oxidation. Highly broken.	
-					d 21.7' dark yellowish brown to black iron oxide/manganese edding breaks.		~45° Bedding angle. End 2/20/18, 1707 at 21.3'. Begin 2/21/18, 0909. WL at 0835 =	
23-				Below 21. to very da	7' unweathered, oxidation not observed. Consistent dark gray rk gray.		1.2' from GS. 65°F, light rain.	
24— 	C-4	4.0' 89%	16%	Trace glau Continues	urbidation burrows present along some bedding contacts. iconite nodules, generally associated with limestone seams. to be thinly bedded (<0.1' beds). Bedding contacts generally ned and have bioturbidation.		22.4' - 22.8' Several bedding breaks with oxidized (yellowish brown) faces. Fracture perpendicular to bedding angle is also oxidized.	
26-					condary calcite on bedding break, thin coating.		Below 22.8' oxidation/weathering not	
- 27-				Consisten shale.	t thinly bedded shale and limestone, ~40% limestone, 60%		observed. C-2 20.0' - 21.3' 1640-1707. C-3 21.3' - 22.0' 0909-0926.	
-	NS						C-4 22.0' - 26.5' 0932-0952.	
28					Borehole = 27.9'. er GW-987 installed in borehole. See monitoring well installation	_	Finished coring at 0952, 2/21/18. Overdrilled corehole with HSA and advanced	
29					-987 for details.	_	borehole to 27.9'. Finished auger drilling at 1102.	
30 —						_		
31—						_		
32-						_		
33-						_		
- 34						_		
_						-		
35						-		
36						_		
37 —								
38 —						-		
39—						_		
- 40								
- 41-								
40						_		
42								
43								
35								

BOREHOLE LOG V.2 OAK RIDGE GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

Eago	n & A	ssocia	ites, i	Inc.							W	ell N GW	-	
		Μ	lonit	oring	Wel	l Inst	allation R	ep	ort			ť	1	
Site Nam	e and Loo	cation: EM	DF Char	acterization	Project, (Oak Ridge,	TN	Co	mpletion [Date: 3/8/18				0
Coordina	tes: 3013	38.34N 38	3194.40E			Bore	hole Depth (ft): 27.	9						
Elevation	Top of C	asing (ft/M	SL): 932	.94		Bore	hole Diameter (in):7	7 1/2"						
Elevation	Ground	Surface (ft/l	MSL): 9:	30.5		Drillir	4 1/4" I ng Methods: circulat			e with water ner bit, 5 7/8"				5
Installed	By: Shan	non Snow/	/Tri-State	Drilling		Com	tricone pleted Drilling: 2/21		h air/water	<u>.</u>				
	-			& Associate	es. Inc.		ng Water Used (gals)					
			an Lagen								-			
					vvei	l Des	ign							10
	Comp	ponent				Materials		Dept	h (LSD)	Elevation				
Well Pi	rotector			4" Squa	re Steel	w/Locking	Lid	-2.7	7 - 2.3	933.2 - 928.2				
Riser				2" ID Sc	hedule 4	0 PVC		-2.4	- 16.1	932.9 - 914.4				45
Surface	e Seal			3' x 3' C	oncrete			-0.5	5 - 0.5	931.0 - 930.0				15
Cemer	t Grout			Cement	Bentonit	e Grout		0.5	- 10.9	930.0 - 919.6				
Benton	ite Seal			Pel-Plug	1/4" Co	ated Bento	onite Pellets	10.9	- 13.3	919.6 - 917.2				1
Sand F	Pack			DSI GP	#2 Grav	el Pack	ack 13.3 - 27			917.2 - 903.1				
Screen	l			2" ID Sc	hedule 4	0 PVC, 10	-Slot	16.1	- 26.1	914.4 - 904.4				20
Well Po	oint Blank			2" ID Sc	ID Schedule 40 PVC Cap and Riser				- 27.4	904.4 - 903.1	T E			
Sand F	ack Botto	m		DSI GP	#2 Grav	el Pack		27.4 - 27.9 9		903.1 - 902.6				l
														25
							pment							
29.7				to Water (ft, <i>4</i> 9	TOC):		Volume (gals): 3.3		Volume I 110.	Purged (gals): 0		<u>n de de sel</u>		
Bailer, s	nent Meth urge block,	Tornado pu	тр											30
Date	Time	Cumulative Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery	Data	1					
2/23/18	1510	10.0	16.3	364	7.48	>1000	100							
2/27/18	1652	17.5	15.6	380	7.57	>1000	(%) × (0							35
2/28/18	1620	56.0	15.0	411	7.63	810.0	08 00 00 00 00 00 00 00 00 00 00 00 00 0							
3/1/18	0859	66	14.8	422	7.55	>1000	О На 20							
3/2/18	1635	99	14.4	433	7.52	129.0	0 0	4		8 12				40
3/3/18	0850	110	14.8	437	7.49	68.8		Tii	me (minute	es)				
Sampling	g Equipme	ent:				•					1			
Commen	ts:													
		lacomont inf	ormation -	rovidod by T-	Stata D-	Ilina Saraa	n slot interval 16.3 - 26	1 600				<u> </u>		
Journ	in ing anu p		Sinauon	. Svided by Th	Sidie DI	mig. Ocieel	· 5101 ///// 10.5 - 20	. i bys.			Bor	ing de	ptn=27	7.9 ft

B-49

Site Na					DREHOLE						
and Loo		E	MDF Ch C	aracterization Project Dak Ridge, TN	Drilling Methods 2 1/4" HSA, tricone bit w	HQ3 Core w/wat	er, 10" ai	r hammer l	bit, 5 7/8"	Boring Nun	
Drilling	Firm: 7	ri-State D	rilling		DATE	TIME	DE DRILI	PTH LED (ft)	WATER LEVEL (ft)	GW-	·900
Driller /	Rig: Fr	red Reync	lds/Mobil	e 42C	2/8/18	1719		1.6	19.45	Page	1 of 4
Logged	by: Ry	an Hanse	l/Nelson	Novak		Sampling	Methods:	00 - 0-	lit On a su		
Coordir	nates: 2	9952.47	I 38091.	14E	ST = Shelby Tub WS = Waxed Sar SP = Sand Pump	nple			olit Spoon ontinuous Sampler	Start	Finish
Surface	e Elevati	on: 957.() ft/MSL		GP or DP = Direc				ot Sampled	Time 1135	Time 1120
Surface	e Conditi	ions / Wea	ather: <i>Gr</i>	avel pad on 10° slope, damp groun		5 MPH SW		D Dan		Date 2/7/18	Date 2/22/18
Remark	ks:										
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTIO	NC		Graphic Log	Rema	arks	nscs
	SS-1 SS-2 SS-3 SS-4 SS-5 SS-6	1.4' 70% 2.0' 100% 2.0' 100% 2.0' 100% 2.0' 100%	u 1 2 3 4 5 8 4 6 8 9 4 8 12 17 3 13 16 19 7 11 11	Reddish yellow to strong brown (gravel. Sand is fine grained, sub Low dry strength, slow to rapid di becomes gray in color. Strong re Change at 1.4'. Yellow to olive yellow (2.5Y 7/6 - (7.5YR 6/8 - 5/8) CLAYEY SILT. fragments that have been weathe Thinly bedded with a mottled app Moderate strength, slow to rapid RESIDUUM/COLLUVIUM. Below 5.2' silt lenses and parting present along shale fragments. N Shale becoming more competent structure becoming more defined 11.5' - 11.6' Strong reaction HCI. Underlying contact is transitional.	angular to subrour latancy. Moist. Re eaction to HCI. RO 6/6) to reddish yell Trace fine grained ared to gravel, sub- learance, very stiff, dilatancy. Weather s present. Iron and No reaction with HC	ded, loose, mas bad base. Below AD BASE. ow to strong bro I sand. Trace sh angular to angul low plasticity. red. Moist. d manganese ov Cl.	sive. v 1.2'/ wwn nale ar cide		Ran 2 1/4" ID Hol Augers (7" OD) w while augering. F by 2' drive split-sp driven by 140 lb f hammer/HQ3 cor SS-1 Lost return a compaction of roa On 2/20/18 used Intersoll-Rand T3 to ream borehole 10" hammer bit. 3 permanent 6" cor and sealed with c bentonite grout. SS-2 Lab results: Content (MC) 34. SS-3 Lab results: 0.6% Gravel; 42% Fines. SS-6 Lab results:	Vcenter plug Ran 2" (OD) yoon sample nydraulic e w/ water. at top ad base. W rotary rig to 36.0' usir Set ductor casir ement Moisture 6%. MC 25.1%. MC 33.6%; 5 Sand; 57.4	ng ng ng
	- SS-7 - SS-8	2.0' 100% 2.0' 100%	11 12 10 14 11 15 7 11 13 15 7 7 7 7 7 7 7 7 7	Change at 11.6'. Grayish brown to olive brown (2.5 (SAPROLITE). Shale is mostly rr sand. Some shale has been redu thinly bedded (~45°), very stiff. L strength. No dilatancy. Weather present along clast surfaces. No Below 13.8' silt lenses and partin Shale fragments up to 1" diameter	educed to a silty cl uced to gravel, sub ow to medium plat ed with iron and m reaction with HCI. gs present. Silt ha	ay. Trace fine g angular to angu sticity. Moderate anganese oxide SAPROLITE.	rained lar, e dry		- — — — — — —	MC 26.2%	
17 — - 18 — - 19 —	SS-9 SS-10	1.6' 80% 1.6' 80%	9 10 14 6 12 14								

EN		haracteri Dak Ridg		roject BOREHOLE LOG	Bor	Boring Number GW-988				
Remark	(S:									
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs			
_			5	From 20.0' - 20.6' wet.		On SS-11 wet at top of spoon.	CL ML			
21—	SS-11	1.8' 90%	11 15			SS-11 Lab results: MC 21.5%.				
22 —			17 7	Below 22.0' shale is becoming more competent, harder, becoming brown		After augering to 26', visible				
23—	SS-12	1.0' 50%	11 21	to dark brown (7.5YR 4/2 - 3/2). Degree of weathering decreasing with depth. SAPROLITE.		wet in cuttings after 45 min break.				
24 —			32 17			SS-13 Lab results: MC 16%.				
_	SS-13	1.5' 75%	29 32 46							
26— 27—	SS-14	1.4' 100%	18 49 50/4	Below 26.0' shale clasts become light olive gray to olive gray (5Y 7/2 - 6/2). Iron oxide on clasts becomes trace to none. Some manganese oxide present on clasts surface. SAPROLITE.		Refusal at 27.4', augered to 28'.				
- 28—	NS									
-	SS-15	1.8' 90%	28 22 32	Below 28.7' shale clasts become brown to dark brown (7.5YR 4/2 - 3/2). Manganese oxide becomes trace to little on shale surfaces.						
- 30 —			45		, 1					
- 31 —	SS-16	1.4' 100%	22 49 50/4	Below 30.0' becomes dry. Color becomes light olive gray to olive gray (5) 6/2 - 4/2). Some iron oxide to manganese oxide on clast surfaces.		SS-16 Lab results: MC 9.9%; 3.3% Gravel; 66.9% Sand; 29.8% Fines.				
	NS					Refusal at 31.4', augered to 32.0'.				
32-	00.47	1.2'	20 23	Shale structure becoming more defined, less weathered with depth.		02.0.				
-	SS-17	60%	11 19			SS-18 Lab results: MC 9.9%.				
34 —	SS-18	0.9' 100%	40			Auger refusal @ 35.6' @ 1625. 2/7/18 @ 1533 DTW - 25.3				
35 —	NS	100 /0		Change at 35.2'.		2///18 @ 1555 DTW - 25.5 BGS. ∖ 2/8/18 @ 0801 DTW = 13.11				
	C-1	1.0' 71.4%	0%	Overall structure is a laminated to thinly INTERBEDDED LIMESTONE and SHALE. The limestone is medium gray to medium dark gray (N 5/ - N 4/). The shale is dark gray to grayish black (N 3/ - N 2/). The limestone is massive, siliceous, very strong field strength. The shale is laminated to		BGS. // Set PVC temporary surface casing to 35' in hole plug.				
37 — 38 — 39 —	C-2	2.2' 88%	0%	thinly bedded, strong field strength. The overall structure has a 45° bedding angle. Present with soft sediment deformation, bioturbidation, and cross bedding. The top portion (top 1/2') is present with iron staining on fracture traces. Below 35.4' the limestone and shale are fresh to slightly decomposed. Fracturing is moderate to very intense. Fractures along bedding planes are fresh and probably mechanically induced. Slickensides are observed along shale bedding planes. Multiple horizontal and vertical fractures are		Cleaned out hole to 35.2'. Start HQ3 core with water at 1140. Drilling water is being recirculated. C-1: 35.2' - 36.6', 1140-1150. 35.2' - 35.4' highly fractured zone with iron staining and calcite on surface				
40 — 	C-3	1.1' 44%	0%	present that have been completely healed with calcite. Trace vertical and horizontal fractures have been healed with mudstone. Calcite veins have strong reaction with HCI. 38.6' - 38.8' Vertical fracture. Probably mechanically induced.		C-2: 36.6' - 39.1', 1305-1320. 36.6' - 36.8' Fracture perpendicular to bedding plane healed with calcite. C-3: 39.1' - 41.6', 1334-1345.				
41—				38.9' - 40.0' Multiple horizontal and vertical fractures. Some are healed		Vertical fracture wedged and blocked tip. Lost return from				
42	C-4	0.6' 85.7%	0%	with calcite. Most breaks are probably mechanically induced. 40.0' - 40.2' Fracture along core axis that has been healed with mudstone		bottom. C-4: 41.6' - 42.3', 1520-1526. Driller noted blocked tip on run				
43	C-5	2.3' 100%	17.4%	41.6' - 42.3' Multiple horizontal and vertical fractures, iron and manganese oxide on fracture face. Some healed with calcite.		due to vertical fracture. C-5: 42.3' - 44.6', 1535-1549. 43.9' Horizontal fracture with				
44 — _	C-6	2.0	27.5%	42.3' - 44.6' Very intensely fractured. 42.7' - 43.1' Vertical fracture healed with mudstone. Rip-up clasts present. Multiple horizontal and vertical fractures healed with calcite.		iron.				

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-988

Remark	ks:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
46	C-6	2.0' 100%	27.5%	Medium gray to medium dark gray (N5 - N4) to dark gray to grayish black (N3 - N2) INTERBEDDED LIMESTONE and SHALE. (Cont'd.) 46.2' Horizontal fracture (~1 inch thick) healed with calcite.		C-6: 44.6' - 46.6', 1559-1610. 44.6' - 46.6' Multiple hairline fractures healed with calcite.	
 47	-			Shale beds becoming dominant with depth. Contacts between shale and limestone are deformed, have a wavy appearance.		47.3' Fracture perpendicular to bedding plan healed with calcite.	
48 — _	C-7	3.0' 85.7%	12.9%			C-7: 46.6' - 50.1', 1620-1642.	
49— -						Driller noted no loss of water/circulation while drilling.	
50 — - 51 — -	C-8	1.5' 100%	0%	Below 50.0' shale and limestone content is approximately 50%. Rock is fresh, moderately to very intensely fractured. Fractures along bedding planes (45°) are mechanically induced. Multiple thin horizontal and vertical fractures that are healed with calcite. Shale has abundant slickensided surfaces along bedding planes.		C-8: 50.1' - 51.6', 1650-1710. 2/8/18 @ 1719 WL = 19.45 BGS. 2/9/18 @ 0835 DTW - 15.58 BGS.	
52— -				52.8' Fracture along bedding plane healed with calcite.			
53 — - 54 —		4.0'	00.40/	53.2' - 53.4' Multiple hairline fractures perpendicular to bedding planes completely healed with calcite.			
55 —	C-9	80%	36.4%	Trace pyrite nodules and stringers within shale.		C-9: 51.6' - 56.6', 0933-1012.	
- 56 —				56.8' - 57.1' Shale and limestone are deformed with turbidation,			
- 57 —	-			approaching a brecciated appearance. Below 57.0' bedding varies between 45° and 60°.		C-10: 56.6' - 61.6', 1029-1055.	
58 — - 59 —	C-10	5.0' 100%	17.2%	59.0' - 59.1' Fracture perpendicular to bedding plane healed with calcite.			
60 —	-			61.2' - 61.5' Hairline fractures perpendicular to bedding plane healed with			
61	-			calcite. 61.7' - 61.8' Fracture perpendicular to bedding plane healed with calcite.		C-11: 61.6' - 66.6'. 1108-1150.	
62— - 63—				From 62.2' - 62.3' fine glauconite nodules oriented along bedding plane. Only found in layers of limestone.		Driller noted pressure fluctuations while drilling.	
- 64	C-11	3.8' 76%	0%	63.6' - 63.8' Fine glauconite nodules oriented along bedding planes only within limestone. Pyrite nodules associated near glauconite grains/nodules.			
65 —		10,0		63.9' - 64.1' Fracture perpendicular to bedding plane healed with calcite. 64.4' - 64.7' Fracture perpendicular to bedding plane healed with calcite.			
- 66 — -				Below 65.0' limestone beds are up to 3" thick. Slickensides present perpendicular to bedding plane in shale. Shale beds becoming dominant.		No loss of water/circulation during drilling.	
67 — _	C-12	2.3'	14 90/	66.6' - 67.0' Multiple fractures along bedding plane healed with calcite. 67.2' - 67.4' 1/4" thick fracture healed with calcite. Calcite is mostly white, some pink/orange in color.		C-12: 66.6' - 69.1', 1358-1417. Driller noted rock feeding poorly. Pulled run.	
68 — -	0-12	92%	14.8%	68.2' - 68.5' Multiple horizontal and vertical hairline fractures filled with calcite.			
69 — -	C-13	1.5' 100%	0%		臣		

B-53

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-988

Remarks: Image: Constraint of the second	arks S
	arks S
C-13 1.5' 0% At 69.7' bedding turns near vertical with a fracture going from 69.9' to C-13: 69.1' - 70.0' 72.3'. Fracture is healed with mudstone and calcite. Some limestone and	6', 1428-1444.
T1 10' shale rip-up clasts present within the mudstone. Highly deformed along C-14: 70.6' - 71.	6', 1454-1504.
72 - C-15 2.0' 0% mechanically induced. From 71.8' - 72.3' very intensely fractured zone. Healed with mudstone. C-15: 71.6' - 73.1 73 - C-15 100% 0% Below 72.3' bedding turns back to 40° to 50°. Element of the second se	oximately 5% ulation.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	TW = 6.79
75 2/10/18 @ 0755,	DTW = 4.88'.
	TOM/ notom/
79 — rig to ream coreh	ole and
80 Piezometer GW-988 installed in borehole. See Monitoring Well advance borehole 80 Installation Report GW-988 for details. using 5 7/8" tricol and water circula drilling at 1120.	ne bit with air
81-	
85— — —	
86	
89—	
91- 92- 93- 93- 94- 1	
92-	
93	
94	

B-54

Eayu		Associa	100, 1								SW-988	.
		N	Ionit	toring	Wel	l Insta	allation Re	eport			f	
Site Nam	e and Lo	cation: EML	OF Chara	ecterization F	Project, O	ak Ridge, T	N	Completion D	ate: 3/8/18			
Coordina	tes: 299	52.47N 380	91.14E			Boreł	ole Depth (ft): 78.5					
Elevation	Top of C	asing (ft/MS	SL): 958	95		Boreł	ole Diameter (in):10	" (0'-36.0'), 5 7/8	" (36.0'-78.5')			
Elevation	Ground	Surface (ft/N	1SL): 95	57.0		Drillin	g Methods: 2 1/4" Hs hammer	SA, HQ3 Core w/	water, 10" air			1
nstalled	By: Fred	Reynolds/T	ri-State L	Drilling			leted Drilling: 2/22/					
Supervise	ed By: S/	hay Beanlan	d/Eagon	& Associate	s, Inc.	Drillin	g Water Used (gals)	:				
	-	-	-			l Desi						
							<u>yıı</u>			-		2
	Com	ponent				Materials		Depth (LSD)	Elevation			-
Well Pr	otector			4" Squa	re Steel	Protector w	Locking Lid	-2.3 - 2.7	959.3 - 954.3			-
Riser				2" ID Sc	hedule 4	0 PVC		-2.0 - 61.9	959.0 - 895.1			3
Surface	e Seal			3' x 3' C	oncrete I	Pad		-0.5 - 0.5	957.5 - 956.5			
Conduc	tor Casir	ıg		6" ID P\	/C Scheo	dule 40, Flu	sh Threaded	-0.4 - 36.0	957.4 - 921.0			-
Cemen	t Grout			Cement	Bentonit	te Grout		0.5 - 55.1	956.5 - 901.9			
Benton	ite Seal			Pel Plug	1/4" Co	ated Bento	nite Pellets	55.1 - 59.6	901.9 - 897.4			
Sand P	ack			DSI "GF	9 #2" Gra	vel Pack		59.6 - 73.2	897.4 - 883.8			4
Screen				2" ID Sc	2" ID Schedule 40 PVC, 10-Slot				895.1 - 885.1			Ī
Well Po	oint Blank			2" ID Sc	h. 40 PV	/C Cap & R	ser Section	71.9 - 73.2	885.1 - 883.8			
Sand P	ack Botto	om		DSI "GF	9 #2" Gra	vel Pack		73.2 - 74.0	883.8 - 883.0			
Benton	ite Seal			Pel Plug	j 1/4" Co	ated Bento	nite Pellets	74.0 - 78.5	883.0 - 878.5			5
				We	ell De	evelo	oment					
	th (ft,TOC	C):		to Water (ft		Well	/olume (gals):		urged (gals):			
	nent Meth		-	8.56		1)	132.5				
Surge bl	ock, bailer,	mega purger	whale pu							_		6
Date	Time	Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery D	Data				
3/1/18	1240	42.5	15.1	647	7.54	134.0						
3/1/18	1305	57.5	14.9	759	7.25	29.0	(%) × 60					7
3/1/18	1325	87.5	14.8	761	7.12	3.9	00 80 (%) 60 40 40 20 40 40 40 40 40 40 40 40 40 40 40 40 40					
3/1/18	1335	102.5	14.9	768	7.10	3.5	Ŭ 20 /					
3/1/18	1345	117.5	14.7	766	7.07	2.2	o /	40	80 120			
3/1/18	1400	132.5	14.7	769	7.05	2.4		Time (minute	es)			8
Sampling	Equipme	ent:		1		1				1		
	to:									4		
Commen	ls:											1

		BC	REHOLE	LOG					
Site Name and Location:	EMDF Ch	naracterization Project Dak Ridge, TN	Drilling Methods 4 1/4" ID H	: SA, HQ3 Core with	n water circ	ulation.		Boring Nu	
Drilling Firm: Tri-State		Jak Nuge, Th	DATE	TIME	DEP [.] DRILLE	TH	WATER LEVEL (ft)	GW	-989
Driller / Rig: Shannon	Snow/CME	E-550			DIGLE	<u> </u>		Pane	1 of 3
Logged by: David J. S	Sugar		_ ST = Shelby Tub	Sampling N		SS = SI	plit Spoon		
Coordinates: 29950.4	4N 38082.	.67E	WS = Waxed Sar SP = Sand Pump	nple		CS = C C = Cc	ontinuous Sampler oring	Start <i>Time</i>	Finish <i>Time</i>
Surface Elevation: 95	5.7 ft/MSL		GP or DP = Direc CT = Cuttings	t Push		NS = N B = Bai	ot Sampled ler	1429	1645
Surface Conditions / V	Veather: S/	opped surface, gravel pad / 60°-65°l	F, Sunny					Date 2/27/18	Date 2/28/18
		he collection of geotech samples and	d installation of sh	allow piezometer					
Depth (feet) Sample Method Sample Recovery	Blows/6 in or RQD	SAMPLE DE	SCRIPTION			Graphic Log	Rema	arks	nscs
1- 1- 2- NS	2 Ш	See Borehole Log for adjacent bo description and stratigraphic inter		letailed lithologic			4 1/4" ID HSA, ra while augering.	n auger plu	3
3- - ST-1 1.85 4-	1200 PSI	Description based on inspection of brown (7.5YR 5/6 - 5/8 and 4/6) a SILTY CLAY. Trace to some blac fragments. Moist. high plasticity	nd pale brown (2. ck mottling. Trace	5Y 7/3 - 7/4) mot highly weathered	tled –		Auger cutting buc BS-1 collected fro	ket sample om 4.0' - 6.0	'.
5		ragmenta. Molat. high plasticity	and toughness. C						
7	1000 PSI	Description based on inspection c bedded yellow to olive yellow (7.5 Completely weathered. Some da brown (2.5Y 4/2 - 3/2) beds. App	6Y 7/6 - 6/6) SHAL rk grayish brown t ears intact remnai	E (SAPROLITE). o very dark gravi nt bedding. Unde	sh erlying		Plasticity and tou variable, generall medium.		
9		contact may be higher or bottom o	of ST-2 may be a	large rock fragme	ent. — — — —		Auger cutting buc BS-2 collected fro 10.0'.		
_ ST-3 1.9	1500 PSI	SHALE (SAPROLITE). Highly/co	mpletely weathere	ed. Damp to mois	st				
13		Description based on inspection c brown (2.5Y 5/3 - 5/4) highly weat bedding angle (may not be in plac sampler tip.	thered SHALE (SA	APROLÍTE), Low					
15— - ST-4 1.95 16—	1300 PSI	Description based on inspection c olive (5Y 4/2 - 4/3 and 5/3 - 5/4) f	of bottom of ST-4	recovery: Olive g	Jray to				
17		Relatively low bedding angle. This brown/black iron oxide on bedding	inly bedded with d	ark reddish					
19—			B-57						

EN		haracteri Dak Ridg		BOREHOLE LOG	Bo	Boring Number GW-989							
Remarks: Borehole installed for the collection of geotech samples and installation of shallow piezometer.													
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs						
	NS	F (f	<u>a</u>	SHALE (SAPROLITE). (Cont'd.) Below 22.0' auger cutting returns are very moist. No free water. Below 30.0' auger cutting returns are wet. Contact with underlying interbedded shale and limestone is higher than 32.0'.		C-1 32.0' - 35.6' 1630-1701. C-2 35.6 - 36.7' 0930-0941.							
31 — 32 — 33 — 33 — 34 —	C-1	2.9' 80%	13%	Change at 32.0'. Interbedded dark gray to olive gray (5Y 4/1 - 4/2) SHALE and LIMESTONE. Some of the limestone seams may actually classify as calcareous siltstone. Thinly bedded, generally <0.1' beds and partings are not uncommon. Bedding angle is 45°. Limestone seams are hard and react strongly with HCI. Microcrystalline to fine crystalline. Shale seams are soft, do not react with HCI. Moderate to highly decomposed Intenselv fractured.		C-3 36.7' - 40.0' 0952-1050. C-4 40.0' - 45.0' 1108-1130. Contacts between limestone and shale beds are wavey/deformed. Soft sediment deformation trace bioturbidation. Approximately 40% to 60% limestone.							
- 35— - 36—	C-2	1.1'	0%	With depth picking up gray color hues, becoming unweathered. Below 33.3' consistent gray to very dark gray (N 5/ - N 3/) color. Fresh slightly decomposed. Limestone seams have lighter gray color hues. Becoming unweathered/competent.	to	32.0' - 33.6' Most bedding breaks are oxidized with iron oxide precipitates on fracture surfaces. 34.1' - 34.3' Broken zone,							
35— 36— 37— 38— 38— 39— 40—	C-3	100% 1.5' 45%	30%	 33.5' - 34.4' Primarily limestone, trace shale partings and thin seams. Bedding contacts are deformed and bioturbated. Below 35.6' oxidized zones/fractures are rare and called out where observed. Continues to be thinly bedded with common mechanical breaks at shale/limestone bedding contacts. Secondary mineralization along breaks is generally not observed. 		bedding break and fracture perpendicular to bedding. Oxidized with iron oxide precipitates on fracture faces. End 2-27-18, 1701 at 35.6'. 2/28/18, 0810 WL = 5.4', 49°F, Light rain. Start coring at 0930. The increase in white calcite filled fractures below 36.0'							
40 41 42 43 44 	C-4	3.2' 64%	0%	 Below 36.0' bedding angle increases to 65° - 70°. Healed fractures (w calcite filled) increase, up to 1/4" width, generally oriented perpendicula to bedding, often more prominent within limestone beds and typically dissipate or terminate within shale beds. By 41.0' bedding is approaching vertical. Healed (calcite filled) fracture oriented perpendicular to bedding are prominent within limestone beds Local deformation, contorted bedding (small scale folds) are present. Below 41.5' beds may be slightly overturned. Below 42.3' some limestone beds are almost brecciated. At a minimur highly deformed. Below 42.8' considerable white calcite filled fractures, highly deformed. 	ar	appears to correlate with the increase in the bedding angle. 41.9' - 42.3' Broken zone with iron oxide along bedding planes and perpendicular fractures. Secondary calcite does not appear to be present. Zone may account for some C-4 lost recovery. The core bit/lifter was stuffed, indicating that the majority of lost C-4 recovery was most likely from the bottom of the run. Overdrilled corehole with 4 1/4" ID HSA.							

E	MDF C	haracter Dak Ridg	ization P ge, TN	Project	BOREHOLE LOG	Boring Number GW-989		
Remark	ks: Bore			ne collection	of geotech samples and installation of shallow piezometer.			
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD		SAMPLE DESCRIPTION	Graphic Log	Remarks	NSCS
_					Borehole = 45.0'.	_		
46				Piezomete	er GW-989 installed in borehole. See Monitoring Well n Report GW-989 for details.	_		
47 —						-		
48-								
- 49						_		
- 50 —						_		
-	-					-		
51						-		
52						-		
53-								
54 —						_		
55 —								
- 56 —						-		
- 57 —						-		
- 58						_		
-						-		
59 —						-		
60						_		
61						_		
62-						_		
63-								
- 64						_		
- 65						_		
66-								
-								
67 —								
68	-							
59— 60— 61— 62— 63— 63— 64— 65— 66— 66— 67— 68— 68— 69—								
					B-59		F	Page 3 of 3

Eago	on & A	Associa	ates, l	nc.						-	ll Num SW-989	
		Ν	loni	toring	Wel	l Inst	allation Re	port			F	
Site Nam	ne and Loo	cation: EM	DF Chara	acterization F	Project, O	ak Ridge,	TN	Completion	Date: 3/8/18			0-
Coordina	ates: 2995	50.44N 380	082.67E			Bore	ehole Depth (ft): 45.0					
Elevatior	n Top of C	asing (ft/M	SL): 957	.86		Bore	hole Diameter (in):7 1	1/2"				
Elevatior	n Ground S	Surface (ft/l	MSL): 95	55.7		Drill	ng Methods: 4 1/4" ID	HSA, HQ3 Col	re with water			5-
Installed	By: Shan	non Snow/	Tri-State	Drilling			pleted Drilling: 2/28/1					
	-			& Associates	s. Inc.		ng Water Used (gals):					
	,		0									
						l Des						10-
	Com	oonent				Materials		Depth (LSD)	Elevation			
Well P	rotector			4" Squa	re Steel v	w/Locking	Lid	-2.6 - 2.4	958.3 - 953.3			
Riser				2" ID Sc	hedule 4	0 PVC		-2.3 - 33.6	958.0 - 922.1			15-
Surfac	e Seal			3' x 3' C	oncrete			-0.5 - 0.5	956.2 - 955.2			15-
Cemer	nt Grout			Cement	Bentonit	e Grout		0.5 - 25.7	955.2 - 930.0			
Bentor	nite Seal			Pel-Pluç	g 1/4" Co	ated Bent	onite Pellets	25.7 - 30.0	930.0 - 925.7			
Sand F	Pack			DSI GP	#2 Grave	el Pack		30.0 - 44.9	925.7 - 910.8			
Screer	ı			2" ID Sc	hedule 4	0 PVC, 1)-Slot	33.6 - 43.6	922.1 - 912.1			20-
Well P	oint Blank			2" ID Sc	h. 40 PV	C Cap &	Riser Section	43.6 - 44.9	912.1 - 910.8			
Sand F	Pack Botto	m		DSI GP	#2 Grave	el Pack		44.9 - 45.0	910.8 - 910.7			
												25
												25-
							pment					
Well Dep 47.2	oth (ft,TOC 1	;):		to Water (ft 4.03	,TOC):		Volume (gals): 5.4	Volume 151	Purged (gals): .0			
Developi Surge b	nent Meth lock, bailer,	od: <i>mega purge</i>	r whale pu	тр								30-
Date	Time	Cumulative Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery D	oata				_
3/5/18	0900	17.0	14.8	534	7.28	>1000	100					
3/5/18	1126	49.5	14.8	341.3	8.10	351.0	08 (%) 60 60 60 60 60 60 60 60 60 60 60 60 60 6					35-
3/5/18	1400	80.5	14.6	508	7.51	383.0	A 40					
3/6/18	0904	124.0	14.5	323.8	7.72	142.0	୍ଥ 20					
3/6/18	1402	135.5	15.3	326.6	7.78	24.6	0	40	80 120			= - - - - - - - - - - - - - - - - - - -
3/6/18	1459	151.0	15.6	329.3	7.79	8.1		Time (minu	tes)			
Sampling	g Equipme	ent:				1				┓≣		=
Commer	nts:									- =		
		lacament inf	rmation	rovided by Tri	State Drill:	ing Serect	ı slot interval 33.8 - 43.5 b	nas				
Giourn	", ning anu pi		mauon pi	Svided by III-		ng. Scieel	5151 IIIIEI VAI 55.0 - 45.5 D	·yo.		Boring	g depth=4	5.U ft.

				BC	REHOLE	LOG				
Site Na and Loc		E	MDF Ch C	aracterization Project Dak Ridge, TN	,	HQ3 Core w/wa	ter, 10" air hamn	ner bit, 5 7/8"	Boring Nu	
Drilling	Firm: 7	ri-State D	Prilling		DATE	/ith air/water. TIME	DEPTH DRILLED (f	t) WATER LEVEL (ft)	GW	-992
Driller /	Rig: <i>Fr</i>	ed Reync	olds/Mobile	e 42C	2/16/18	1725	36.4	4.57	Page	1 of 3
.ogged	by: <i>Ry</i>	an Hanse	9/		ST = Shelby Tub		SS =	Split Spoon	Start	Finish
Coordin	ates: 2	9698.291	1 38749.	00E	WS = Waxed Sar SP = Sand Pump	1	C =	Continuous Sampler	Time	Time
Surface	Elevati	on: 910.0) ft/MSL		GP or DP = Direc CT = Cuttings	t Push		- Not Sampled Bailer	0855 Date	1515 Date
		ons / We	ather:						2/16/18	2/17/18
Remark			. <u> </u>							
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 i or RQD		DESCRIPTI	NC	Graphic			nscs
-	NS			ROAD BASE.				Ran 2 1/4" HSA w/center plug wh	ile augering	
1—			3	Change at 1.0'. Brown (7.5YR 5/4 - 4/4) CLAYEY	SILT. Trace fine	grained sand. T	Trace	Continuous 2" O		ML
2—	SS-1	1.3' 65%	4 5	to little shale fragments (up to 1" on shale fragments. Massive. Sh direction. Low plasticity. Slow to Moist. Cohesive. No reaction with	nale fragments are no dilatancy. Mee	oriented in sam dium dry strengt	ne h.	hammer. On 2/18/18, used Ingersoll-Rand T to ream borehole	3W rotary rig	/ g ng
3—			3	RESIDUAL SOIL/COLLUVIUM.			_	10" air hammer b permanent 6" PV	oit. Set	Ŭ
-		1.3'	2					sealed with ceme grout.		
4	SS-2	65%	2	Below 4.3' shale clasts become tr	ace to rare. Beco	mes moist to we	et. No	SS-1 Lab results Content 29.3%.	: Moisture	
5—			2	to slow dilatancy. Fine grained sa decreases slightly.				SS-2 Lab results	· MC 23 0%	
_		2.01	WH 1	deologood olightiy.			-	7% Gravel; 36%		,
6	SS-3	2.0' 100%	1					Fines. WH = weight of h	nammer.	
7—			1 WH	Below 7.0' clay content increases						
_		1.4'	WH	Change at 8.0'.						
8	SS-4	70%	4	Olive (5Y 5/4 - 4/4) highly weather are highly weathered and comprise	red SHALE (SAPF	ROLITE). Shale	clasts	SS-4 Lab results	: MC 37.1%	. CL
9—			6	bedded with iron and manganese planes are at 40°-50° angles. Ve	oxide along bedd	ing planes. Bed	Iding	-		
_		4.01	4 10	dry strength. Cohesive. No react				 		
10 —	SS-5	1.3' 65%	19	SAPROLITE.				SS-5 Lab results	: MC 13.4%	
-			17					-		
11 —			5	Below 11.0' becomes wet. Trace becoming more competent with d				-		
12—	SS-6	1.3'	10	and manganese oxide. Wet.		a sinstone has h		-		
-		65%	10	11.7' - 11.9' Broken siltstone beds	with mongonos-	ovide on clast		-		
13—			9 4	surfaces.	with manyanese	UNICE UN CIASL		· ·		
_		1.1'	6					SS-7 Lab results	: MC 21.3%	
14 —	SS-7	55%	5					Water on spoon.		
- 15			2					-		
10-			7	15.0' - 15.5' Shale is grayish blue manganese oxide.	green (5BG 5/2).	Trace iron and		-		
16—	SS-8	1.6' 80%	16	Below 15.0' shale clasts can bare	ly be broken by ha	and. Dry.				
-		00%	18 29					SS-8 Lab results	: MC 16.2%).
17 —			29 8				-t	-		
_		1.6'	19					-		
18—	SS-9	80%	18				+	-		
_ 19—			19					SS-10 Lab result	s: MC 15.5	%;
19	SS-10	1.5'	9					 1% Gravel; 62% Fines. 		
	50 10	75%	13							

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-992

Remar	ks:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
-	SS-10	1.5' 75%	11	Olive (5Y 5/4 - 4/4) highly weathered SHALE (SAPROLITE). (Cont'd.)			CL
21-		7570	9 10	Below 20.0' shale (saprolite) becomes more weathered. Shale clasts are	+]		
-	_	4.01	10	easily broken by hand. Abundant iron and manganese oxide on shale clasts. No reaction with HCI.			
22-	SS-11	1.3' 65%	10	Below 23.0' trace limestone clasts with calcite veins. Strong reaction with	1		
-			6	HCI.	1		
23-			2	24.0' - 24.8' Sandstone clasts completely decomposed to sand, abundant	1	SS-12 Lab results: MC 17.6%.	
24	SS-12	1.7'	8	with iron and manganese oxide. Saturated.]==1		
-	_	94.4%	23	Below 25.0' shale (saprolite) becomes olive gray (5Y 5/2 - 4). Trace iron and manganese oxide on clast surfaces.	드러		
25-	NS		50/3	• -	드리	55 13 Lab regultar MC 10 8%	
-	-		30	Below 25.5' color becomes grayish blue green (5BG 5/2).	+1	SS-13 Lab results: MC 10.8%.	
26-	SS-13	1.3' 65%	28 30	Below 26.8' color becomes light olive gray (5Y 6/2).	<u>t</u>		
-	-	0070	29		+]		
27 –		0.8'	8	-	[]		
-	SS-14	80%	50/5	Change at 28.0'.	+]		
28-				Gray to dark gray (N 5/ - 4/) INTERCLASTIC LIMESTONE. Strong.		Auger refusal at 1052 at 28.0'.	+
29-				Thinly bedded. Clasts are made up of limestone and are elongated. Clast orientation is parallel to bedding planes. The matrix material is		Pull augers and install temporary PQ surface casing.	
29		2.6'		limestone with trace glauconite grains within matrix. Some soft sediment deformation of the limestone clasts and cross bedding. Slightly		28.0' - 28.2' Fracture perpendicular to bedding and a	
30-	C-1	76.5%	22.9%	decomposed. Strong reaction with HCI. Moderate to intensely fractured. Multiple horizontal and vertical fractures that have been completely		near vertical fracture with iron	
-	_			healed with calcite.		oxide. C-1: 28.0' - 31.4' 1407-1448.	
31-	_			Below 31.0' shale beds and partings that are increasing with depth Change at 31.4'.		Weathered at top. Probably where return was lost.	
-		0.9'		Dark gray to very dark gray (N 4/ - 3/) SHALE. Trace glauconite.	+	Measure C-1 from bottom. /// // // // //	
32-	C-2	90%	0%	Laminated to thinly bedded. Strong. Fresh. Slightly disintegrated Intense to very intensely fractured. Most breaks are along bedding planes	t	31.4' - 33.1' Vertical fracture with slickensides. Glauconite.	
- 	C-3	0.7' 100%	0%	and probably mechanically induced. Some fractures are shear with glauconite grains and striations along fracture. No reaction with HCl.	11	C-2: 31.4' - 32.4' 1456-1509. Blocking in tip/pull run.	
33-		100 /0		33.1' - 33.4' Shale is very intensely fractured. Probably due to]	C-3: 32.4' - 33.1' 1515-1530. Blocked tip. Pull run.	
34-	_			sampling/mechanically induced. 33.4' - 34.1' Interclastic limestone bed. Clasts are elongated. Matrix is		34.6' Vertical fracture with iron	
-		3.3'		made up of shale and limestone. Clasts are oriented parallel to the bedding planes. Some iron oxide staining along bedding planes		oxide. 33.7' - 34.0' Fracture perpendicular to bedding plane	
35-	C-4	100%	18.8%	associated with limestone beds.		with iron oxide. C-4: 33.1' - 36.4' 1538-1615.	
-	_			34.1' - 34.4' Shale is dark greenish gray 10GY (4/1). Shale is becoming	+=-1	0-4. 33.1 - 30.4 1330-1013.	
36-	-			less fractured with depth.		2/16/18 at 1725 DTW = 4.57	
-				36.4' - 37.4' Trace limestone and glauconite beds and partings. Very	듣리	BGS. 2/17/18 at 0803 DTW = 4.32	
37-	-			intensely fractured. Some healed with calcite. Most are mechanically - induced.		BGS.	
- 38-	C-5	2.3'	0%	Limestone bed from 37.5' - 38.2'.	1		
30-		74.1%	070	37.5' - 37.9' and 38.0' - 38.2' Interclastic limestone beds. Clasts are elongated and oriented parallel to bedding planes. Matrix material is]==1	C-5: 36.4' - 39.5' 0819-0853. Driller noted tip blocked.	
39-				limestone with glauconite. Some soft sediment deformation and		Pulled run.	
-				cross-bedding observed. Trace horizontal and vertical fractures healed with calcite. Shale beds near the limestone beds are dark greenish gray		39.3' Fracture perpendicular to bedding plane healed with	
40-	-	4.01		(10GY 4/1).	+]	calcite. C-6: 39.5' - 41.4' 0900-0929.	
-	C-6	1.9' 100%	0%	Below 39.5' shale is fresh. Competent. Slightly to moderately fractured. Limestone beds and partings become trace to rare. Multiple breaks along	[]		
41-	-			bedding planes with slickensides. Breaks are probably drilling induced 40.4' - 40.7' Vertical break with slickensides.	+]		
-	-			41.8' - 44.3' Very intensely fractured. Multiple breaks along and	[]		
42-	1			perpendicular to the bedding planes. Some with slickensides. Probably – mechanically induced.	1	C-7: 41.4' - 45.0' 0939-1033.	
43-]	2 21]=]	1046 Drillers get water.	
43-	C-7	3.2' 88.9%	0%	-	卢크		
44	_			44.3' - 45.0' Limestone bed with some soft sediment deformation. Trace shale beds within limestone. Moderately fractured with fracture healed by -	╞══╡		
-	-			calcite.	<u>F</u>		
	1		I I		I		1

E	MDF C	haracter Oak Ridg	ization F je, TN	Project	BOREHOLE LOG	Bor	ing Number GW-992	
Remark	ks:					·		
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD		SAMPLE DESCRIPTION	Graphic Log	Remarks	uscs
46 47 48 49	C-8	1.3' 28.9%	0%	Below 45.	to very dark gray (N 4/ - 3/) SHALE. (Cont'd.) O' trace limestone beds and partings. Limestone present with orizontal and vertical fractures healed with calcite. 		C-8: 45.0' - 49.5' 1104-1210. On start of C-8 cutting returns turned from light gray to brown. 1135 Drillers to get water. On C-8 inner core barrel did not lock in. Core in bottom of hole. Trip out to attempt core recovery at 1223. Low recovery on C-8. Makes difficulty in logging. C-9: 49.5' - 50.0' 1250-1859.	
- 50	C-9	0.3'/60%	0%				DTW = 11.57 BGS.	
51— 51— 52—				Borehole s surface ca	Borehole = 50.0'. sealed with cement bentonite grout due to damage to the asing at the beginning of reaming activities. Installation borehole neter GW-992 installed approximately 8' east of original	-	On 2/19/18, used Ingersoll-Rand T3W rotary rig to ream corehole to 50.0' using 5 7/8" tricone bit. Finished drilling at 1515.	
53-						-		
54	•				_	-		
55—	-				_			
56 —					_			
57 —								
58					_			
- 59 —					-	-		
- 60						-		
61	•				-			
62—					_			
63-					_			

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

64 -

65-

66

67-

68-

69-

				BC	REHOLE	LOG					
Site Nam and Loca		E	MDF Ch	naracterization Project Dak Ridge, TN	Drilling Methods 10" Air Han	: nmer, 5 7/8" and :	5 5/8" Trico	ne.		Boring Nu	
Drilling F	irm: T	ri-State D		Jak Riuge, IN	DATE	TIME	DEF	PTH	WATER LEVEL (ft)	GW-	992R
-			-	soll-Rand T3W	2/26/18	1730	54		24.22	Dogo	1 of 2
Logged k	oy: Ne	lson Nova	ak			<u>Sampling</u>	Methods:				1 of 3
Coordina	ates: 2	9698.29N	38737.	35E	ST = Shelby Tub WS = Waxed Sau SP = Sand Pump	mple		SS = Sp CS = Co C = Co	olit Spoon ontinuous Sampler	Start	Finish
Surface I	Elevati	on: <i>908.</i> 9	ft/MSL		GP or DP = Direc CT = Cuttings				ot Sampled	Time 1422	Time 1635
Surface	Conditi	ons / Wea	ather: Da	amp gravel road / 60°F, Sunny						Date 2/20/18	Date 2/26/18
Remarks	s: Drille	ed approxi	imately 8	' east of borehole GW-992.							
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DE	SCRIPTION	I		Graphic Log	Rema	arks	nscs
- $1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 -$	NS			GW-992R is a replacement well a Log GW-992 for a detailed litholog interpretation.	R_67	d stratigraphic	noie		Straight drilled to 10" hammer bit. permanent 6" PV sealed with ceme grout.	Set C casing ar	ıd

EMDF Characterization Project Boring Number **BOREHOLE LOG** Oak Ridge, TN **GW-992R** Remarks: Drilled approximately 8' east of borehole GW-992. Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method USCS Depth (feet) SAMPLE DESCRIPTION Remarks 21 22 23 24 25 26 27 28 29 30 31 32 NS 33 34 BOREHOLE LOG V.2 OAK RIDGE GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18 Straight drilled to 34.6' with 5 5/8" tricone bit to get through permanent 6" casing. Once below 6" PVC casing, switched tricone bit to a larger size bit (5 7/8") and straight drilled to 57.635 36 55.5'. 37 38 39 40 41 42 43 44 B-68

EMDF Characterization Project Boring Number **BOREHOLE LOG GW-992R** Oak Ridge, TN Remarks: Drilled approximately 8' east of borehole GW-992. Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method USCS Depth (feet) SAMPLE DESCRIPTION Remarks 46 47 48 49 50 NS 51 52 53 54 55 Bottom of Borehole = 55.5'. 56 Piezometer GW-992R installed in borehole. See Monitoring Well Installation Report GW-992R for details. 57 58 59 60 61 62 63 64 65 66 67 68 69

Eago	on & A	Associa	ates, l	nc.						Well Nu GW-9	
		Ν	<i>l</i> lonit	toring	Wel	l Ins	tallation Re	port		F	
Site Nam	ne and Loo	cation: EM	DF Chara	acterization P	roject, O	ak Ridge,	TN	Completion I	Date: 3/8/18		0-
Coordina	ites: 2969	98.29N 38	737.35E			Bor	ehole Depth (ft): 55.5				
Elevatior	Top of C	asing (ft/M	SL): 911.	.40		Bor	ehole Diameter (in):10'	' (0'-32.0'), 5 7/	8" (32.0'-55.5')		
Elevation	Ground S	Surface (ft/l	MSL): 90)8.9		Dril	ing Methods: 10" Air Ha	ammer, 5 7/8" a	and 5 5/8" Tricone.		10-
Installed	Bv [.] Fred	Reynolds/1	ri-State [Drillina		Co	npleted Drilling: 2/26/1	8			
	-	-		& Associates	s Inc		ling Water Used (gals):				
Supervis	eu by. Sr	lay Deamar	iu/Lagoii	& ASSOCIATES							
					Wel	I Des	sign		1		20-
	Com	ponent				Materials		Depth (LSD)	Elevation		
Well P	rotector			4" Squa	re Steel I	Protector		-2.8 - 2.2	911.7 - 906.7		
Riser				2" ID Sc	hedule 4	0 PVC		-2.5 - 39.3	911.4 - 869.6		
Surfac	e Seal			3' x 3' C	oncrete F	Pad		-0.5 - 0.5	909.4 - 908.4		30-
Condu	ctor Casin	g		6" ID PV	′C Sch. 4	40 PVC, I	Flush Threaded	-0.4 - 32.0	909.3 - 876.9		
Cemer	nt Grout			Cement	Bentonit	e Grout		0.5 - 33.8	908.4 - 875.1		
Bentor	ite Seal			Pel Plug	1/4" Co	ated Ben	tonite Pellets	33.8 - 37.2	875.1 - 871.7		
Sand F	Pack			DSI "GP	#2" Gra	vel Pack		37.2 - 45.7	871.7 - 863.2		40-
Screen	1			2" ID Sc	hedule 4	0 PVC, 1	0-Slot	39.3 - 44.4	869.6 - 864.5		
Well P	oint Blank			2" ID Sc	h. 40 PV	′C Cap &	Riser Section	44.4 - 45.7	864.5 - 863.2		
Sand F	Pack Botto	om				vel Pack		45.7 - 48.2	863.2 - 860.7		
Bentor	ite Seal			Enviro P	lug Medi	ium Chip	6	48.2 - 55.5	860.7 - 853.4		50-
				We	ell De	evelo	pment		1		
	oth (ft,TOC	C):		to Water (ft,			ll Volume (gals):		Purged (gals):		
48.2 Developr	nent Meth	iod:		88			7.1	74.5		-	
Surge b	lock, bailer,	mega purge	r whale pu							_	60-
Date	Time	Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recovery D	ata			
3/3/18	1305	17.0	15.5	387	7.49	62.7	100				
3/3/18	1320	32.0	15.1	380	7.57	7.0					70-
3/3/18	1350	42.0	15.0	380	7.49	6.3	00 EKX (%)				
3/3/18	1405	57	15.1	375	7.52	6.8	□ B 20				
3/3/18	1415	67	15.0	369	7.46	8.3	0	40	80 120		80-
3/3/18	1430	74.5	15.2	368	7.46	6.0	_	Time (minut	es)		
Sampling	g Equipme	ent:					1			1	
Commer	its:									4	
		1000m	una di		Diate D ""	ing 0.55		~~			
Grout m	ixing and pl	acement info	ormation pr	oviaed by Tri-	state Drilli	ng. Scree	n slot interval 39.4 - 44.2 b	gs.		Boring dept	h=55.5 ft.

Sile Name an Loading Diffing Rim: 7ri-State Dating EUD Characterization Project Do Ridge, TM Diffing Rim: 7ri-State Dating Data Diffing Rim: 7ri-State Dating Data Diffing Rim: 7ri-State Dating Data Data Data Diffing Rim: 7ri-State Dating Data Diffing Rim: 7ri-State Dating Data Data Diffing Rim: 7ri-State Dating Data Time Diffing Rim: 7ri-State Dating Data Diffing Rim: 7ri-State Dating Diffing Rim: 7ri-State Dating Diffing Rim: 7ri-State Dating Diffing Rim: 7ri-State Dating Rim: 7ri-State Dating Rimited Calls and Rim					BC	DREHOLE	LOG					
Drilling Firm: Tit All Definiting Date Tit ME Definition LVVEE (f) LVVEE (f) Page 1 of 2 Drilling Firm: The stand Strate Strate Strate Strate First Strate Page 1 of 2 Page 1 of 2 Logged by: Strate Continues: Strate Strate Strate Strate First Strate Strate Strate First Strate Strate First Strate Strate Strate First Strate Strate <t< td=""><td></td><td></td><td>E</td><td></td><td>naracterization Project</td><td></td><td></td><td>water, 5 7/</td><td>/8" hamn</td><td>ner bit.</td><td>U U</td><td></td></t<>			E		naracterization Project			water, 5 7/	/8" hamn	ner bit.	U U	
Driller / Rig. Find Reynolds/Mobile B42C Sampling Methods Page 1 of 2 Logged by: Shart / Shar	Drilling	Firm: 7	ri-State D		Jak Kluge, TN	DATE	TIME		PTH FD (fft)	WATER	GW	-993
Laged U: Sharpend Memoly: Sequence Memoly: <	Driller /	Rig: Fi	red Reynd	olds/Mobil	e B42C			DIGEL			Pane	1 of 2
Coordinate: 2990.50/l 877.4 90E West Avaid Sample Software Elevation: C3 = 0.0 min Software Elevation: </td <td>Logged</td> <td>lby: Sh</td> <td>ay Beanla</td> <td>and</td> <td></td> <td>ST = Shelby Tub</td> <td></td> <td>Methods:</td> <td>SS = SI</td> <td>olit Spoon</td> <td></td> <td></td>	Logged	lby: Sh	ay Beanla	and		ST = Shelby Tub		Methods:	SS = SI	olit Spoon		
Surface Elevation: 2007 7 MASL Control NS = NotStanded 000 001	Coordir	nates: 2	9690.501	J 38724.	90E	WS = Waxed Sar SP = Sand Pump	nple		CS = C C = Cc	ontinuous Sampler		
Surface Conductors / Weather: Gravel paid. dy / 70°F, Parth cloudy 222/16 222/16 Remarks: Boring installed for collection of geotech samples and for installation of shallow piezometers. End S S SAMPLE DESCRIPTION S Remarks: Boring installed for collection of geotech samples and for installation of shallow piezometers. 1 1 1 1 See Borehole Log for adjacent boring GW-992 for detailed ithologic destrict of the the target depth and shallow piezometers. Ram 4 1/8/10 H5A with center description and stratigraphic interprotation. Ram 4 1/8/10 H5A with center description and stratigraphic interprotation. Ram 4 1/8/10 H5A with center description and stratigraphic interprotation. Ram 4 1/8/10 H5A with center description and stratigraphic interprotation. Ram 4 1/8/10 H5A with center description and stratigraphic interprotation. Ram 4 1/8/10 H5A with center description and stratigraphic interprotation. Ram 4 1/8/10 H5A with center description and stratigraphic interprotation. 4 5T-1 1.6 700 P5B Bottom of tube, sample is brown to strong brown (7,5YR 5/4 - 4/6) Ram 4 1/8/10 R5A with center description and stratigraphic interprotation. Ram 4 1/8/10 R5A with center description and stratigraphic interprotation. 5 600 P5B Bottom of tube, sample is brown to strong brown (7,5YR 5/4 - 4/6) Ram 4 1/8/10 R5A with center description and stratigraphic interprotation. Ram 4 1/8/10 R5A with center description and stratigraphic interprotation. 1 1.6 500 P5B Bott	Surface	e Elevati	on: <i>909.</i>	7 ft/MSL			t Push				0000	0818
Bit Bit <td>Surface</td> <td>e Condit</td> <td>ions / We</td> <td>ather: <i>Gr</i></td> <td>avel pad, dry / 70°F, Partly cloudy</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Surface	e Condit	ions / We	ather: <i>Gr</i>	avel pad, dry / 70°F, Partly cloudy							
1 HSA See Borehole Log for adjacent boring GW-992 for detailed lithologic Ran 4 1/4" 1D HSA with center plug to target depth, then is of Shelby tube samples. Pushed Shelby tube samples. Pushelby tube samples. Pushelby tube samples. Pu	Remark	ks: Bori	0		ection of geotech samples and for ir	nstallation of shallo	w piezometers.					
1 HSA See Borehole Log for adjacent boring GW-992 for detailed lithologic Ran 4 1/4" 1D HSA with center plug to target depth, then is of Shelby tube samples. Pushed Shelby tube samples. Pushelby tube samples. Pushelby tube samples. Pu	Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTI	ON		Graphic Log	Rema	arks	nscs
	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	ST-1 ST-2 HSA ST-3	2.0	750 PSI 750 PSI 600 PSI 600 PSI 600 PSI 600 PSI 900 PSI 1000/1	description and stratigraphic inter Bottom of tube, sample is brown CLAYEY SILT. Few to little fine to to coarse grained. Abundant sha Bottom of tube, same material as trace. Increase in moisture conter	to strong brown (7 to coarse grained s ale fragments. Moi s above, but decrea ent to wet.	.5YR 5/4 - 4/6) sand, primarily m st. ase in sand conte	- -		plug to target dept tubes samples. Pu tubes. Advanced target depth and a HQ Core with wat target depth, ther borehole with 5 7 bit to depth. Pushed ST-1 fror Let tube set in bo 940 to 945. Bulk Bucket Sam collected from 4.0 0952. Auger cutt collected. Pushed ST-2 fror Let tube set in bo 0954 to 1003. Tu Bulk Bucket Sam collected from 6.0 1000. Auger cutt collected.	ths of Shelt ushed Shelt augers to switched to be reamed /8" hammer n 3.0' - 5.0'. rehole from ple (BS-1))' - 5.0' at ings n 5.0' - 7.0'. rehole from ube is wet. ple (BS-2))' - 7.0' at ings	

	IDF C	haracteri Oak Ridg	ization F	roject BOREHOLE LOG	Bor	ing Number GW-993	
Remark				ection of geotech samples and for installation of shallow piezometers.			
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	USCS
21- 22- 23- 24- 25-	HSA						
26 26 27 27 28	C-1	2.1' 67.7%	0%	Interbedded gray (N 5/) LIMESTONE and dark gray (N 4/) SHALE. Overall interbedded structure is thinly to medium bedded. Shale is laminated where present. Limestone is interclastic above 27.0' and microcrystalline below 27.0'. Clasts are elongated and aligned parallel to bedding planes, which are at an 80° angle. Limestone is strong and shale weak Slickenside surfaces (depositional) along bedding plane breaks at 60° - 70° angles. Slightly decomposed, moderately disintegrated at top of core but becomes slightly disintegrated with depth. Very intensely to intensely fractured but some breaks are mechanically induced. Bedding		1110 - Switching over to core. C-1 25.0' - 25.0' 1239-1306. 1231 WL = 4.30 from ground surface, TD = 25.0'. C1 - Recovery lost is probably shale mainly from top of core run but within limestone beds too. Driller noted that it felt very soft when coring.	
20 29- 30- 31-	C-2	2.8' 100%	0%	plane angles range from 80°-90° to 40°-50° with depth. Fractures healed with calcite also are observed throughout limestone zones run perpendicular to bedding planes ranging in thickness from less than 1mm up to 8mm. Iron staining, iron oxide, and manganese oxide observed on several fracture surfaces and bedding planes, as noted in remarks. Change at 27.9'. Dark gray (N 4/) SHALE. Laminated bedding. Trace limestone beds. Abundant slickenside surfaces (depositional). Upper 1' has iron oxide, manganese oxide, and calcite precipitate observed along fracture faces.		26.0' - 26.5' Multiple high angle fractures (>75° angles) with iron staining, iron and manganese oxide along fracture face. 26.0' - 26.2' limestone is slightly to moderately disintegrated along fracture face. 27.3' - 27.5' 40°-50° fractures,	
32 — 33 — 33 — 34 —	C-3	2.5' 73.5%	35.9%	Slightly to moderately decomposed becoming fresh and competent with depth. Weak to moderate field strength. Very intensely fractured along bedding plane surfaces, likely mechanical induced. Does not react with HCI. Change at 31.1'. Gray (N 5/) INTERCLASTIC to MICROCRYSTALLINE LIMESTONE. Interclastic limestone changing to microcrystalline with depth; clasts decreasing to none at 32.0'. Clasts aligned parallel to bedding planes. Bedding planes are at 40°-60° angles. Little shale beds within limestone, up to 10mm thick, predominately less than 5mm. Bioturbation observed in		not along bedding planes, iron staining present. 27.8' - 28.1' Core is highly broken due to composition mudstone/shale and is likely due to coring. Iron staining along fractures, along bedding planes, and along fractures that are perpendicular to bedding angles.	
35-	NS			shales. Fresh and competent. Strong field strength. Intensely to moderately fractured along bedding plane breaks likely mechanically induced. Some calcite precipitate observed along bedding planes. Breaks in beds are along bedding contacts of limestone and shale with slickenside surfaces observed along contacts (depositional). Calcite healed fractures running perpendicular to bedding planes. Soft sediment deformation observed. Reacts strongly with HCI.		C2 Core is very intensely fractured and reduced to rubble in places due to drilling process. C2 28.0' - 31.0' 1310-1350. 28.1' - 28.6' Rubble zone, very intensely fractured, all pieces	
				Bottom of Borehole = 35.5'. Piezometer GW-993 installed in borehole. See Monitoring Well Installation Report GW-993 for details.	-	rounded. Iron staining, iron oxide, and manganese oxide observed along surfaces. Calcite precipitate also observed along fracture faces. On 2/27/18 used	
					-	Ingersoll-Rand T4 rig to ream corehole and advance borehole to 35.5' using 5 7/8" hammer bit. Finished drilling at 0818.	
41					-		
43				D 74	_		

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

Monitoring Well Installation Report Site Name and Location: EMP Characterization Project, Oak Rolgs, TN Completion Date: 3/8/8 Coordinates: 26909 50N 38724 90E Borehole Depth (II): Site Elevation Top of Casing (MMSL): 907.7 Dnilling Methods dr 11/1/11/16/26.4, MC Core with water, 5.78" Installad By: Travis Magnar/Tri-State Dnilling Completed Dnilling: 2277.8 Supervised By: Shay Beanlend/Eagon & Associates, Inc. Dnilling Water Used (galis): Well Protector 4' Square Stelle Protector wiLocking Lid 2.4 - 2.6 912.1 - 907.1 Rear 2' LD Schedule 40 PVC 2.2 + -2.6 912.1 - 907.1 Rear 2' LD Schedule 40 PVC 2.2 + -2.6 912.2 - 909.2 Comment Grout Connent Bentonito Grout 0.5 - 1.4.5 909.2 - 905.2 Band Pack Dell'OP #2' Gravel Pack 198.5 - 34.3 899.9 - 975.4 Sand Pack DB' OP #2' Gravel Pack 34.3 - 35.5 875.4 - 874.2 Sand Pack DB' OP #2' Gravel Pack 34.3 - 35.5 875.4 - 874.2 Sand Pack Depth to Water (LTOC): Sof #2 <th>Eago</th> <th>on & A</th> <th>Associa</th> <th>ntes, I</th> <th>nc.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>W</th> <th>ell N GW</th> <th>luml -993</th> <th></th>	Eago	on & A	Associa	ntes, I	nc.										W	ell N GW	luml -993	
Coordinates: 29690.50V 38724.90E Borehole Depth (ft): 35.5 Elevation Top of Casing (tVMSL): 907.7 Dinling Mathods: 414* ID HSA, HQ Core with water. 578* Elevation Cround Surface (tIMSL): 909.7 Dinling Mathods: 414* ID HSA, HQ Core with water. 578* Installed By: Travis Morgan/To-State Drilling Completed Drilling: 227/18 Supervised By: Shar Beanland/Eagon & Associates, Inc. Dinling Water Used (gals):			Ν	Ionit	oring	Wel	l Ins	tallatio	n R	epc	ort					ť		
Elevation Top of Casing (IVMSL): 917.76 Borehole Diameter (ii): 57.8° (0°-35.5') Elevation Ground Surface (ftMSL): 909.7 Drilling Methods: 41.4″ ID FSA. FQ Core with water, 57.8° Supervised By: Shay Beanland/Esgon & Associates. In: Drilling Water Used (gals): Origing Water Used (gals): Component Meterials Depth (LSD) Elevation Well Protector 4' Square Steel Protector wilcoking Lid -24 · 2.6 912.1 · 907.1 Riser 2' ID Schedule 40 PVC -21 · 23.0 9118. 886.8 Surface Seal 3' x 3' Concrete Pad -0.5 · 0.5 9102. 9002.2 Gernent Crout Cememet Bentonite Grout 5.6 · 14.5 · 19.8 889.9 · 875.4 Sorreen 2' ID Schedule 40 PVC, 10·Siot 23.0 · 33.0 866.8 · 876.7 Well Point Blank 2' ID Schedule 40 PVC, 10·Siot 23.0 · 33.0 866.8 · 876.7 Well Point Blank 2' ID Schedule 40 PVC, 10·Siot 23.0 · 33.0 866.8 · 876.7 Well Point Blank 2' ID Schedule 40 PVC, 10·Siot 23.0 · 33.0 866.8 · 876.7 Sorreen 2' ID Schedule 40 PVC, 10·Siot 23.0 · 33.0 866.8 · 876.7 Well Po	Site Narr	ne and Lo	cation: EM	DF Chara	cterization F	Project, O	ak Ridge	TN		Co	mpletion	Date: 3	8/8/18					
Elevation Cround Surface (IVMSL): 909.7 Drilling Mathods: 414* ID HSA, HQ Core with water: 578* harmmet bit. Installed By: Travis Morgav/Tri-State Drilling Completed Drilling: 22718 Supervised By: Shay Beanland/Eagon & Associates, Inc. Drilling Water Used (gals): Well Devised Depth (LSD) Elevation Well Pointed Drilling 22718 Supervised By: Shay Beanland/Eagon & Associates, Inc. Depth (LSD) Elevation Well Pointed Drilling Value (gals): Supervised Bit (LSD) Elevation Well Protector 4* Square Steel Protector withocking Lid -24 - 2.6 912.1 - 907.1 Riser 2* ID Schedule 40 PVC -21 - 23.0 9118.868.8 9102 - 909.2 Gement Grout Cement Benchnite Grout 0.5 - 14.5 909.2 - 889.9 93.0 Sand Pack DSI *GP #2* Gravel Pack 19.8 - 34.3 889.9 - 875.4 857.4 - 874.2 Well Point Blank 2* ID Schedule 40 PVC, 10-Siot 23.0 - 33.0 866.8 - 876.7 91.7 Well Point Blank 2* ID Schedule 40 PVC, 10-Siot 23.0 - 33.0 866.8 - 876.7 91.7 Well Point Blank 2* ID Schedule 40 PVC, 10-Siot </td <td>Coordina</td> <td>ates: 2969</td> <td>90.50N 387</td> <td>724.90E</td> <td></td> <td></td> <td>Во</td> <td>ehole Depth (</td> <td>ft): 35.8</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Coordina	ates: 2969	90.50N 387	724.90E			Во	ehole Depth (ft): 35.8	5								
Installed By: Travis Margan/Tri-State Dnilling Completed Dnilling: 227/18 Supervised By: Shay Beanland/Esgon & Associates, Inc. Dnilling Water Used (gals): Well Destign Elevation Well Point Diacon 4" Square Steel Protector wil.ocking Lid -2.4 - 2.6 912.1 - 907.1 Riser 2" ID Schedule 40 PVC -21 - 23.0 911.8 - 886.8 902 909.2 Surface Seal 3" X " Concrete Pad -0.5 - 0.5 910.2 - 909.2 -0.5 - 0.5 910.2 - 909.2 Gement Grout Comment Bentonite Grout 0.5 - 14.5 908.2 - 808.9 -0.5 - 14.5 908.2 - 808.9 Sand Pack Ds1 "GP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 -0.5 - 3.5 875.4 - 874.2 Well Point Blank 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 -0.5 - 3.5 970.2 - 875.4 Screen 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 -0.5 - 3.5 970.5 - 875.4 Well Point Blank 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 -0.5 - 910.2 - 90.2 -0.5 - 910.2 - 90.2 Streer Streer 2" ID Schedu	Elevatior	n Top of C	asing (ft/Ms	SL): 911.	76		Bo	ehole Diamet	er (in):5	7/8" (0	0'-35.5')							
Installed By: Travis Margan/Tri-State Dnilling Completed Dnilling: 227/18 Supervised By: Shay Beanland/Esgon & Associates, Inc. Dnilling Water Used (gals): Well Destign Elevation Well Point Diacon 4" Square Steel Protector wil.ocking Lid -2.4 - 2.6 912.1 - 907.1 Riser 2" ID Schedule 40 PVC -21 - 23.0 911.8 - 886.8 902 909.2 Surface Seal 3" X " Concrete Pad -0.5 - 0.5 910.2 - 909.2 -0.5 - 0.5 910.2 - 909.2 Gement Grout Comment Bentonite Grout 0.5 - 14.5 908.2 - 808.9 -0.5 - 14.5 908.2 - 808.9 Sand Pack Ds1 "GP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 -0.5 - 3.5 875.4 - 874.2 Well Point Blank 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 -0.5 - 3.5 970.2 - 875.4 Screen 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 -0.5 - 3.5 970.5 - 875.4 Well Point Blank 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 -0.5 - 910.2 - 90.2 -0.5 - 910.2 - 90.2 Streer Streer 2" ID Schedu	Elevatior	Ground	Surface (ft/N	MSL): 90	9.7		Dri	ling Methods:	4 1/4" IL hamme	D HSA	, HQ Cor	e with wa	ater, 5	7/8"				5
Well Design Component Materials Depth (LSD) Elevation Well Protector 4" Square Steel Protector wiLocking Lid 2.4 - 2.6 912.1 - 907.1 Rier 2' ID Schedule 40 PVC -2.1 - 23.0 911.8 - 886.8 Surface Seal 3' x 3' Concrete Pad -0.5 - 0.5 910.2 - 909.2 Cement Grout Cement Bentonite Grout 0.5 - 14.5 909.2 - 895.2 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 14.5 - 19.8 895.2 - 889.9 Sand Pack DSI "GP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 Screen 2" ID Schedule 40 PVC Cito-Slot 23.0 - 33.0 886.8 - 876.7 Well Point Blank 2" ID Sch. 40 PVC Cito Slot 23.0 - 33.0 886.8 - 876.7 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Surge Bock, keitr, mega unger whale pump 5.4 Torticity 89.5 90.5 Development Method: 39.5 15.1 310 7.34 200.0 <td>Installed</td> <td>By: Trav</td> <td>is Morgan/T</td> <td>ri-State D</td> <td>rilling</td> <td></td>	Installed	By: Trav	is Morgan/T	ri-State D	rilling													
Well Design Component Materials Depth (LSD) Elevation Well Protector 4" Square Steel Protector w/Locking Lid 2.4 - 2.6 912.1 - 907.1 Riser 2" ID Schedule 40 PVC -2.1 - 23.0 911.8 - 886.8 Surface Seal 3' x 3' Concrete Pad -0.5 - 0.5 910.2 - 909.2 Cement Grout Cement Bentonite Grout 0.5 - 14.5 909.2 - 895.2 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 14.5 - 19.8 895.2 - 889.9 Sand Pack DSI "GP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 Screen 2" ID Sch.40 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Well Poth (ft,TOC): 5.6 5.3 89.5 Development Method: 5.5 5.3 89.5 Development Method: 5.4 7.2 89.7 7.3 89.5 Development Method: 3.02 3.9.5 1.0 1.0 1.0 1.0 1.0 1.0	Supervis	ed By: Si	hay Beanlan	d/Eagon	& Associate	s, Inc.	Dri	ling Water Us	ed (gals	s):								
Component Materials Depth (LSD) Elevation Weil Protector 4" Square Steel Protector wit.ocking Lid -2.4 - 2.6 912.1 - 907.1 Riser 2" ID Schedule 40 PVC -2.1 - 23.0 911.8 - 886.8 Surface Seal 3" x 3" Concrete Pad -0.5 - 0.5 910.2 - 900.2 Cement Grout Cement Bentonite Grout 0.5 - 14.5 900.2 - 905.2 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 14.5 - 19.8 885.2 - 889.9 Sand Pack DSI "GP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 Screen 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 Weil Point Blank 2" ID Sch 40 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Weil Depth (It.TOC): Set Sector 36.3 7.6 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 95 Option (TTOC): Set Sector 36.3 96.5 95 Sa.7 Set5 </td <td>•</td> <td>,</td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td>-</td> <td>10</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>-2</td> <td></td> <td></td> <td>40</td>	•	,	•	•				-	10	,					-2			40
Weil Protector 4* Square Steel Protector w/Locking Lid -2.4 - 2.6 912.1 - 907.1 Riser 2* ID Schedule 40 PVC -2.1 - 23.0 911.8 - 866.8 Surface Seal 3' x 3' Concrete Pad -0.5 - 0.5 910.2 - 909.2 Cement Grout Cement Bentonite Grout 0.5 - 14.5 909.2 - 895.2 Bentonite Seal Pel Plug 14* Coated Bentonite Pellets 14.5 - 19.8 889.9 - 875.4 Sand Pack DSI "GP #2" Gravel Pack 19.8 - 344.3 889.9 - 875.4 Screen 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 Weil Point Blank 2" ID Sch 40 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Weil Point Blank 2" ID Sch 40 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Weil Depth (ft, TOC): Sectorery Data 90.6 90.6 Javine Method: Surge block, baiter, mag purger whale purge 90.4 90.4 90.4 90.4 3/3/18 1440 54.5 15.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-Ø</td><td></td><td></td><td>10</td></t<>															-Ø			10
Riser 2" D Schedule 40 PVC -2.1 - 23.0 911.8 - 866.8 Surface Seal 3" x 3" Concrete Pad -0.5 - 0.5 910.2 - 909.2 Cement Grout Cement Bentonite Grout 0.5 - 14.5 909.2 - 895.2 Bentonite Seal Pel Plug 1/4" Coated Bentonite Vellets 14.5 - 19.8 895.2 - 889.9 Sand Pack DSI "GP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 Screen 2" D Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 Well Point Blank 2" D Sch. 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Depth f0, TOC): Depth to Water (ft, TOC): 5.3 89.5 Development Method: 39.5 5.3 89.5 Development Method: 33.0 9.5 15.1 310 7.24 80.4 3/3/18 1425 79.5 15.2 326 7.26 141.0 9.4 9.0 120 3/3/18 1430 9.5 15.2 27.27 280.0 100 100 100 100 100 100 0		Com	ponent				Materials			Dept	h (LSD)		Elevati	on				
Surface Seal 3' x 3' Concrete Pad -0.5 - 0.5 910.2 - 909.2 Cement Grout Cement Bentonite Grout 0.5 - 14.5 909.2 - 895.2 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 14.5 - 19.8 995.2 - 889.9 Sand Pack DSI "CP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 Screen 2" ID Schedule 40 PVC. 10-Slot 23.0 - 33.0 886.8 - 876.7 Well Point Blank 2" ID Sch.4 0 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Sand Pack Bottom DSI "GP #2" Gravel Pack 36.5 Degrade method: Development Method: Sarge purger whate purge 6.5 30.6 - 4.4 9.5 Sarge buck, baller, mage purger whate purge Sond and the purge (GLU) (NUU) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <t< td=""><td>Well P</td><td>rotector</td><td></td><td></td><td>4" Squa</td><td>re Steel</td><td>Protector</td><td>w/Locking Lic</td><td>I</td><td>-2.4</td><td>4 - 2.6</td><td>91</td><td>2.1 - 9</td><td>07.1</td><td></td><td></td><td></td><td></td></t<>	Well P	rotector			4" Squa	re Steel	Protector	w/Locking Lic	I	-2.4	4 - 2.6	91	2.1 - 9	07.1				
Cement Grout Cement Bentonite Grout 0.5 - 14.5 909.2 - 895.2 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 14.5 - 19.8 895.2 - 889.9 Sand Pack DSI "GP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 Screen 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Well Development Well Development Well Noture (ft, TOC): 36.37 Depth to Water (ft, TOC): 5.3 Volume Purged (gals): 36.37 Depth to Water (ft, TOC): 5.3 Volume Purged (gals): 36.37 Depth (ft, TOC): 5.4 30.4 90.4 373/18 1425 78.5 15.2 30.8 7.29 80.4 373/18 1430 9.5 15.1 297 7.30 165.0 373/18 1430 9.5 15.1 297 <	Riser				2" ID Sc	hedule 4	10 PVC			-2.1	- 23.0	91	1.8 - 8	86.8				15
Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 14.5 - 19.8 895.2 - 889.9 Sand Pack DSI "GP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 Screen 2" ID Schedule 40 PVC, 10-Stot 23.0 - 33.0 886.8 - 876.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Vell Development Well Notice (ft,TOC): 5.45 Sand Pack Bottom Development Method: Surge block, baller, mega purger whale purger Section Sand Pack Sand Pack Method: Surge block, baller, mega purger whale purger Sectific Conductivity (RTUC): 5.45 Sectific Conductivity (RTUC) Sectific Conductivity (RTUC) Sectific Conductivity (RSU) Volume Purged (gals): Sectific Conductivity (RSU) Velocy Data Sectific Conductivity (RSU) Velocy D	Surfac	e Seal			3' x 3' C	oncrete	Pad			-0.	5 - 0.5	91	0.2 - 9	09.2				15
Sand Pack DSI "GP #2" Gravel Pack 19.8 - 34.3 889.9 - 875.4 Screen 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Well Development Well Depth (ft,TOC): Depth to Water (ft,TOC): Well Volume (gals): 5.3 89.5 Development Method: Surge block, baller, maga purger whale pump Date Time (Volume (gals): 5.3 89.5 Date Time (Volume (gals): 5.3 89.5 Gravel Pack 33/18 1340 24.5 15.1 310 7.34 >1000 33/18 1340 24.5 15.2 292 7.27 2600 20 0 40 80 120 33/18 1430 29.5 15.2	Cemer	nt Grout			Cement	Bentoni	te Grout			0.5	- 14.5	90	9.2 - 8	95.2				
Screen 2" ID Schedule 40 PVC, 10-Slot 23.0 - 33.0 886.8 - 876.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Well Development Well Development Well Depth (ft,TOC): Depth to Water (ft,TOC): S.45 Volume (gals): 89.5 Sectific (gals) 36.37 Depth to Water (ft,TOC): Specific (gals): 5.3 89.5 Development Method: Surge block, baller, maga purger whale pump Conductivity (gals) 3/3/18 1425 79.5 15.2 30.8 7.29 80.4 3/3/18 1330 9.5 15.1 310 7.34 >1000 Image purger whate purger 3/3/18 1340 24.5 14.9 292 7.27 269.0 20 Image purger 1mm (minutes) 3/3/18 1340 54.5 15.2 295 7.26 141.0 20 Image purger 1mm (minutes) 1mm (minutes)	Bentor	nite Seal			Pel Plug	g 1/4" Co	ated Ben	tonite Pellets		14.5	5 - 19.8	89	95.2 - 8	89.9				
Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 33.0 - 34.3 876.7 - 875.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Well Dept (ft, TOC): Depth to Water (ft, TOC): Depth to Water (ft, TOC): Sa Volume (gals): Volume Purged (gals): 89.5 Development Method: Surge block, belier, mega purger whale pump Recovery Data 100 <	Sand F	Pack			DSI "GF	9 #2" Gra	avel Pack			19.8	3 - 34.3	88	89.9 - 8	75.4				
Sand Pack Bottom DSI "GP #2" Gravel Pack 34.3 - 35.5 875.4 - 874.2 Well Development Well Depth (ft, TOC): Depth to Water (ft, TOC): Well Volume (gals): Yolume Purged (gals): 36.37 5.45 5.3 89.5 Development Method: Surge block, bailer, mega purger whale pump PH (mmoved) Turbidity (NTU) (NTU) Recovery Data 3/3/18 1330 9.5 15.1 310 7.34 >1000 90	Screen	ı			2" ID Sc	hedule 4	40 PVC, ²	0-Slot		23.0) - 33.0	88	86.8 - 8	76.7				20
Well Depth (ft, TOC): Depth to Water (ft, TOC): Well Volume (gals): Volume Purged (gals): 36.37 5.45 5.3 89.5 Development Method: Surge block, baller, meg purger whale pump Recovery Data Jaite Time Cumulative (gals) 15.1 310 7.34 >1000 3/3/18 1425 79.5 15.2 308 7.29 80.4 3/3/18 1330 9.5 15.1 310 7.34 >1000 3/3/18 1340 24.5 14.9 292 7.27 269.0 3/3/18 1350 39.5 15.1 297 7.30 165.0 3/3/18 1400 54.5 15.2 292 7.23 48.4 Sampling Equipment: Sampling Equipment: Time (minutes) 120 Time (minutes)	Well P	oint Blank	ζ.		2" ID Sc	:h. 40 P∖	/C Cap &	Riser Section		33.0) - 34.3	87	76.7 - 8	75.4				
Well Depth (ft, TOC): Depth to Water (ft, TOC): Well Volume (gals): Volume Purged (gals): 36.37 5.45 5.3 89.5 Development Method: Surge block, baller, mega purger whale pump Removed (gals) Recovery Data $3/3/18$ 1425 79.5 15.2 308 7.29 80.4 $3/3/18$ 1330 9.5 15.1 310 7.34 >1000 $3/3/18$ 1340 24.5 14.9 292 7.27 269.0 $3/3/18$ 1350 39.5 15.1 297 7.30 165.0 $3/3/18$ 1435 89.5 15.2 292 7.23 48.4 Sampling Equipment: Sampling Equipment: 5.2 292 7.23 48.4	Sand F	Pack Botto	om		DSI "GF	9 #2" Gra	avel Pack			34.3	3 - 35.5	87	75.4 - 8	74.2				
Well Depth (ft, TOC): Depth to Water (ft, TOC): Well Volume (gals): Volume Purged (gals): 36.37 5.45 5.3 89.5 Development Method: Surge block, baller, mega purger whale pump Removed (gals) Recovery Data $3/3/18$ 1425 79.5 15.2 308 7.29 80.4 $3/3/18$ 1330 9.5 15.1 310 7.34 >1000 $3/3/18$ 1340 24.5 14.9 292 7.27 269.0 $3/3/18$ 1350 39.5 15.1 297 7.30 165.0 $3/3/18$ 1435 89.5 15.2 292 7.23 48.4 Sampling Equipment: Sampling Equipment: 5.2 292 7.23 48.4																		
Well Depth (ft, TOC): Depth to Water (ft, TOC): Well Volume (gals): Volume Purged (gals): 36.37 5.45 5.3 89.5 Development Method: Surge block, baller, mega purger whale pump Removed (gals) Recovery Data $3/3/18$ 1425 79.5 15.2 308 7.29 80.4 $3/3/18$ 1330 9.5 15.1 310 7.34 >1000 $3/3/18$ 1340 24.5 14.9 292 7.27 269.0 $3/3/18$ 1350 39.5 15.1 297 7.30 165.0 $3/3/18$ 1435 89.5 15.2 292 7.23 48.4 Sampling Equipment: Sampling Equipment: 5.2 292 7.23 48.4																		25
36.37 5.45 5.3 89.5 Development Method: Surge block, bailer, mega purger whale pump Specific Conductivity (gals) Specific Conductivity (gals) PH (S.U.) Turbidity (NTU) 3/3/18 1425 79.5 15.2 308 7.29 80.4 3/3/18 1425 79.5 15.1 310 7.34 >1000 3/3/18 1340 24.5 14.9 292 7.27 269.0 3/3/18 1350 39.5 15.1 297 7.30 165.0 3/3/18 1350 39.5 15.1 297 7.30 165.0 3/3/18 1400 54.5 15.2 292 7.23 48.4 Sampling Equipment: Sampling Equipment: Sampling Equipment: Sampling Equipment:																		
Surge block, bailer, mega purger whale pump Date Time Cumulative (gals) Temp (°C) Specific Conductivity (µmhos/cm) pH (S.U.) Turbidity (NTU) Recovery Data 3/3/18 1425 79.5 15.2 308 7.29 80.4 100	36.3	7				,TOC):	We		s):			-	(gals):					-
Date Time Volume Removed (gals) Temp (°C) Conductivity (µmhos/cm) pH (S.U.) Turbidity (NTU) Recovery Data 3/3/18 1425 79.5 15.2 308 7.29 80.4 3/3/18 1330 9.5 15.1 310 7.34 >1000 3/3/18 1340 24.5 14.9 292 7.27 269.0 3/3/18 1350 39.5 15.1 297 7.30 165.0 3/3/18 1400 54.5 15.2 295 7.26 141.0 3/3/18 1435 89.5 15.2 292 7.23 48.4 Sampling Equipment: Up 7.29 48.4 Up	Surge b	lock, bailer,		whale pur														30
3/3/18 1330 9.5 15.1 310 7.34 >1000 3/3/18 1340 24.5 14.9 292 7.27 269.0 3/3/18 1350 39.5 15.1 297 7.30 165.0 3/3/18 1400 54.5 15.2 295 7.26 141.0 3/3/18 1435 89.5 15.2 292 7.23 48.4 Time (minutes)	Date	Time	Volume Removed		Conductivity				very	Data								
3/3/18 1400 54.5 15.2 295 7.26 141.0 3/3/18 1435 89.5 15.2 292 7.23 48.4	3/3/18	1425	79.5	15.2	308	7.29	80.4											
3/3/18 1400 54.5 15.2 295 7.26 141.0 3/3/18 1435 89.5 15.2 292 7.23 48.4	3/3/18	1330	9.5	15.1	310	7.34	>1000	(%) ⁸⁰ ≿ 60										35
3/3/18 1400 54.5 15.2 295 7.26 141.0 3/3/18 1435 89.5 15.2 292 7.23 48.4	3/3/18	1340	24.5	14.9	292	7.27	269.0											
3/3/18 1400 54.5 15.2 295 7.26 141.0 0 40 80 120 3/3/18 1435 89.5 15.2 292 7.23 48.4 Time (minutes) Sampling Equipment:	3/3/18	1350	39.5	15.1	297	7.30	165.0	O H 20	/					_				
3/3/18 1435 89.5 15.2 292 7.23 48.4 Sampling Equipment:	3/3/18	1400	54.5	15.2	295	7.26	141.0)	40	0	80		120				40
	3/3/18	1435	89.5	15.2	292	7.23	48.4	_		Ti	me (minu	utes)						
Comments:	Sampling	g Equipme	ent:		1		1	1							1			
	Commer	nts:													-			
Grout mixing and placement information provided by Tri-State Drilling. Screen slot interval 23.2 - 32.9 bgs.																		

				BC	REHOLE	LOG					
Site Na and Loo		E	MDF Ch C	naracterization Project Dak Ridge, TN		: SA, HQ3 Core with <u>icone bit with air/w</u>		ulation	10" air hammer		^{mber:} - 994
Drilling	Firm: 7	ri-State D	rilling		DATE	TIME	DEP DRILLE	TH D (ft)	WATER LEVEL (ft)	Gw	-774
Driller /	Rig: SI	hannon Si	now/CME	-550				. ,		Page	1 of 3
Logged	by: Da	ivid J. Sug	gar		ST = Shelby Tub	Sampling N		<u> </u>	plit Spoon		1
Coordin	ates: 2	9644.99	I 38051.	04E	WS = Waxed Sar SP = Sand Pump	nple			ontinuous Sampler	Start <i>Time</i>	Finish <i>Time</i>
Surface	Elevati	on: 916.7	7 ft/MSL		GP or DP = Direc CT = Cuttings				lot Sampled	0857	1253
Surface	Conditi	ions / Wea	ather: <i>Fla</i>	at gravel pad adjacent to haul road /	64°F, Light rain					Date 2/16/18	Date 2/19/18
Remark	s:										
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTI	ON		Graphic Log	Rema	arks	nscs
_	NS)		Gravel drilling pad.					3 1/4" ID HSA, co OD, 2' drive split		
1—	SS-1	0.7'	2	Strong brown (7.5YR 5/6 - 5/8 an Trace medium to coarse sand. Ti	d 4/6) CLAYEY SI	LT to SILTY CLA	AY.		automatic 140 lb Ran center plug v augering.	hammer.	
2—	- •	70%	3	to subangular. Unsorted, massive toughness and dry strength. No c	e to mottled appea	arance. High pla	sticity,		No reaction with I roots.	HCI. Trace	
-	00.0	1.1'	3	5	,				SS-2 Lab results: Content (MC) 22.		
3—	SS-2	55%	6						1.0' - 1.3' Appear probable soil fill a	s disturbed,	
4 —			6				_		with adjacent roa On 2/18 used Ing	d.	
-		1.6'	3 5	Below 4.3' mottled appearance window probably reduction associated wit			as, –		T-4 rotary rig to re to 35.0' using 10"	eam boreho	le
5—	SS-3	80%	11	Below 5.1' slightly higher sand co	ntent, trace fine gi	avel, subangular	r to		Set permanent 6' casing and seale	' conductor	
6—			16	angular. Chert fragments. No roo Below 6.0' color changes to brow					cement-bentonite SS-3 Lab results:	grout.	
-		1.4'	5 9	consistent silty clay composition.		(1011(3/3 - 3/0)			No reaction with I		
7—	SS-4	70%	16	1/4" Diameter root at 8.1'.					SS-4 Lab results: 0.6% Gravel; 9.4		
8—			18	Change at 8.2'.			_		Fines.	// Sanu, 90	/0
-		2.0'	10 16	Brown/grayish brown to dark gray completely weathered SHALE (S/	ish brown (10YR : APROLITE). Thin	5/2, 5/3 - 4/2) hig ly bedded,	hly to		No reaction with ML-CL classificat		ly ML
9—	SS-5	100%	19	approximate 45° bedding angle. brown iron oxide coatings on fract	Highly fractured w	ith reddish to vel	llowish — · ed and — ·		fractured.	0,1	
 10 —			29	is moldable with added water. Lo dilatancy. Soft rock classification	w to medium plas	ticity. Low tough	iness,		Below 10.0' black	manganes	e
-		0.01	13 15	completely weathered. Slightly m		5,			oxide precipitate faces.	on fracture	
11 —	SS-6	2.0' 100%	12						SS-6 Lab results:	MC 39.2%).
- 12—			20						10.9' - 11.4' Yello light yellowish bro		to
-		0.01	26 29	Below 12.0' color is highly variable the color in the grayish brown/dar					6/4 - 6/6) silty cla seam, no rock str	y to clay	
13—	SS-7	2.0' 100%	39	yellowish brown range (10YR 5/2 gray/pale brown (10YR 6/2 - 6/3).	- 4/4 and 4/2 - 4/4				completely weath limestone (?). Mo	ered	
- 14			33	$\frac{1}{2}$			· - -		()		
			9	14.6' - 14.8' Yellowish brown (10)	(R 6/4) silty clay to	clay seam No	- 		Below 12.0' fractu yellowish/reddish	brown iron	
15 —	SS-8	1.7' 85%	23 15	structure. Completely weathered					oxide precipitates	6.	
- 16—			16						SS-8 Lab results:		
			19						SS-10 Lab result	s: MC 16.6	%.
17 —	SS-9	2.0' 100%	25 39	16.7' - 16.8' Yellowish brown to bl Completely weathered limestone		silty clay sear	m		Bedding angle ~4	l5°.	
			27		. ,		+ - -				
18			9	Polow 20.0' primorily light because	h arow hole harm	n to arouich			Iron ovide	ion to he	
19 <i>—</i>	SS-10	1.4' 70%	28 51	Below 20.0' primarily light brownis brown/brown (10YR 6/2 - 6/3 and		n to grayish	- -		Iron oxide continu associated with fr bedding breaks.		1
			29		B-77		-				

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG

Boring Number GW-994

Remar	ks:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs
			27	Light brownish gray/pale brown to grayish brown/brown (10YR 6/2 - 6/3 and 5/2 - 5/3) highly to completely weathered SHALE (SAPROLITE).		No reaction with HCI. ~45°	ML
21-	SS-11	2.0'	32	(Cont'd.)	1	Bedding angle.	
21-	33-11	100%	36]==1	Continues to be damp to	
22			37		부근네	slightly moist.	
	-		6		+=-1		
23-	SS-12	1.3' 65%	9	22.8' - ~23.3' Dark grayish brown/olive brown (2.5Y 4/2 - 4/3) sandy zone.	부근테	SS-12: Water on bottom 1.5'	
-	-	05%	3	Structure is not apparent. Possible weathered glauconitic zone or sandy siltstone. Wet. First wet zone observed. Soft zone.	+=-1	of split spoon sampler. Sample is very moist to wet.	
24 —			5 14			Below 24.0' split spoon	
-	-	4.51	24	24.8' - 25.0' Reddish orange iron oxide, pronounced color, iron oxide	-[]	sampler was wet/muddy on	
25 —	SS-13	1.5' 75%	50	precipitate/oxidation on fractures.		retrieval.	
-	-		100	Below 25.0' becomes layered with color variation greenish gray to dark	1		
26 —			49	greenish gray (N 6/ - N 4/) grayish brown to light olive brown (2.5Y 5/2 - 5/4) and very dark brown to very dark grayish brown (10YR 3/2 - 2/2).	1	SS-12 Lab results: MC 18.7%.	
-		1.6'	49	, , ,	1	SS-14 Lab results: MC 13.6%;	
27 —	SS-14	80%	46	Underlying contact is transitional and subjective. May be as high as 25.0'.	7	9.2% Gravel; 56.9% Sand; 33.9% Fines.	
			48	Change at 28.0'.	1		
28-			19	Interbedded dark greenish gray (N 5/), grayish brown to light olive brown (2.5Y 5/2 - 5/4) and very dark brown to very dark grayish brown (10YR 3/2		Limestone seam at contact (strong reaction with HCI).	
29	SS-15	1.4' 70%	52	 - 2/2) SHALE and LIMESTONE. Some limestone seams may classify as 		, , ,	
- 20			100	calcareous siltstone. Thinly bedded. Soft to medium hard. Apparent bedding angle around 45° (disturbed from sampling process). Highly		SS-15 Lab results: MC 13.3%.	
30 —	NS			weathered and fractured. Carbonate not leached from interval.		28.3' - 28.6 Wet zone in weathered shale. Generally	
-	SS-16	0.3'/100%	100/2	Limestone content is about 30%.		sample looks moist to very slightly moist.	
31—				SS-16 Split spoon drove on limestone seam. Sample is broken from the sampling process.		signuy moist.	
-	NS					SS-17 Lab results: MC 15.9%.	
32			17				
-	SS-17	1.5'	83	SS-18 Recovery is mostly broken limestone with iron oxide possibly	- <u>F</u>	1121 Finish split-spoon	
33 —	1	100%	100/4	manganese oxide (dark brownish black).	╶╪╤╡	sampling. Bottom of augers at 34.0'. 1436 Start HQ3 core	
-	NS			C-1 Core run from 34.0' - 34.6', overdrilled SS-18 interval. 0.6'		water circulation at 34.0'	
34 —	SS-18	0.6'	73	Recovered, very broken sample, mostly limestone.	╞╧╡	(cored over SS-18 interval C-1).	
25			100/1	Dark gray to very dark gray (N 4/ - 3/) SHALE and gray to dark gray (N 6/ -		Bedding is generally deformed,	
35 —		1.3'		N 4/) LIMESTONE. Thinly bedded, beds are generally less than 0.2'. Core is highly broken, most correspond with bedding planes and are most]	wavey. Shale does not react with HCI. Limestone has a	
36 —	C-2	62%	0%	likely mechanically induced. Moderate to intensely fractured. Moderate to		strong reaction with HCI.	
				strong field strength. Fresh to slightly decomposed. Trace healed calcite filled fractures oriented perpendicular to bedding.			
37 —	1			· · · · · · · · · · · · · · · · · · ·	17	SS-18 Lab results: MC 14.6%. C-2 34.6' - 36.7' 1454-1510.	
-	-			35.5' - 35.65' Gray to dark gray Interclastic Limestone seam.		C-3 36.7' - 41.7' 1514-1545. 37.6' - 38.1' Fracture, oriented	
38 —	4			55.5 - 55.05 Gray to dark gray interclastic Lintestone seam.		40° to bedding angle. Face	
-	-			37.4' - 38.1' Gray to dark gray (N 6/ - N 4/) Interclastic Limestone seam.		has iron oxide weathering (yellow/reddish brown).	
39 —	C-3	5.0'	0%	Clasts are elliptical oriented along bedding, up to 1" along long axis,	+==1	Bedding angle ~45° - 50°.	
-		100%	0,0	generally less than 1/2" on short axis. Strong reaction with HCl. Hard. Matrix is unweathered.	二		
40 —	-				╞╤╡	41.8' - 42.6' Sample is highly	
-	1				岸目	broken, trace iron oxide on fracture faces. Too disturbed	
41—	1				╞╧═╛	to determine orientation.	
-					브	At 42.8' fracture oriented perpendicular to bedding.	
42-	1			42.2' - 43.2' Thinly interbedded limestone and shale, mostly limestone,	19	Face is oxidized with iron oxide	
40]			\sim 60° bedding angle, but orientation may be off.		precipitates. 44.9' - 45.4' Bedding breaks	
43-	C-4	4.5'	9%		11	and fracture oriented perpendicular to bedding	
44 —		90%		44.5' - 44.7' Gray to dark gray limestone seam. Trace stylolites. Calcite filled fractures up to 2 mm width oriented perpendicular to bedding angle.		angle, faces are oxidized with	
-++	1			med nastares up to 2 mm water oriented perpendicular to bedding angle.		iron oxide precipitate.	
						C-4 41.7' - 46.7' 1553-1610.	

Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

BOREHOLE LOG

Boring Number GW-994

Remark	ks:						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	NSCS
46-	C-4	4.5' 90%	9%	Interbedded dark gray to very dark gray (N 4/ - 3/) SHALE and gray to dark gray (N 6/ - N 4/) LIMESTONE. (Cont'd.) 44.8' - 46.0' Shale bed, unweathered/fresh. Trace calcite filled fractures oriented perpendicular to bedding.		Limestone reacts strong with HCI. Shale does not react. 45° Bedding angle.	
47 —	-			Delaw 46.71 thinks hadded beeken alang hadding planes. No			
- 48	C-5	2.3' 70%	0%	Below 46.7' thinly bedded, broken along bedding planes. No weathering/iron oxide observed. Limestone beds, generally less than 0.1' with calcite filled fractures oriented perpendicular to bedding.		C-5 46.7' - 50.0' 1624-1656.	
49—							
50 —							
- 51 —	-						
- 52—	-						
- 53	NS						
- 54	-						
- 55 —	-					F:	
- 56	-			Bottom of Borehole = 55.0'. Piezometer GW-994 installed in borehole. See Monitoring Well Installation Report GW-994 for details.	_	Finish drilling at 1656, 2/16/18. WL = 10.22 from GS at 1700 on 2/16/18. 2/17/18 WL = 6.25' from GS at	
- 57 —	-				_	0830. On 2/19 used T3W rotary rig to ream corehole and advance	
- 58 —	-				_	borehole to 55.0' using 5 7/8" tricone bit with air and water circulation.	
- 59 —	-				_	Finished drilling at 1253.	
- 60 —	-				_		
61 —	-				_		
62—	-				_		
63 —					_		
64							
65 —	-				_		
66—							
67 —							
68 —							
69—	-						

Monitoring Well Usstallation Reject Var Reject N Completion Date: 3/8/18 Site Name and Location: EMDF Characterization Project Oak Reige: TV Completion Date: 3/8/18 Completion Date: 3/8/18 Borehole Depth (1): 56.0 Elevation Ground Sufface (MMSL): 918.0 Derehole Depth (1): 56.0 Sign Profess Profess Conceleration Region: TV PRA PROJ CORE HIT Network Conceleration: Profess Profess Core Region: TV PRA PROJ CORE HIT Network Conceleration: Profess Profess Core Region: TV PRA PROJ CORE HIT Network Conceleration: Profess Core Region: TV PRA PROJ CORE HIT Network Core Region: TV PRA PROJ CORE HIT Network Core Region: TV PRA PROJ CORE HIT Network Core Region: TV PRA PROJ PROJ Core HIT Network Core Region: TV PRA PROJ CORE HIT Network Core Region: TV PRA PROJ PROJ Core HIT Network Core Region: TV PRA PROJ PROJ PROJ Core HIT Network Core Region: TV PRA PROJ PROJ PROJ Core HIT Network Core Region: TV PRA PROJ PROJ PROJ PROJ PROJ PROJ PROJ PROJ	Eago	n & /	Associa	tes, I	nc.						Well Nu GW-9	
Coordinates: 29644-99N 38051.04E Borehole Depth (ft): 55.0 Elevation Top of Casing (ft/MSL): 918.89 Borehole Diameter (in):10" (0".35.07, 5.78" (35.0°.55) 3177 10):153.01, 5.78" (150.0° Elevation Ground Surface (ft/MSL): 918.7 Defining Methods: Calculation, 10" all hermiter' bit. 5.76" tricone bit water of hermiter' bit. 5.76 Well Protector 4" Square Steel Protector wiLocking Lid 2.5 - 2.5 919.2 - 914.2 Well Protector 4" Square Steel Protector water beau 0.5 - 3.2 917.2 - 984.7 Surface Seal<			Ν	Ionit	oring	Wel	l Insta	allation R	eport		F	
Elevation Top of Casing (MIMSL): 918.89 Borehole Diameter (in) 10° (0°.35 0), 57.8° (35.0°-55) 21/4*10 H5A, H03 Core with water Drilling Methods: circulation, 10° in nammer bit, 57.8° throore by main balavater. Installed By: Fred Reynolds/Tri-State Drilling Completed Drilling: 27978 Supervised By: Shay Beanland/Eagon & Associates, Inc: Drilling Water Used (gals): Well Destign Component Materials Depth (LSD) Elevation Well Protector 4° Square Steel Protector wiLocking Lid -2.5 - 2.5 919.2 - 914.2 Riser 2° 10 Schedule 40 -2.2 - 42.0 918.9 - 874.7 Surface Seal 3° x 3° Concrete Pad -0.6 - 0.5 917.2 - 916.2 Conductor Casing 6° 10 Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Surface Seal 3' x 3° Concrete Pad 2.0 S77.7 - 863.4 Bentonite Seal Pel Plug 14" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7 Sand Pack DS1 'GP #2' Gravel Pack 53.3 - 54.6 863.4 - 862.1 Soreen 2' 10 Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 663.4 Sand Pack Bottom	Site Nam	e and Lo	cation: EML	OF Chara	cterization F	Project, O	ak Ridge, T	N	Completion	Date: 3/8/18		
Bit Within Ground Surface (It/MSL): 916.7 Drilling Methods: criatation. 10 ² intri mammer bit, 576 ⁴ tricore bit with advisater. Installed By: Fred Reynolds/Tri-State Drilling Completed Drilling: 21918 Supervised By: Shay Beanland/Eagon & Associates. Inc. Drilling Water Used (gals): Well Destign Depth (LSD) Elevation Well Protector 4" Square Steel Protector w/Locking Lid -2.5 - 2.5 919.2 - 914.2 Riser 2' ID Schedule 40 -2.2 - 42.0 918.9 - 874.7 Surface Seal 3' X 3' Concrete Pad -0.5 - 0.5 917.2 - 916.2 Component Cernent Benonite Foru 0.5 - 0.3 917.1 - 881.7 Surface Seal 3' X 3' Concrete Pad -0.5 - 3.3 879.7 - 863.4 Straface Seal Dis 1''OP #2'' Gravel Pack 33.3 - 37.0 884.4 - 879.7 Straface Seal Dis 1''OP #2'' Gravel Pack 53.3 - 874.7 863.4 Screen 2' ID Schedule 40, ID-Slot 42.0 - 52.0 874.7 - 863.4 Screen 2' ID Schedule 40, ID-Slot 42.0 - 52.0 874.7 - 863.4 Sand Pack Dis 1''OP #2'' Gravel Pack 53.3 - 874.6 863.4 - 862.1	Coordinat	tes: 2964	44.99N 380	51.04E			Boreh	ole Depth (ft): 55.0	0			
Elevation Ground Surface (ft/MSL): 9/6.7 Drilling Methods: circulation, 10° air hammer bit, 5 7/8 ⁴ tricone bit with air/water. nstalled By: Fred Reynolds/Trin-State Drilling Completed Dnilling: 2/19/18 Supervised By: Shay Beanland/Eagon & Associates, Inc. Drilling Water Used (gals): WEIL Destign Supervised By: Shay Beanland/Eagon & Associates, Inc. Weil Destign Weil Dotestor w/Locking Lid Supervised By: Shay Beanland/Eagon & Associates, Inc. Weil Destign Weil Dotestor w/Locking Lid Supervised By: Shay Beanland/Eagon & Associates, Inc. Weil Destign Weil Dotestor w/Locking Lid Strate Brointe Convolute 40 Strate Brointe Convolute 40 Strate Brointe Grout Strate Brointe Grout Ground Earonite Grout Strate Brointe Grout Strate Brointe Grout Strate Brointe Grout Ground Earonite Grout Strate Brointe Grout Strate Brointe Grout Strate Brointe Seal <td>Elevation</td> <td>Top of C</td> <td>asing (ft/MS</td> <td>SL): 918.</td> <td>89</td> <td></td> <td>Boreh</td> <td>ole Diameter (in):1</td> <td></td> <td></td>	Elevation	Top of C	asing (ft/MS	SL): 918.	89		Boreh	ole Diameter (in):1				
Installed By: Fried Reynolds/Tri-State Dnilling Completed Dnilling: 2/19/18 Supervised By: Shay Beanland/Eagon & Associates, Inc. Dnilling Water Used (gals): Well Destign Depth (LSD) Elevation Well Protector 4" Square Steel Protector wit Ocking Lid -2.5 - 2.5 919.2 - 914.2 Riser 2" ID Schedule 40 -0.5 - 0.5 919.2 - 914.2 Surface Seal 3" x 3" Concrete Pad -0.5 - 0.5 917.2 - 916.2 Conductor Casing 6" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Conductor Casing 6" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Conductor Casing 0" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Sand Pack DSI 'GP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 874.7 - 863.4 Sand Pack DSI 'GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Nettral Fill Nettral Fill Nettral Fill Sector 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottor	levation Ground Surface (ft/MSL): 916.7											1
Well Design Component Materials Depth (LSD) Elevation Well Protector 4" Square Steel Protector wLocking Lid -2.5 - 2.5 919.2 - 914.2 Riser 2" ID Schedule 40 -2.2 - 42.0 918.9 - 874.7 Surface Seal 3" x 3" Concrete Pad -0.5 - 0.5 917.2 - 916.2 Conductor Casing 6" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Cement Grout Cernent Bentonite Grout 0.5 - 32.3 916.2 - 884.4 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7 Sand Pack DSI "SP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 864.7 - 864.7 Well Point Blank 2" ID Schedule 40, 10-Slot 42.0 - 52.0 864.7 - 864.7 Natural Fill Natural Fill Sal - 56.0 862.1 - 861.7 Natural Fill Natural Fill Sal - 56.0 862.1 - 861.7 Vell Depth (ft,TOC): 6.9 7.9 86.0 Development Method: 53.3 is 54.6	nstalled By: Fred Reynolds/Tri-State Drilling											
Well Design Component Materials Depth (LSD) Elevation Well Protector 4" Square Steel Protector wLocking Lid -2.5 - 2.5 919.2 - 914.2 Riser 2" D Schedule 40 -2.2 - 42.0 918.9 - 874.7 Surface Seal 3' x 3' Concrete Pad -0.5 - 0.5 917.2 - 916.2 Conductor Casing 6" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Cement Bentonite Grout 0.5 - 32.3 916.2 - 884.4 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7 Sand Pack DSI'GP #2" Gravel Pack 37.0 - 53.3 864.7 - 863.4 Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 864.7 - 864.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 864.7 Sand Pack DSI'GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natura Fill Natura Fill Natura Fill State - 55.0 862.1 - 861.7 Well Point Mithod: 6.9 7.9 86.0 929 929 92.6 <td< td=""><td>Supervise</td><td>ed By: S</td><td>hay Beanlan</td><td>d/Eagon</td><td>& Associate</td><td>s, Inc.</td><td>Drillin</td><td>g Water Used (gals</td><td>s):</td><td></td><td></td><td></td></td<>	Supervise	ed By: S	hay Beanlan	d/Eagon	& Associate	s, Inc.	Drillin	g Water Used (gals	s):			
Component Materials Depth (LSD) Elevation Well Protector 4" Square Steel Protector w/Locking Lid -2.5 - 2.5 919.2 - 914.2 Riser 2" ID Schedule 40 -2.2 - 42.0 918.9 - 874.7 Surface Seal 3" x 3" Concrete Pad -0.5 - 0.5 917.2 - 916.2 Conductor Casing 6" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Cernent Grout Cernent Bentonite Grout 0.5 - 32.3 916.2 - 884.4 Bentonite Seal Pel Plug 14" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7 Sand Pack DSI "GP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill Screen 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill Screen 5.9 Volume Purged (gals): 55.54 Depth tor	•	-	•	•					,			
Well Protector 4" Square Steel Protector w/Locking Lid -2.5 - 2.5 919.2 - 914.2 Riser 2" ID Schedule 40 -2.2 - 42.0 918.9 - 874.7 Surface Seal 3" x 3" Concrete Pad -0.5 - 0.5 917.2 - 916.2 Conductor Casing 6" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Cement Grout Cement Bentonite Grout 0.5 - 32.3 916.2 - 884.4 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7 Sand Pack DSI "GP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill 54.6 - 55.0 862.1 - 861.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill Secter, Tornado pump 7.9 86.0 Solder, Strondo pump 100 10.1 15.5 315.9 85.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>yıı</u></td><td></td><td></td><td></td><td> 2(</td></t<>								<u>yıı</u>				2(
Riser 2" ID Schedule 40 2.2 - 42.0 918.9 - 874.7 Surface Seal 3" x 3" Concrete Pad -0.5 - 0.5 917.2 - 916.2 Conductor Casing 6" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Cement Grout Cement Bentonite Grout 0.5 - 32.3 916.2 - 884.4 Bentonite Seal Pel Plug 14" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7 Sand Pack DSI "GP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 874.7 - 884.7 Well Point Blank 2" ID Schedule 40, 10-Slot 42.0 - 52.0 874.7 - 883.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill 54.6 - 55.0 862.1 - 861.7 Well Development Well Volume (gals): 7.9 Societti (f,TOC): Depth to Water (f,TOC): 6.9 7.9 86.0 Societti (gals) 6.9 Societti (gals) 6.9 Societti (gals) 6.9 Societti (gals) 6.9 7.		Com	ponent				Materials		Depth (LSD)	Elevation		
Surface Seal 3' x 3' Concrete Pad -0.5 - 0.5 917.2 - 916.2 Conductor Casing 6" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Cement Grout Cement Bentonite Grout 0.5 - 32.3 916.2 - 884.4 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7 Sand Pack DSI "GP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 874.7 - 864.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill Natural Fill 54.6 - 55.0 862.1 - 861.7 Well Development 7.9 Volume Purged (gals): 7.9 55.54 Depth to Water (ft,TOC): Peth to Water (ft,TOC): Yolume Purged (gals): 86.0 31/18 1107 40.0 15.5 317.0 8.87 3.0 31/18 1137 76.0 15.6 312.5 8.73 1.9 31/18 1144 81.0	Well Pr	otector			4" Squa	re Steel	Protector w	Locking Lid	-2.5 - 2.5	919.2 - 914.2		
Conductor Casing 6" ID Sch. 40 PVC, Flush Threaded -0.4 - 35.0 917.1 - 881.7 Cement Grout 0.5 - 32.3 916.2 - 884.4 917.1 - 881.7 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7 Sand Pack DSI "GP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 874.7 - 864.7 Well Point Blank 2" ID Schedule 40, 10-Slot 42.0 - 55.0 862.1 - 861.7 Well Point Blank 2" ID Sch 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill St.6 - 55.0 862.1 - 861.7 Well Depth (ft, TOC): Dept to Water (ft, TOC): Well Volume (gals): 7.9 55.54 Seg Yeinductry (ft, TOC): 86.0 Yeinductry (ft, Yot) 31/1/8 1046 15.0 15.8 53.9 92.1 31/1/8 1046 15.0 15.8 32.9 340.0 31/1/8	Riser				2" ID Sc	hedule 4	0		-2.2 - 42.0	918.9 - 874.7		3
Cement Grout Cement Bentonite Grout 0.5 - 32.3 916.2 - 884.4 Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7 Sand Pack DSI "GP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 874.7 - 864.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill Natural Fill Screen 54.6 - 55.0 862.1 - 861.7 Well Development Well Volume (gals): 7.9 Volume Purged (gals): 86.0 So Prevelopment Method: Baler, suge block, Tornado pump 53.3 - 54.6 863.4 - 862.1 31/18 1107 40.0 15.5 315.9 8.53 92.1 31/18 1107 40.0 15.5 317.0 8.87 30.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0	Surface	e Seal			3' x 3' C	oncrete I	Pad		-0.5 - 0.5	917.2 - 916.2		
Bentonite Seal Pel Plug 1/4" Coated Bentonite Pellets 32.3 - 37.0 884.4 - 879.7. Sand Pack DSI "GP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 874.7 - 864.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill St.6 - 55.0 862.1 - 861.7 Well Development Well Volume (gals): 7.9 S5.54 6.98 7.9 Development Method: 86.0 92.9 Baler, singe block, formado pump (S.U.) (NUTU) 311/18 1107 40.0 15.5 315.9 8.53 92.1 311/18 1107 40.0 15.5 317.0 8.67 30.0 311/18 1144 81.0 15.7 312.5 8.73 1.9 311/18 1144 81.0 15.7 312.5 8.63 <td< td=""><td>Conduc</td><td>ctor Casir</td><td>ng</td><td></td><td>6" ID Sc</td><td>h. 40 PV</td><td>′C, Flush Tł</td><td>nreaded</td><td>-0.4 - 35.0</td><td>917.1 - 881.7</td><td></td><td></td></td<>	Conduc	ctor Casir	ng		6" ID Sc	h. 40 PV	′C, Flush Tł	nreaded	-0.4 - 35.0	917.1 - 881.7		
Sand Pack DSI "GP #2" Gravel Pack 37.0 - 53.3 879.7 - 863.4 Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 874.7 - 863.4 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill 54.6 - 55.0 862.1 - 861.7 Well Development Vell Depth (ft,TOC): Depth to Water (ft,TOC): Volume (gals): 7.9 55.54 0.6.98 7.9 86.0 20/118 1046 15.0 15.8 539.1 9.29 340.0 31/18 1046 15.0 15.8 39.1 9.29 340.0 31/18 1107 40.0 15.5 317.0 8.87 3.0 31/18 1144 81.0 15.7 312.5 8.68 2.0 31/18 1144 81.0 15.7 312.5 8.68 2.0 31/18 1144 81.0 1	Cemen	t Grout			Cement	Bentonit	te Grout		0.5 - 32.3	916.2 - 884.4		
Screen 2" ID Schedule 40, 10-Slot 42.0 - 52.0 874.7 - 864.7 Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill 54.6 - 55.0 862.1 - 861.7 Well Development Well Volume (gals): 55.54 0 8.98 7.9 8.60 Volume Purged (gals): 55.54 0 55.5 862.1 - 861.7 Volume Volume (gals): 55.54 0 859.1 9.9 Volume Purged (gals): 55.54 0 53.9 9.9 9.0 Volume Volume (gals): 7.9 201 Depth (R,TOC): 0 50.0 10.6 15.0 311/18 1107 40.0 15.5 315.9 8.53 92.1 311/18 1125 66.0 15.5 317.0 8.87 3.0 0 0 0 0 0 0 0 0 0 <t< td=""><td>Bentoni</td><td>ite Seal</td><td></td><td></td><td>Pel Plug</td><td> 1/4" Co</td><td>ated Bentor</td><td>nite Pellets</td><td>32.3 - 37.0</td><td>884.4 - 879.7</td><td></td><td></td></t<>	Bentoni	ite Seal			Pel Plug	1/4" Co	ated Bentor	nite Pellets	32.3 - 37.0	884.4 - 879.7		
Well Point Blank 2" ID Sch. 40 PVC Cap & Riser Section 52.0 - 53.3 864.7 - 863.4 Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill 54.6 - 55.0 862.1 - 861.7 Well Development Well Depth (ft,TOC): Depth to Water (ft,TOC): Volume (gals): Yolume Purged (gals): 86.0 55.54 6.98 7.9 Volume Purged (gals): 86.0 Development Well Depth (ft,TOC): 0.98 Yolume (gals): 7.9 Date Cumulation Comulativity (NTU) Recovery Data 3/1/18 1107 40.0 15.5 315.9 8.53 92.1 3/1/18 1125 66.0 15.5 317.0 8.87 3.0 3/1/18 1137 76.0 15.6 312.5 8.73 1.9 3/1/18 1144 81.0 15.7 312.5 8.68 2.0 3/1/18 1144 81.0 15.6 310.5 8.63 4.3	Sand P	ack			DSI "GF	9 #2" Gra	vel Pack		37.0 - 53.3	879.7 - 863.4		4
Sand Pack Bottom DSI "GP #2" Gravel Pack 53.3 - 54.6 863.4 - 862.1 Natural Fill Natural Fill 54.6 - 55.0 862.1 - 861.7 Well Development Well Development Volume Qals): Volume Purged (gals): 55.54 Depth to Water (ft, TOC): Well Volume (gals): Volume Purged (gals): 55.54 Depth to Water (ft, TOC): Well Volume (gals): Volume Purged (gals): 35.54 6.98 7.9 86.0 Development Method: Bailer, surge block, Tornado pump Specific Conductivity (NTU) PH (NTU) Turbidity (NTU) 311/18 1107 40.0 15.5 315.9 8.53 92.1 311/18 1107 40.0 15.5 317.0 8.87 3.0 92.1 92.0 92	Screen				2" ID Sc	hedule 4	0, 10-Slot	0-Slot 42.0 - 52.0 874.7 - 864.7				
Natural Fill Natural Fill 54.6 - 55.0 862.1 - 861.7 Well Development Vell Depth (ft, TOC): Depth to Water (ft, TOC): Well Volume (gals): Yolume Purged (gals): 55.54 6.98 7.9 86.0 Development Method: Bailer, surge block. Tornado pump 86.0 Date Time Temp (Conductivity (µmhos/cm) (S.U.) Turbidity (µmhos/cm) (S.U.) 100 3/1/18 1107 40.0 15.5 315.9 8.53 92.1 3/1/18 1137 76.0 15.6 312.5 8.73 1.9 3/1/18 1137 76.0 15.6 312.5 8.63 4.3 3/1/18 1152 86.0 15.6 310.5 8.63 4.3	Well Po	oint Blank	c		2" ID Sc	h. 40 PV	′C Cap & R	Cap & Riser Section 52.0 - 53.3 864.7 - 863.4				
Well Development Well Depth (ft,TOC): Depth to Water (ft,TOC): Well Volume (gals): Volume Purged (gals): 55.54 6.98 7.9 86.0 Development Method: Bailer, surge block, Tormado pump Temp (°C) Specific Conductivity (LIMHOS/COM) pH (S.U.) Turbidity (NTU) 3/1/18 1046 15.0 15.8 539.1 9.29 340.0 3/1/18 1107 40.0 15.5 317.0 8.87 3.0 3/1/18 1137 76.0 15.6 312.5 8.73 1.9 3/1/18 1144 81.0 15.7 312.5 8.68 2.0 3/1/18 1152 86.0 15.6 310.5 8.63 4.3	Sand P	ack Botto	om		DSI "GF	9 #2" Gra	vel Pack		863.4 - 862.1			
Vell Depth (ft, TOC): Depth to Water (ft, TOC): Well Volume (gals): Volume Purged (gals): Notest activity Notest activity </td <td>Natural</td> <td>Fill</td> <td></td> <td></td> <td>Natural</td> <td>Fill</td> <td></td> <td></td> <td>54.6 - 55.0</td> <td>862.1 - 861.7</td> <td></td> <td>5</td>	Natural	Fill			Natural	Fill			54.6 - 55.0	862.1 - 861.7		5
55.54 6.98 7.9 86.0 Development Method: Bailer, surge block, Torrado pump Temp (°C) Specific Conductivity (µmhos/cm) PH (S.U.) Turbidity (NTU) 3/1/18 1046 15.0 15.8 539.1 9.29 340.0 3/1/18 1107 40.0 15.5 315.9 8.53 92.1 3/1/18 1125 66.0 15.5 317.0 8.87 3.0 3/1/18 1137 76.0 15.6 312.5 8.68 2.0 3/1/18 1144 81.0 15.7 312.5 8.68 2.0 3/1/18 1152 86.0 15.6 310.5 8.63 4.3					We	ell De	evelop	oment				
Development Method: Bailer, surge block, Tornado pump Date Time Cumulative Removed (gals) Temp (°C) Specific Conductivity (µmhos/cm) PH (S.U.) Turbidity (NTU) 3/1/18 1046 15.0 15.8 539.1 9.29 340.0 3/1/18 1107 40.0 15.5 315.9 8.53 92.1 3/1/18 1125 66.0 15.5 317.0 8.87 3.0 3/1/18 1137 76.0 15.6 312.5 8.73 1.9 3/1/18 1144 81.0 15.7 312.5 8.68 2.0 3/1/18 1152 86.0 15.6 310.5 8.63 4.3	•	•	C):			,TOC):		,				
Date Time Cumulative Volume Removed (gals) Temp (°C) Specific Conductivity (µmhos/cm) Turbidity (NTU) 3/1/18 1046 15.0 15.8 539.1 9.29 340.0 3/1/18 1107 40.0 15.5 315.9 8.53 92.1 3/1/18 1125 66.0 15.5 317.0 8.87 3.0 3/1/18 1137 76.0 15.6 312.5 8.73 1.9 3/1/18 1144 81.0 15.7 312.5 8.68 2.0 3/1/18 1152 86.0 15.6 310.5 8.63 4.3	Developm	nent Meth		_	98		/.	9	86.0		_	
3/1/18 1046 15.0 15.8 539.1 9.29 340.0 3/1/18 1107 40.0 15.5 315.9 8.53 92.1 3/1/18 1125 66.0 15.5 317.0 8.87 3.0 3/1/18 1137 76.0 15.6 312.5 8.73 1.9 3/1/18 1144 81.0 15.7 312.5 8.68 2.0 3/1/18 1152 86.0 15.6 310.5 8.63 4.3		-	Cumulative Volume Removed	Temp	Conductivity			Recovery	Data		-	6
3/1/18 1107 40.0 15.5 315.9 8.53 92.1 3/1/18 1125 66.0 15.5 317.0 8.87 3.0 3/1/18 1137 76.0 15.6 312.5 8.73 1.9 3/1/18 1144 81.0 15.7 312.5 8.68 2.0 3/1/18 1152 86.0 15.6 310.5 8.63 4.3	3/1/18	1046		15.8	539.1	9.29	340.0	100				
3/1/18 1144 81.0 15.7 312.5 8.68 2.0 3/1/18 1152 86.0 15.6 310.5 8.63 4.3	3/1/18	1107	40.0	15.5	315.9	8.53	92.1	% 80 /				7
3/1/18 1144 81.0 15.7 312.5 8.68 2.0 3/1/18 1152 86.0 15.6 310.5 8.63 4.3	3/1/18	1125	66.0	15.5	317.0	8.87	3.0					
3/1/18 1144 81.0 15.7 312.5 8.68 2.0 0 40 80 120 3/1/18 1152 86.0 15.6 310.5 8.63 4.3 Time (minutes)	3/1/18	1137	76.0	15.6	312.5	8.73	1.9	00 관 20 /				
3/1/18 1152 86.0 15.6 310.5 8.63 4.3	3/1/18	1144	81.0	15.7	312.5	8.68	2.0		40	80 120		
Sampling Equipment:	3/1/18	1152	86.0	15.6	310.5	8.63	4.3		Time (minut	es)		8
	Sampling	Equipme	ent:								1	
Comments:	Comment	ts:									┥ │	
Stainless steel centralizers set at 17' and 34' from ground surface. Washed sand pack and pellets in using tremie pipe. Grout mixing and placement information provided by Tri-State Drilling. Screen slot interval 42.2 - 51.9 bgs.	Stainless	s steel cen							using tremie pipe.	Grout mixing and		

				BC	DREHOLE	E LOG					
Site Nar and Loc		E	MDF Ch	aracterization Project Dak Ridge, TN	Drilling Methods 4 1/4" ID H	s: Iollow Stem Auger	r, HQ3 Core	e with wa	ater circulation.	Boring Nur	
Drilling F	Firm: 7	ri-State D		Jak Riuge, Th	DATE	TIME	DEF	PTH ED (ft)	WATER LEVEL (ft)	GW	-995
Driller / I	Rig: SI	hannon S	now/CME	-550				(,		Page	1 of 2
Logged	by: Da	avid J. Sug	gar		_ ST = Shelby Tu	<u>Sampling</u> be	Methods:	SS = S	plit Spoon	Start	Finish
Coordina	ates: 2	29646.821	J 38039.	32E	WS = Waxed Sa SP = Sand Pum	imple p		CS = C C = C	ontinuous Sampler oring	Time	Time
Surface	Elevati	on: 916.3	3 ft/MSL		GP or DP = Dire CT = Cuttings	ct Push		NS = N B = Bai	ot Sampled ler	1435 Date	0935 Date
Surface	Condit	ions / We	ather: Mo	oist/wet gravel pad / 53°F, Partly clo	budy					2/26/18	2/27/18
Remark	s: Bore			ne collection of geotech samples an	d installation of sh	nallow piezomete	er.				
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DE	SCRIPTION	J		Graphic Log	Rema	arks	nscs
	NS ST-1 NS ST-2 NS	2.0	900 PSI 1200 PSI	See adjacent Borehole Log GW-3 and stratigraphic interpretations. Description based on inspection of brown (7.5 YR 5/6 - 5/8 and 4/6) SILTY CLAY. Trace subangular weathered. Moist. High plasticity SUBSOIL. Description based on inspection of Brown/grayish brown to dark gray to completely weathered SHALE bedding, appears in place. Redd bedding breaks and fracture face	of bottom of ST-1 and pale brown (2 to subrounded rod y, toughness, and of bottom of ST-2 yish brown (10YR (SAPROLITE). A lish to yellowish b	recovery. Stron 2.5Y 7/3 - 7/4) m ck fragments. Hi dry strength. recovery. 5/2, 5/3 to 4/2). pprox. 45° angle	g - 		4 1/4" ID HSA, ra while augering. No reaction with I cutting bucket sa collected from 4.0 Auger cutting buc BS-2 collected fro No reaction with I crushed with wate completely come High plasticity an is apparent.	HCI. Auger mple BS-1)' - 6.0'. cket sample om 6.0' - 8.0 HCI. When er, does not apart/crush	·.
16											
		1			B-83						

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

	e, TN	BOREHOLE LOG		Boring Number GW-995				
		collection of geotech samples and installation of shallow piezometer.						
Depth (feet) Sample Method Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs			
21		Light brownish gray/pale brown to grayish brown/brown (10YR 6/2 - 6/3 and 5/2 - 5/3) highly to completely weathered SHALE (SAPROLITE). (Cont'd.)	-	Limestone not present from 25.0' - 25.5'. No reaction with HCI.	CL			
		Below 25.0' grayish brown/dark grayish brown to light olive brown (2.5Y 5/2 - 4/2, 4/3) SHALE (SAPROLITE). Highly broken sample (gravel siz: Generally have iron/manganese oxide coatings on most faces. Highly disturbed. Below 25.5' relatively intact core, very weathered, broken along bedding planes, thinly bedded, iron oxide on bedding contacts.	e). — 	Below 25.0' switch to HQ3 core, water circulation. Start coring at 1540. C-1 Lost recovery is from the top and bottom of the run.				
25		Below 25.9' mostly unweathered, fractures are typically oxidized. Change at 25.9'. Gray to very dark gray (N 4/ - N 6/) and (5YR 4/1 - 3/1) INTERBEDDED		First 0.5' of recovery is gravel size (brown) rock fragments. Core barrel tip (lifter) was stuffed. Highly/intensely fractured.				
27- - C-1 2.9' 28- -	0%	SHÁLE and LIMEŠTÓNE. Thinly bedded, generally <0.1' beds, ~45° bedding angle. Approximately 30% limestone or calcareous siltstone (generally lighter gray color hues (N 6/ and N 5/). Below 26.0' most bedding breaks (generally at 0.1' - 0.2' intervals have secondary calcite on bedding surfaces. Breaks perpendicular to beddir are also common and most have secondary calcite on fracture surfaces		Shale does not react with HCI. Limestone reacts stronger with HCI. Finish coring at 1608. Advance HSA over corehole to completion depth. C-1 25.0' - 30.0' 1540-1608.				
29— - 30 - 31—		26.5' - 27.0' Trace yellowish/reddish brown iron oxide on fracture surfaces. Oxidation not observed below 27.0', but continues to be highly fractured and broken with secondary calcite along breaks.		End 2/26/18, 1700 at 33.0'. Begin 2/27/18, 0925, 38°F, sunny.				
32 - NS - 33			-					
34 		Bottom of Borehole = 34.0'. Piezometer GW-995 installed in borehole. See Monitoring Well Installation Report GW-995 for details.		2/27/18 Completed drilling at 0935.				
- 38 39 -			-					
40								
43 - 44 -								

Eagon & Associa	tes, I nc.						Well N GW-	
Ν	lonitoring	g Wel	l Inst	allation Re	eport		L F	
Site Name and Location: EMD	0F Characterization	Project, O	ak Ridge, 1	-N	Completion	Date: 3/8/18		
Coordinates: 29646.82N 380	39.32E		Bore	hole Depth (ft): 34.0				
Elevation Top of Casing (ft/MS	L): 918.76		Bore	hole Diameter (in):7 1	1/2"			
Elevation Ground Surface (ft/N	ISL): 916.3		Drillir	ng Methods: 4 1/4" ID	Hollow Stem A	uger, HQ3 Core with		
Installed By: Shannon Snow/T	ri-State Drilling			pleted Drilling: 2/27/2	oulution.			
Supervised By: David J. Sugar		es. Inc.		ng Water Used (gals)				
		vvei	I Des					
Component			Materials		Depth (LSD)	Elevation		
Well Protector	4" Squ	are Steel	w/Locking	Lid	-2.8 - 2.2	919.1 - 914.1		
Riser	2" ID \$	Schedule 4	10 PVC		-2.5 - 22.1	918.8 - 894.2		
Surface Seal	3' x 3'	Concrete			-0.5 - 0.5	916.8 - 915.8		
Cement Grout	Ceme	nt Bentoni	te Grout		0.5 - 17.0	915.8 - 899.3		
Bentonite Seal	Pel-Pl	ug 1/4" Co	ated Bento	nite Pellets	17.0 - 19.2	899.3 - 897.1		
Sand Pack	DSI G	P #2 Grav	el Pack		19.2 - 33.4	897.1 - 882.9		
Screen	2" ID \$	Schedule 4	40 PVC, 10	-Slot	22.1 - 32.1	894.2 - 884.2		2
Well Point Blank	2" ID \$	Sch. 40 PV	/C Cap & F	liser Section	32.1 - 33.4	884.2 - 882.9		
Sand Pack Bottom	DSI G	P #2 Grav	el Pack		33.4 - 34.0	882.9 - 882.3		
				pment				<u> </u>
Well Depth (ft,TOC): 35.85	Depth to Water 11.93	(ff, TOC):		Volume (gals): 29	Volume 156.	Purged (gals): 0		
Development Method: Surge block, bailer, mega purger	whale pump							
Date Time Cumulative Volume Removed (gals)	Temp (°C) Specific Conductivi (µmhos/cn		Turbidity (NTU)	Recovery D	Data			
3/2/18 0900 10.5	15.7 345	7.11	>1000	100				
3/2/18 0940 33.0	15.0 342	7.12	>1000	60 60 40 20 20				3
3/2/18 1510 63.0	15.5 318	7.20	>1000					
3/2/18 1610 96.0	15.2 320	7.16	273.0	О На 20				
3/2/18 1705 126.0	15.1 324	7.21	60.4	0 <u> </u>	40	80 120		
3/3/18 0815 156.0	15.1 317	7.15	5.6		Time (minu	tes)		
Sampling Equipment:			1				1	
Comments:							┥ │	
Grout mixing and placement infor	mation provided by T	ri-State Drill	ina. Screen	slot interval 22 2 - 32 0 F	bas.		Boring dep	th=24.04

				Б	DREHOLE	LUG							
ite Nar nd Loc		E		naracterization Project Dak Ridge, TN		HQ3 Core w/wate	er, 10" air	hammer	bit, 5 7/8"	Boring Nur			
rilling F	Firm: 7	ri-State D			tricone bit w DATE	//air/water. TIME	DEI DRILL	PTH ED (ft)	WATER LEVEL (ft)	GW	-998		
riller / I	Rig: <i>Fr</i>	red Reyno	lds/Mobil	e 42C	2/14/18	1654	19	9.0	1.41	Page	1 of 2		
ogged	by: <i>Ry</i>	an Hanse	9		Sampling Methods:				olit Spoon	Start	Finish		
oordin	ates: 2	29021.821	1 37742.	36E	WS = Waxed San SP = Sand Pump			C = Cc		Time	Time		
urface	Elevati	on: 877.7	7 ft/MSL		GP or DP = Direc CT = Cuttings	t Push		NS = N B = Bai	ot Sampled ler	1355 Date	0919 Date		
urface	Conditi	ions / Wea	ather: <i>Gr</i>	ravel pad, moist / 50°F, Cloudy, 0-5	SW					2/14/18	2/20/18		
emark	s: Set	•	e located	~6' south of staked location.									
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTIO	ЛС		Graphic Log	Rema	arks	NSCS		
_	NS			ROAD BASE.			_		Ran 2 1/4" HSA (w/center plug whi				
1-			3	Change at 1.0'. Light olive brown to olive brown ((2.5Y 5/3 - 4/2) CL4	YEY SILT Trad	ce fine		Continuous 2" OI spoon, 140 lb hyd), 2' drive sp			
-		1.2'	3	to coarse grained sand. Trace to diameter). Medium to stiff. Mass	little angular shale	e fragments (up t	o 1" –		hammer. On 2/18/18. used				
2—	SS-1	60%	4	dilatancy. Weathered. Iron and	manganese oxide	on surface of sha			Ingersoll-Rand T3	3W rotary ric	1		
3-			6	clasts. Moist. No reaction with H Trace silt partings 3.2' - 3.3'. Str			nt.		to ream borehole 10" air hammer b		ng		
3_			3	Shale clasts are becoming orient Underlying contact is transitional	ed in same direction	n.	_		permanent 6" PV sealed with ceme				
4 —	SS-2	2.0'	6	Change at 4.0'.			~		grout.				
_		100%	10	Grayish brown to dark grayish br (SAPROLITE). Shale fragments	own highly weather	red SHALE	- — — ale				- CL		
5—			15	fragments have trace to little iron	and manganese o	xide on bedding							
_			9 11	Cohesive. Medium plasticity. No	surface. Laminated to thinly bedded (beds are 40°-50°). Very Stiff.								
6—	SS-3	2.0' 100%	12	Moisture content decreasing with 5.7' - 6.0' Saprolite has been weat	i depth. SAPROLI	TE.							
_			16	with iron and manganese oxide.									
7—			7	(CL). Shale is becoming harder with de	epth. Iron and man	iganese oxide pr	esent						
8-	SS-4	1.8'	11	along bedding surfaces.			-		SS-1 Lab results: Content (MC) 18.				
0	33-4	90%	10				_		· · · ·				
9—			10	9.0' - 9.4' Shale (saprolite) has b	een weathered con	npletely to a silty	clay. —		SS-2 Lab results:	MC 22%.			
_			6	Abundant with iron and mangane brown in color. (CL).	ese oxide. Reddish	brown to strong	-		SS-3 Lab results:	MC 07 40/			
10 —	SS-5	1.6' 80%	12	9.4' - 9.6' Iron oxide present on b	edding surfaces.				SS-S Lab results.	IVIC 27.470	•		
_		0070	12 9	Below 9.6' shale becomes browr	ı (7.5YR 5/2 - 4/2) i	n color. Iron oxid	de -		SS-4 Lab results:	MC 18.6%	:		
11-			2	becomes trace. Abundant mang surfaces.	anese oxide stainir	ng on bedding	_		4.3% Gravel; 58.4		,		
-		1.5'	4	Below 11.0' saprolite (shale) bec					37.3% Fines. SS-5 Lab results:	MC 26%.			
12—	SS-6	75%	3	few yellow fine grained silty sand weathered to a silty clay. Little to	l partings. Saprolite	e is almost comp anganese oxide a	letely — alona						
- 13—			10	bedding surfaces. Wet.		5	5 _	<u>[]</u>					
13			3	Below 13.2' saprolite (shale) bec		pling process ha	is _		SS-7 Lab results:	MC 23.8%	.		
14 —	SS-7	1.5'	16	almost destroyed bedding structu				<u>[</u>]	A.M. 00 0 1 11				
_	- •	75%	9	Below 14.0' becomes dark gray t becomes trace. Manganese oxid	le becomes trace.	Trace subround			After SS-8 driller water on rods.	noted ~12' c	DT		
15—			9	siltstone clasts. Sampling metho			_						
-		A	7 11	Below 15.5' trace subrounded lin	nestone clasts. Iro	n and mandanes	е –						
16—	SS-8	1.5' 75%	9	oxide on clast surfaces. Strong					SS-9 Lab results:	MC 15.4%	.		
_			6	increasing with depth.			-	[]	Measured contact of SS-9 due to his	t from bottor			
17			4						counts.	J. 1 D. OVV			
10	<u> </u>	1.6'	7				-						
18—	SS-9	80%	48	Change at 18.6'.					Switch to HQ3 co	re with wate	er.		
19-			50	Dark brown to very dark brown (ed to		1525 Auger refus				
				thinly bedded. Trace limestone b	peds and partings.	Sott sediment			1654 DTW = 1.41	BGS			

	MDF C	haracteri Oak Ridg	zation F	roject BOREHOLE LOG	Bori	Boring Number GW-998				
Remark				~6' south of staked location.						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE DESCRIPTION	Graphic Log	Remarks	nscs			
21	C-1	2.0' 95.2%	0%	Strong reaction with HCl after scratched with knife. Intensely to very intensely fractured, most are along bedding planes and healed with calcite. Calcite veins are stained with iron and manganese oxide.		temporary surface casing to 19.0'. 2/15/18 at 0840 DTW=2.51				
22— 23— 24— 25— 26—	C-2	4.8' 96%	13.6%	Bedding is between 40° and 50°. 20.3' - 20.6' Fracture perpendicular to bedding plane healed with calcite, iron and manganese oxide. 20.6' - 20.8' Fracture perpendicular to bedding plane with iron and manganese oxide. Change at 22.2'. Greenish gray (10Y 6/1 - 5/1) LIMESTONE. Trace to few thin beds of shale. Contacts with shale are wavy with soft sediment deformation. Thinly bedded, with beds at 40°-50° angles. Strong. Slightly decomposed. Slightly disintegrated. Intensely to moderately fractured. Most breaks are along bedding planes, probably mechanically induced. 22.5' - 22.6' Multiple breaks along and perpendicular to bedding plane with iron and manganese oxide. Change at 23.8'. Laminated to thinly INTERBEDDED SHALE and LIMESTONE. Limestone		BGS. C-1 19.0' - 21.1', 1041-1119. 21.1' - 22.2' Multiple breaks along bedding plane. All have iron and manganese oxide. Strong reaction with HCI on limestone (shale when scratched). 22.6' Fracture perpendicular to bedding plan with iron and manganese oxide. 23.6 - 23.9' Horizontal fractures with iron and manganese oxide. Shale beds increasing with size and				
27 — 28 — 29 — 30 —	C-3	4.2' 91.3%	12.6%	 is greenish gray (10Y 6/1 - 5/1). Massive. Microcrystalline. Strong. Shale is dark gray to very dark gray (N 4/ - 3/). Laminated to thinly bedded. Strong. Shale and limestone beds are wavy with soft sediment deformation and cross bedding. Slightly disintegrated. Slightly decomposed. Moderately to intensely fractured along bedding planes with some completely healed with calcite. Change at 26.2'. Greenish gray (10Y 6/1 - 5/1) LIMESTONE. Trace glauconite grains. Trace mudstone stringers. Massive. Microcrystalline. 26.8' - 27.0' subangular limestone clasts incorporated into limestone matrix. Strong. Slightly decomposed. Slightly disintegrated. Moderately fractured with some iron and manganese oxide on fracture faces. Below 28.0' shale beds present and increasing with depth. Change at 28.2'. 		quantity with depth. C-2 21.1' - 26.1', 1041-1119. Becoming less weathered with / depth. 26.0' Horizontal fracture with iron oxide. 26.8' - 27.2' Vertical fracture with iron and manganese loxide. C-3 26.1' - 30.7', 1140-1220. Driller noted blocked tip in barrel. Pull run at 30.7'. 27.4' Fracture perpendicular to				
31—	C-4	0.4'/100%	0%	Dark brown to very dark brown (7.5YR 3/2 - 2.5/2) SHALE. Trace to few -	-[]	bedding plane with iron oxide. 28.0', 28.1', 28.2' Fracture				
	C-5	5.0' 100%	13.8%	limestone beds and partings. Laminated to thinly bedded, with beds at 40°-50° angles. Soft sediment deformation and turbidation. Abundant slickensides along bedding plane. Strong. Fresh to slightly decomposed. Moderately fractured with little calcite healing of fractures. Most breaks are along bedding planes. Strong reaction with HCI when scratched. Below 31.1' shale becomes olive green in color due to weathering. Iron oxide present. Change at 31.5'. Gray to very dark gray (N 5/ - 3/) LIMESTONE. Massive with trace angular (40°-50°) shale beds and partings with soft sediment deformation. Trace glauconite grains. 31.6' - 32.0' limestone is oolitic. Oolites are round (~1mm diameter). Strong. Slightly decomposed. Very intensely fractured. Multiple fractures along and perpendicular to bedding plane. Some fractures are healed with mudstone. (Change at 32.8'.		along bedding plane with iron and manganese oxide. C-4 30.7' - 31.1', 1225-1236. Ja1.6' Fracture along bedding plane with iron oxide. 0.05" Iron halo on each side. C-5 31.1' - 36.1', 1349-1425. 31.7' - 32.2' Multiple fractures along and perpendicular to bedding planes. Iron oxide present on all fractures. 31.7' - 31.9' Fracture healed with mudstone. 32.8' Break along bedding plane with iron and				
37 — 38 — 39 —	C-6	3.0'	37.7%	Dark reddish brown (5YR 3/2 - 2.5/2) SHALE. Trace limestone beds and partings. Laminated to thinly bedded. Abundant slickensides along bedding plane. Fresh to slightly decomposed. Moderately to intensely fractured. Most breaks are along bedding plane and mechanically induced. Some are perpendicular to bedding and healed with calcite. Strong reaction with HCl when scratched. Below 37.0' limestone clasts/inclusions oriented with bedding and increasing with depth. Underlying contact is transitional. [Change at 37.5'.] Light brownish gray to grayish brown (10YR 4/2 - 5/2) LIMESTONE. Thinly bedded. Trace shale beds and partings. Trace marine fossils		manganese oxide. 32.8' - 33.0' Shale is iron stained and discolored. C-6 36.1' - 40.0', 1435-1504. 36.2' Break along bedding plane with iron oxide. 38.0' - 38.4' Limestone is iron stained and discolored.				
40 — 41 — 42 — 43 — 44 —	NS			present along shale bedding breaks. Soft sediment deformation. Moderately decomposed. Slightly to moderately fractured. Most fractures along bedding plane have iron oxide on fracture faces. Strong reaction with HCl. 38.3' Fracture with iron oxide. 39.6' Fracture perpendicular to bedding plane with iron oxide. 39.6' Fracture perpendicular to bedding plane with iron and manganese oxide. Bottom of Borehole at 45.0'. Piezometer GW-998 installed in borehole. See Monitoring Well Installation Report GW-998 for details.		2/15/18, 1515, DTW = 11.70 BGS. On 2/20/18, used T3W rotary rig to ream corehole and advance to 45.0' using 5 7/8" tricone bit with water and air circulation. Finished drilling at 0919.				

BOREHOLE LOG V.2. OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

Eago	on&/	Associa	ates, l	nc.								II Nur GW-99	
		Ν	Ionit	oring	Wel	l Ins [.]	tallation	Repo	ort			TE .	
Site Nan	ne and Lo	cation: EM	DF Chara	cterization F	Project, O	ak Ridge,	TN	Co	ompletion D	Date: 3/8/18			
Coordina	ates: 2902	21.82N 377	742.36E			Bor	ehole Depth (ft):	45.0					
Elevation Top of Casing (ft/MSL): 880.18							ehole Diameter (ii	n): <i>10" (0'-</i>	22.0'), 5 7/8	" (22.0'-45.0')			
Elevation	n Ground	Surface (ft/I	MSL): 87	7.7		Dril	ing Methods: 2 1/	4" HSA, F mer bit. 5	Q3 Core w	/water, 10" air e bit w/air/water.			
Installed	By: Shar	non Snow/	Tri-State L	Drilling			npleted Drilling: 2						
Supervis	sed By: D	avid J. Suga	ar/Eagon d	& Associates	s, Inc.	Dril	ing Water Used (gals): ~1	500				
					Wel	l Des	sian						 1
	Com	ponent				Materials	•	Dep	th (LSD)	Elevation			
Well P	Protector			4" Squa	re Steel	w/Locking	ı Lid	-2.	8 - 2.2	880.5 - 875.5			
Riser					hedule 4		, <u> </u>		5 - 26.6	880.2 - 851.1			
Surfac	e Seal			3' x 3' C	oncrete			-0.	5 - 0.5	878.2 - 877.2			1
Condu	ictor Casir	ng		6" ID Sc	hedule 4	10 PVC, F	lush Threaded	-0.4	4 - 22.0	878.1 - 855.7			
Ceme	nt Grout			Cement	Bentoni	te Grout		0.5	5 - 21.7	877.2 - 856.0			
Bentor	nite Seal			Pel-Plug	g 1/4" Co	ated Ben	Bentonite Pellets 21.7 - 24.0 856.0 - 853.7						
Sand I	Pack			DSI GP	#2 Grav	el Pack		24.	0 - 37.9	853.7 - 839.8			2
Screer	n			2" ID Sc	hedule 4	0 PVC, 1	0-Slot	lot 26.6 - 36.6 851.1 - 841.1					
Well P	oint Blank			2" ID Sc	:h. 40 P∖	/C Cap &	p & Riser Section 36.6 - 37.9 841.1 - 839.8						
Sand I	Pack Botto	om		DSI GP	#2 Grav	el Pack		37.	9 - 40.0	839.8 - 837.7			
Bentor	nite Seal				,		tonite Pellets	40.	0 - 45.0	837.7 - 832.7	_		2
			_				opment						
40.3	pth (ft,TO0 7 ment Meth		Depth	to Water (ft 55	,TOC):	We	ll Volume (gals): 5.8		Volume F 405.0	Purged (gals):)			
Bailer, s	surge block,	Tornado pun	np	1							_		3
Date	Time	Cumulative Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidity (NTU)	Recover	ry Data	l				
2/26/18	1001	5	15.0	962	7.23	>1000	100						
2/26/18	1020	30	15.7	412	7.09	>1000	□ 08 00 08 00 00 00 00 00 00 00 00 00 00						3
2/26/18	1050	105	15.8	364	6.86	104.0							
2/26/18	1130	205	15.7	356	6.81	80.6	 						
2/26/18	1210	305	15.8	351	6.79	56.2	0	4	 ŀO	80 120			
2/26/18	1250	405	15.8	345	6.87	33.8		Т	ime (minute	es)			⊥ 4 ⊥ 4
Samplin	g Equipme	ent:											
Commer	nts:										-		
Grout n	nixing and p	lacement info	ormation pr	ovided by Tri-	State Drill	ing. Scree	n slot interval 26.8 -	36.5 bgs.			Borir	ig depth:	 =45.0 ft

				BC	REHOLE	E LOG					
Site Nar and Loc		E	MDF Ch	aracterization Project Dak Ridge, TN	Drilling Methods 4 1/4" ID H	s: ISA, HQ Core w/wa	ter.			Boring Nu	
Drilling I	Firm: 7	ri-State D			DATE	DATE TIME DR			WATER LEVEL (ft)	GW-999	
Driller /	Rig: <i>Fr</i>	ed Reync	olds/Mobil	e B42C			BIGEL			Pana	1 of 2
Logged	by: Sh	ay Beanla	and		Sampling Methods: ST = Shelby Tube SS = Split S				plit Spoon	•	1
Coordin	ates: 2	9025.011	J 37750.	58E	WS = Waxed Sample CS =				ontinuous Sampler	Start <i>Tim</i> e	Finish <i>Time</i>
Surface	Elevati	on: 877.0	6 ft/MSL		GP or DP = Dire CT = Cuttings	ct Push		NS = N B = Bai	lot Sampled iler	1050	1045
Surface	Conditi	ions / We	ather: <i>Gr</i>	avel pad, dry / 70°F, Sunny						Date 2/20/18	Date 3/2/18
Remark	s: Borii	ng installe		ection of geotech samples and for in	stallation of shall	ow piezometer.					
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD	SAMPLE	DESCRIPTI	ON		Graphic Log	Rema	arks	nscs
	HSA ST-1 HSA ST-2 HSA	0.85	800 PSI 900 PSI 1300 PSI 1100 PSI 1500 PSI/ 0.35'	See Borehole Log for adjacent bo description and stratigraphic inter At 4.5' sample was light bluish gra noted on bottom of sample with ir surface, could be bedding plane s At 5.85' sample was gray (7.5YR manganese oxide noted on beddi	pretation. ay SHALE (SAPR on oxide and mar surface. 6/1 - 5/1) SAPRC	OLITE). Fracture nganese oxide on DLITE. Iron and			Ran 4 1/4" ID HS plug to target dep tube and bucket s Pushed Shelby tu Advanced augers depth and switch Core with water. borehole with 4 1 using CME 550. Pushed Shelby tu Pressure noted in column. Pushed Shelby tu before refusal. Bulk sample colle - 4.5' of cuttings f Bulk sample (BS- from 5.0' - 6.0'.	ths of Shelt samples. to target ed to HQ Then ream /4" ID HSA ube 2.0' dow 'blows/6 in ube 0.85'	ed /n.
	ST-3 HSA	2.0	850 PSI 900 PSI 1000 PSI 1000 PSI	At 12.5' sample was light brownis SHALE (SAPROLITE). Iron and r plane surfaces. Wet.					Pushed Shelby tu 2.0' from 10.5' to tube is wet.		by
16 — 17 — 18 —	SS-1	1.2	15 41 50/3	Gray to grayish brown (2.5Y 5/1 - (SAPROLITE). Laminated beddir Iron staining and precipitate throu Low to medium plasticity and toug	ng structure. Eas ghout bedding pla	ily crumbled with h			Below 17.0' react Auger refusal at 1 Spoon was bent	19.1'.	
19 	HSA SS-2	0.9	7 15 \ <u>50/3.5</u> /	Change at 18.5'. Gray to olive gray (5Y 5/1 - 4/2) S in iron and manganese oxide alor Below 19.0' olive gray (5Y 5/2 - 4, Calcite precipitate/crystals along 1	ng bedding planes (2) limestone. Ve	s to little. ry intensely fractu			retrieved. 1430-1500 Went start coring. WL 1511, TD = 19.1.	for water to	

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

		haracter Oak Ridູ		Project	BOREHOLE LOG	E	Borin	g Number GW-999			
Rema	arks: Bor	ing installe	ed for coll	ection of geo	tech samples and for installation of shallow piezometer.						
Depth (feet)	Sample Method	Sample Recovery (feet or %)	Blows/6 in or RQD		SAMPLE DESCRIPTION	Graphic		Remarks	nscs		
21	NS	2.2' 100%	56.4%	Microcrys with soft s angles. S in thicknes	to greenish gray (N 7/ - 10Y 6/1) LIMESTONE. alline. Trace to few thin beds of shale. Shale beds are wavey ediment deformation and bioturbation. Beds are at 40°-50° hale beds range in thickness from less than 1mm to up to 5mm ss. Trace glauconite crystals. Trace calcite seams/stringers ding planes. Trace calcite crystals. Field strength is strong.			Auger refusal at 19.1', split spoon sampled to 19.3'. Switching over to HQ Core. C-1: 19.3' - 21.5' 1645-1711. 19.7' - 19.9' 45° angle fracture with iron staining present on			
22				Slightly de fractured 20.45' - 20 20.75' - 2 plane/frac	composed. Sightly disintegrated. Intensely to moderately with iron and manganese oxide and calcite precipitate. 0.65' Shale bed. 1.1' Shale bed. Very intensely fractured along bedding ture surfaces. Trace iron staining observed throughout core, ately along shale beds.			surface. 20.2' - 20.4' 40° angle fracture with iron staining along bedding plane. 20.45' - 20.6' 40° angle fracture along bedding plane.			
24	_			Below 21. parallel to	1' limestone becomes clastic with clasts elongated and oriented bedding plane. Borehole = 22.0'.			20.6' - 20.75' 30° angle fracture, iron and manganese oxide along face, fractures along bedding plane.			
26	_				er GW-999 installed in borehole. See Monitoring Well n Report GW-999 for details.	_		21.1 [°] - 21.25 [°] 60° angle fracture. 2/20/18 Done for day at 1711. 2/21/18 at 0810 WL = 0.90'.			
27	_					_		TD = 21.5'. Start augering hole at 0834 from 19.1'. 0855 Stopped augering, had only gone 2"			
28	_					_		with rig. Pulling rig off hole and setting temporary 6" casing to 19.0'. On 3/2/18 used CME-55 to			
30								overdrill corehole and advance borehole to 22.0' using 4 1/4" ID HSA augers. Completed drilling at 1045.			
31	_										
33	-										
34 81/1/18 35	_										
35 36 36	_					_					
37 37	_										
38 39 39	_										
40											
41 19. 190 19. 190 190	_					_					
43 IC	-					_					
BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 90 70 70 71 72 73 74 75 76 77 78 79 71 74 75 76 77 78 79 79 70 70 70 70 70 70 70 70 70 71 72 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>	_					_					

Eagon	1 & A	ssocia	ites, I	nc.								ell N GW-	umber -999
		Μ	onit	oring	Wel	l Ins	allation F	Re	port				
Site Name	and Loo	cation: EM	DF Chara	acterization	Project, (Oak Ridg	e, TN		Completion D	ate: 3/8/18		4 A 4 4	0.0
Coordinate	es: 2902	25.01N 37	750.58E			Во	ehole Depth (ft): 22.	.0					
Elevation 1	Top of C	asing (ft/M	SL): 880	.11		Во	Borehole Diameter (in):7 1/2" (0'-22.0')						
Elevation (Ground S	Surface (ft/l	MSL): 87	77.6		Dri	ing Methods: 4 1/4"	ID H	ISA, HQ Core	w/water.			2.5
Installed B	y: Shan	non Snow/	Tri-State	Drilling		Co	npleted Drilling: 3/2/	/18					
Supervised	d By: Sł	nay Beanla	nd/Eagor	n & Associat	es, Inc.	Dri	ing Water Used (gal	s):					
•	-	-			Wel			,					
							ngn				-		5.0
	Comp	onent				Materials		D	epth (LSD)	Elevation			
Well Pro	otector			4" Squa	re Steel I	Protector	w/Locking Lid		-2.8 - 2.2	880.4 - 875.4			
Riser				2" ID Sc	chedule 4	0		-	2.5 - 10.3	880.1 - 867.4			
Surface	Seal			3' x 3' C	oncrete l	Pad			-0.5 - 1.0	878.1 - 876.6			7.5
Bentonite	e Seal			Enviro F	Plug Med	ium Chip	;		1.0 - 4.8	876.6 - 872.8		38888	
Bentonite	e Seal			Pel Plug	g 1/4" Co	ated Ber	onite Pellets		4.8 - 8.3	872.8 - 869.4			
Sand Pa	ack			DSI "GF	P #2" Gra	vel Pack		8	8.3 - 21.6	869.4 - 856.0			
Screen				2" ID Sc	hedule 4	0, 10-Slo	t	1	0.3 - 20.3	867.4 - 857.3			10.0
Well Poi	nt Blank			2" ID Sc	hedule 4	0 Cap &	Riser Section	2	0.3 - 21.6	857.3 - 856.0			
Natural F	Fill			Natural	Fill		21.6 - 22.0 856.0 - 855.6						
													10.5
											_ E		12.5
				We	ell De		opment						
Well Depth 24.10 Developme	、			to Water (ft 41	,TOC):	We	l Volume (gals): 3.4		Volume F 114.5	Purged (gals): 5			
Surge blo	ck, bailer,	mega purge	er whale p	ımp		1	1				_	=	15.0
Date	Time	Cumulative Volume Removed (gals)	Temp (°C)	Specific Conductivity (µmhos/cm)	рН (S.U.)	Turbidit (NTU)	Recovery	' Da	ata				
3/5/18	1005	12.0	14.7	546	7.15	>1000	100						
3/5/18	1015	24.5	15.3	461	7.13	>1000	08 80 60 K 40						17.5
3/5/18	1040	44.5	15.1	440	7.15	>1000							
3/5/18	1100	64.5	15.1	432	7.08	97.4		_					
3/5/18	1140	94.5	15.4	425	6.98	27.9	0	5		15 20			 20.0
3/5/18	1200	114.5	15.6	422	6.95	23.4			Time (minute	es)		=	
Sampling I	Equipme	nt:				1	1				1		
Comments	s.										Jesser (<u>.</u> 2869 K	
											, -uchi),		
Grout mix	king and p	lacement inf	ormation p	provided by Tr	i-State Dri	lling. Scre	en slot interval 10.4 - 20	0.1 b	gs.		Bori	ing der	oth=22.0 f

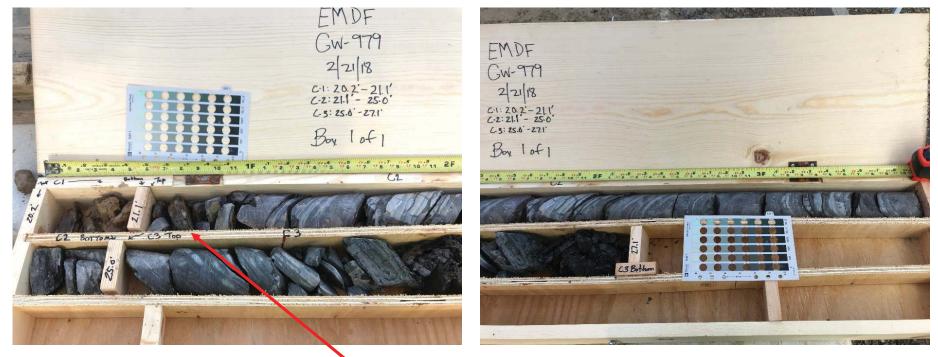
B-93

PHASE I CHARACTERIZATION ENVIRONMENTAL MANAGEMENT DISPOSAL FACILITY CENTRAL BEAR CREEK VALLEY SITE (7c)

1

April 2018

This page intentionally left blank.



GW-978 56.1' – 71.5' Sand Pack Interval 59.5' – 69.6' Screened Interval

B-97

GW-978 56.1' – 71.5' Sand Pack Interval 59.5' – 69.6' Screened Interval

GW-979 21.2' – 37.8' Sand Pack Interval 26.3' – 36.3' Screened Interval

21.1'- 21.3' Very intensely fractured along bedding planes and some at an angle perpendicular to bedding direction. Iron staining throughout.

GW-980R 55.0° – 72.3' Sand Pack Interval 59.9° – 70.0' Screened Interval

67.0'- 67.3' Bedding plane break with apparent depositional slickensides. Trace calcite coating and fine pyrite crystals

59.2'- 60.1' Zone with healed (calcite filled) fractures, generally oriented perpendicular to bedding angle. At 59.2', 59.5', and 59.8' fractures are open but appear broken by the drilling process 5

April 2018

GW-981

20.0' - 34.0' Sand Pack Interval 22.1' - 32.1' Screened Interval

April 2018

24.0'- 24.9' Broken zone, fractures oriented perpendicular to bedding (possibly associated with healed fractures where the calcite infilling has been removed). Trace thin secondary calcite on fracture faces.

25.4'- 26.3' High angle fracture, jagged/rough face. Trace secondary calcite and possibly celestite.

GW-982 99.2' – 114.5' Sand Pack Interval 102.1' – 112.1' Screened Interval

April 2018

102.0' – 102.3' Fracture zone/bedding breaks. Faces are oxidized with iron oxide coatings. Continues to be intensely fractured. Bedding angle is near 45°.

 $107.6^{\circ} - 107.9^{\circ}$ Fracture 90° to bedding plane. Face has thin coating of calcite. No oxidation.

2-986 38.6' – 48.0' Sand Pack Interval 41.0' – 46.0' Screened Interval

At 49.8' Fracture (appears mechanically broken) ~ 2 mm calcite filled, broken face is striated at orientation of 30° from the fracture angle

At 50.5' Horizontal break, rough face. Trace pyrite.

B-103

GW-987 13.3' – 27.9' Sand Pack Interval 16.1' – 26.1' Screened Interval

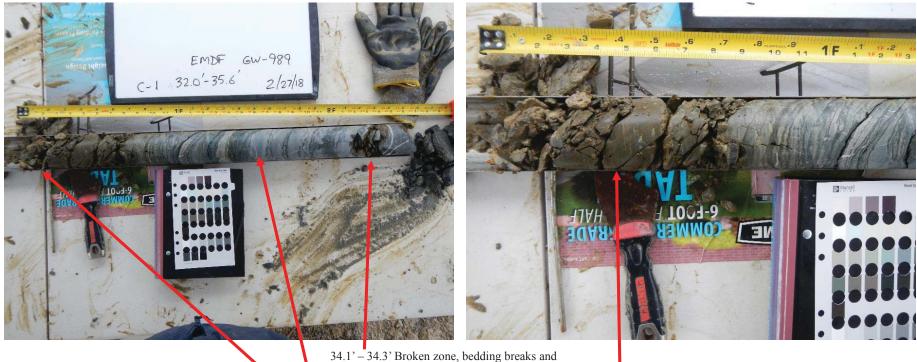
17.5' - 20.0' Interval highly fractured. Primarily along bedding planes, trace fractures oriented perpendicular to bedding. Fracture faces are generally coated with manganese oxide precipitates.

GW-987 13.3' – 27.9' Sand Pack Interval 16.1' – 26.1' Screened Interval

April 2018

21.4' – 21.7' Dark yellowish brown to black iron oxide/manganese oxide on bedding breaks

10


GW-987 13.3' – 27.9' Sand Pack Interval 16.1' – 26.1' Screened Interval April 2018 22.4' – 22.8' Several bedding breaks with oxidation (yellowish brown) faces. Fracture perpendicular to bedding angle is also oxidized

At 23.2'Secondary calcite on bedding break, thin coating.

B-106

GW-988 59.6' – 74.0' Sand Pack Interval 61.9' – 71.9' Screened Interval $70.0^{\circ} - 70.6^{\circ}$ Vertical fracture along the bedding plane that appears to turn from 60° to near vertical. Fractures are fresh.

GW-989 30.0' – 45.0' Sand Pack Interval 33.6' – 43.6' Screened Interval

34.1' – 34.3' Broken zone, bedding breaks and fractures perpendicular to bedding. Oxidized with iron oxide precipitates on fracture faces.

April 2018

32.0' - 33.6' Most bedding breaks are oxidized with iron oxide precipitates on fracture surfaces.

13

GW-989 30.0' – 45.0' Sand Pack Interval 33.6' – 43.6' Screened Interval April 2018 32.0' – 33.6' Most bedding breaks are oxidized with iron oxide precipitates on fracture surfaces.

34.1' - 34.3' Broken zone, bedding breaks and fractures perpendicular to bedding. Oxidized with iron oxide precipitates on fracture faces.

EMDF 2/28/18 1-989 0.0'-45.0'. B-110 17.9 2F 1 2F.2 2F.3 2F.4 2F.5 2F.6 2F.7 2F.8 2F.9 2F.9 10 2F 11 3F

GW-989 30.0' – 45.0' Sand Pack Interval 33.6' – 43.6' Screened Interval

April 2018


41.9' – 42.3' Broken zone with iron oxide along bedding planes and perpendicular fractures. Oxidized with iron oxide precipitates on fracture faces.

GW-993 19.8' – 35.5' Sand Pack Interval 23.0' – 33.0' Screened Interval

26.0' - 26.7' Multiple high angle fractures with iron and manganese oxide precipitate.

27.3' – 27.5' 40-50 degree fracture, iron staining present.

GW-993 19.8' – 35.5' Sand Pack Interval 23.0' – 33.0' Screened Interval

April 2018

27.8' – 28.1' Core is highly broken due to composition (mudstone/shale) and sampling procedure. Iron staining along fractures, along bedding planes, and along fractures perpendicular to bedding angles.

28.1' - 28.6' Rubble zone, very intensely fractured, all pieces rounded due to composition and sampling procedure. Iron staining, iron oxide, and manganese oxide observed along fracture faces. Calcite precipitate also observed along fracture faces.

GW-994 37.0° – 54.6° Sand Pack Interval 42.0° – 52.0° Screened Interval

 $37.6^{\circ} - 38.1^{\circ}$ Fracture oriented 90° to bedding angle. Face has iron oxide weathering

37.6' – 38.1' Fracture oriented 90° to bedding angle. Face has iron oxide weathering

44.9' - 45.4' Bedding breaks and fractures oriented perpendicular to bedding angle. Faces oxidized with iron oxide precipitates.


At 42.8 fracture oriented perpendicular to bedding. Face is oxidized with iron oxide precipitates.

GW-994 37.0' – 54.6' Sand Pack Interval 42.0' – 52.0' Screened Interval

EMDF Gw-995, C-1 25.0'-30.0 •8 PRAPPO 254TC = 9 .5 .6 7 **1** F 1 1F 2 1 1 1F 2 1F 3 8 9 2 COSTCO.

GW-995 19.2' - 34.0' Sand Pack Interval 22.1' - 32.1' Screened Interval

Below 25.5' Core is very weathered, broken along bedding planes, iron oxide on bedding planes

GW-995 19.2' – 34.0' Sand Pack Interval 22.1' – 32.1' Screened Interval 26.5' – 27.0' Trace yellowish/reddish brown iron oxide on fracture surfaces

GW-998 24.0' – 40.0' Sand Pack Interval 26.6' – 36.6' Screened Interval

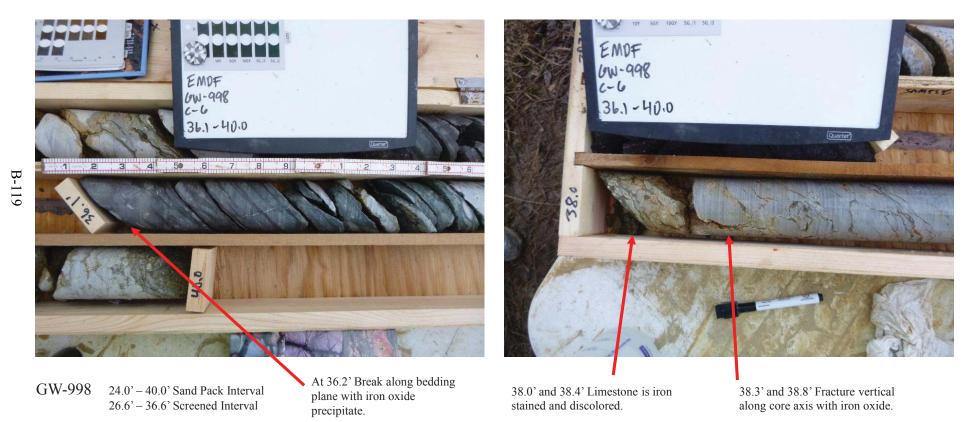
April 2018

26.8' – 27.2' Vertical fracture with iron and manganese oxide precipitates.

At 27.4' Fracture perpendicular to bedding plane with iron and manganese oxide precipitates.

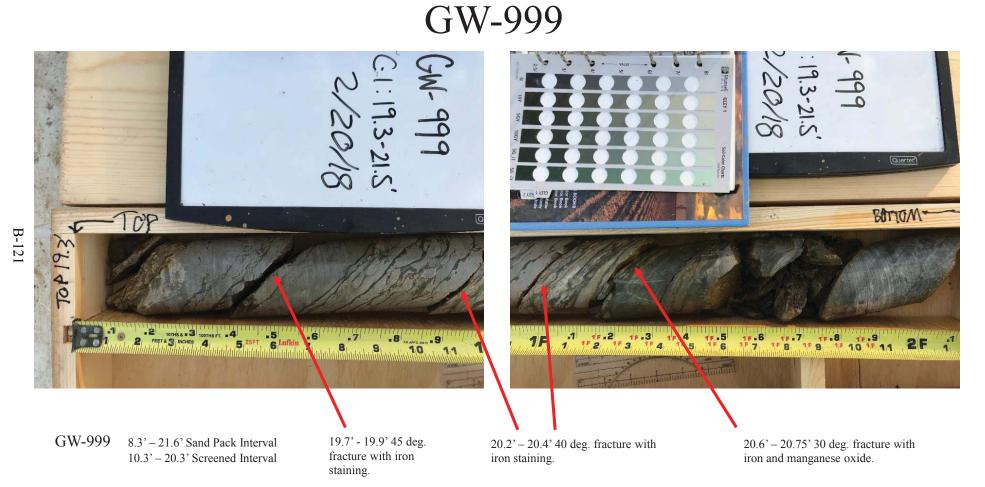
At 28.0', 28.1', and 28.2' Fractures along bedding planes with iron and manganese oxide precipitates.

22


26.6' - 36.6' Screened Interval

April 2018

At 31.6' Fracture along bedding plane with iron oxide precipitates.


along and perpendicular to bedding plane with iron oxide present on all fractures.

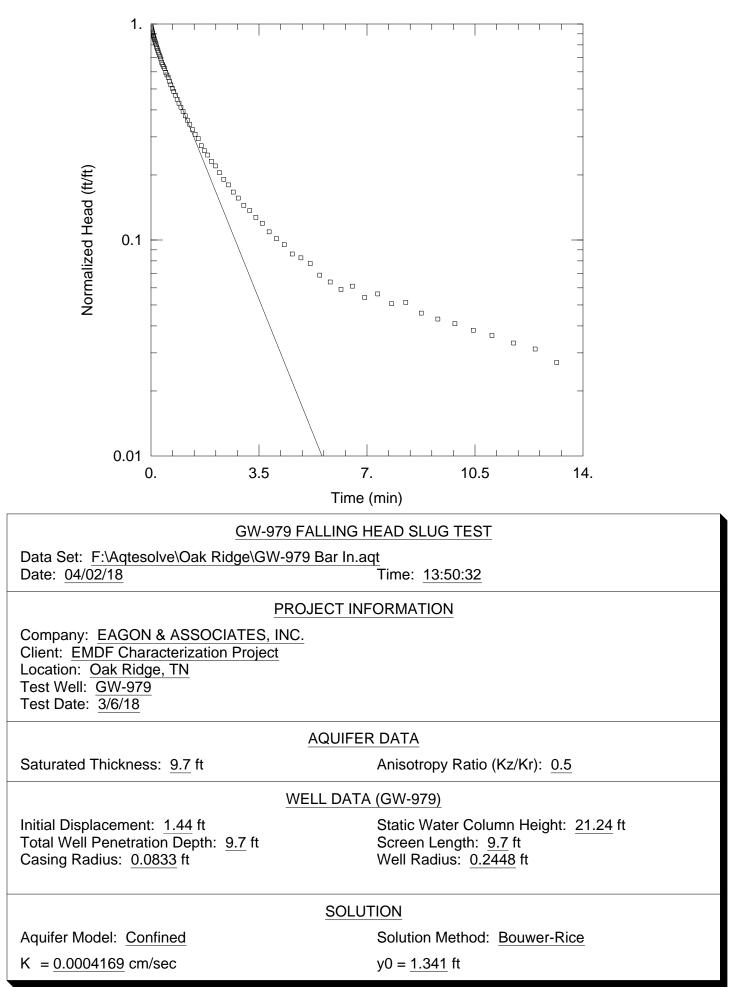
with iron and manganese oxide precipitates.

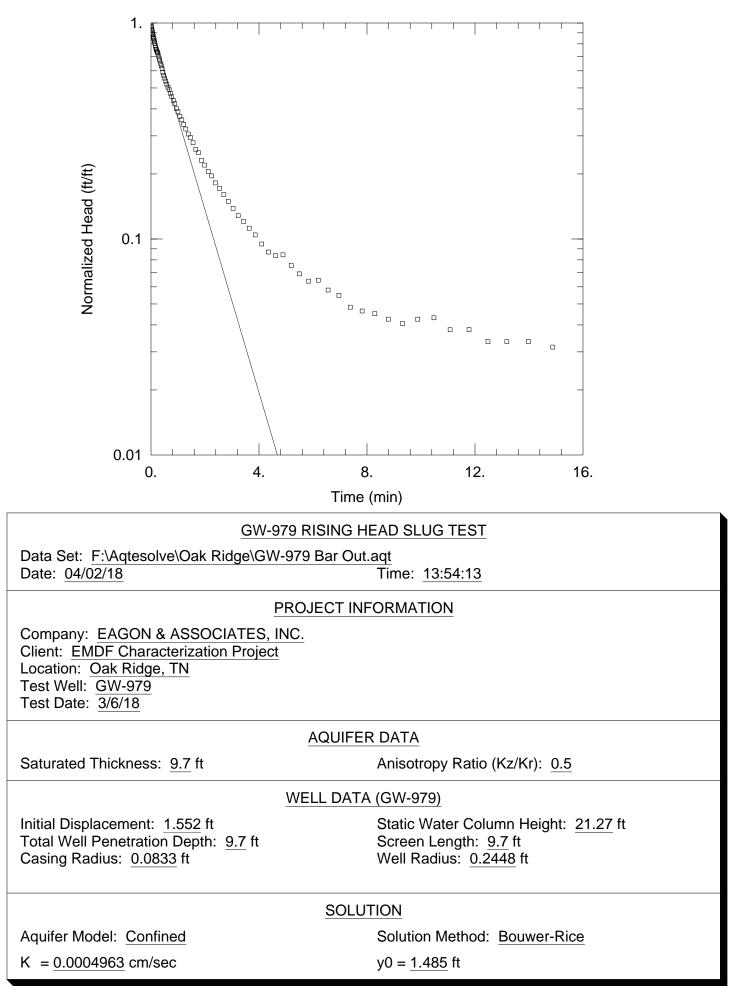
- GW-998 24.0' 40.0' Sand Pack Interval 26.6' 36.6' Screened Interval
- At 39.6' Fracture perpendicular to bedding plane with iron and manganese oxide.

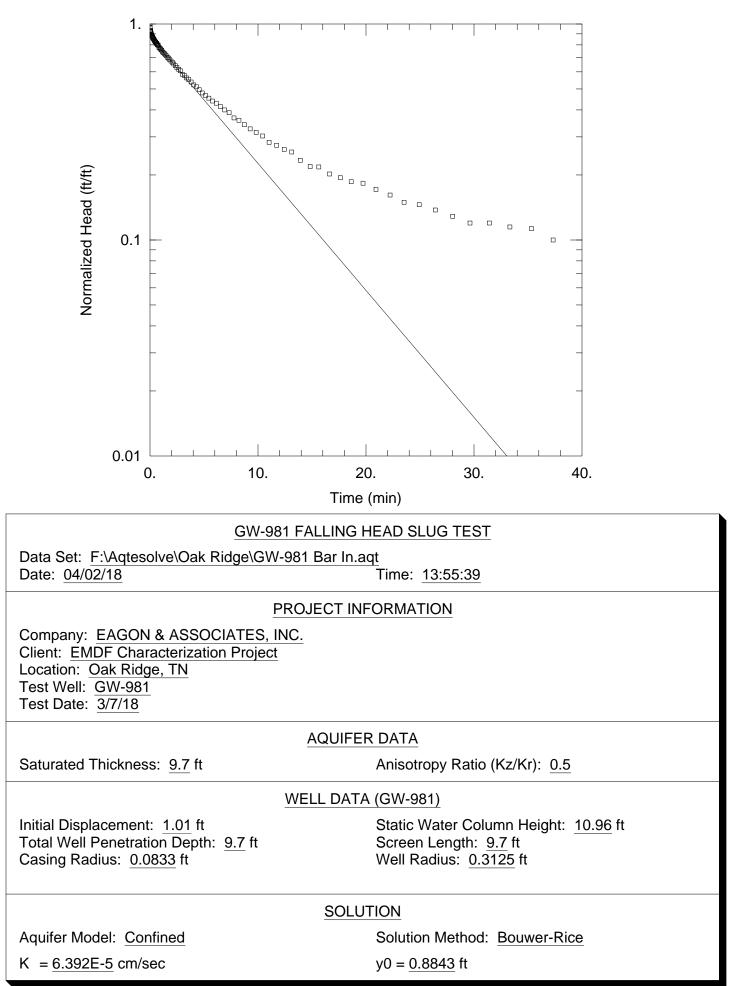
This page intentionally left blank.

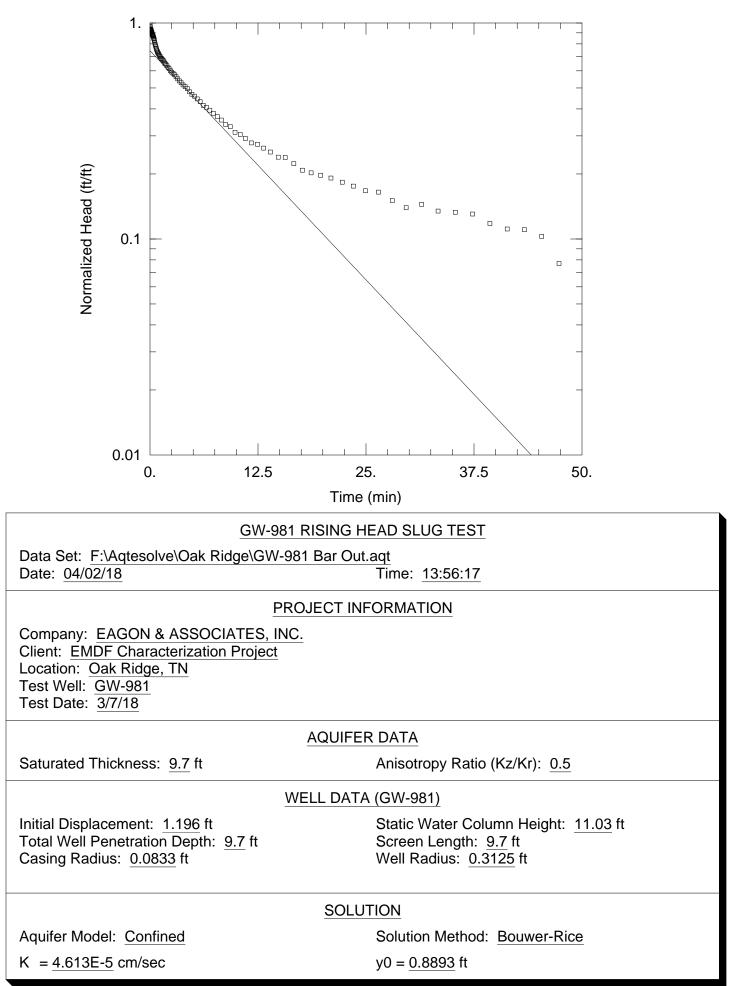
APPENDIX C

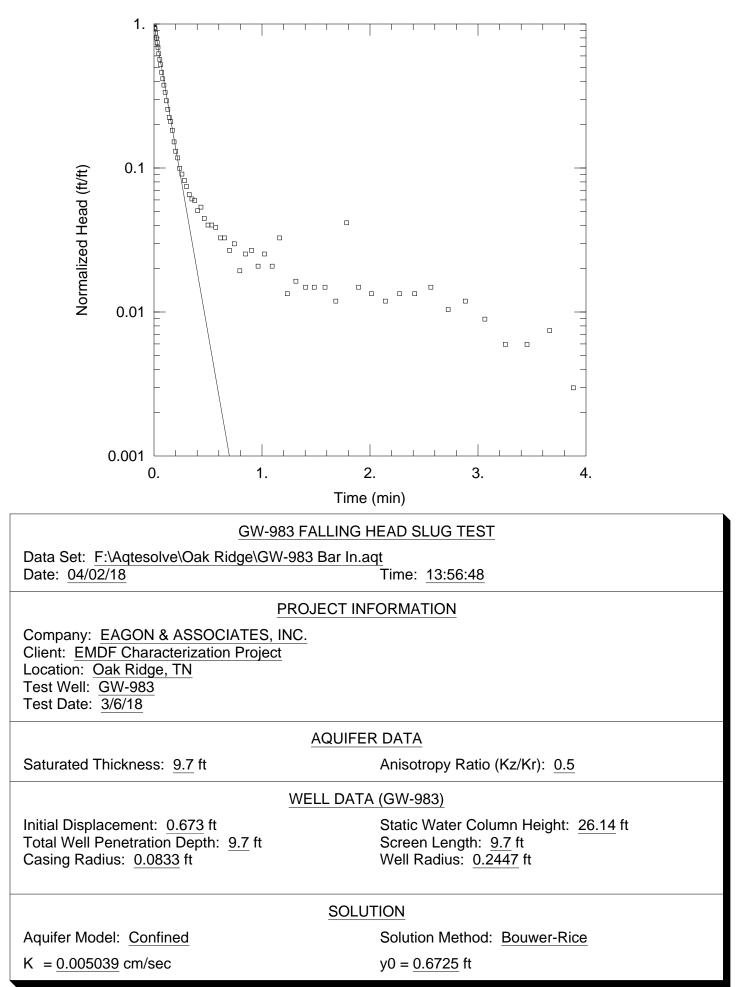
SLUG TEST DATA

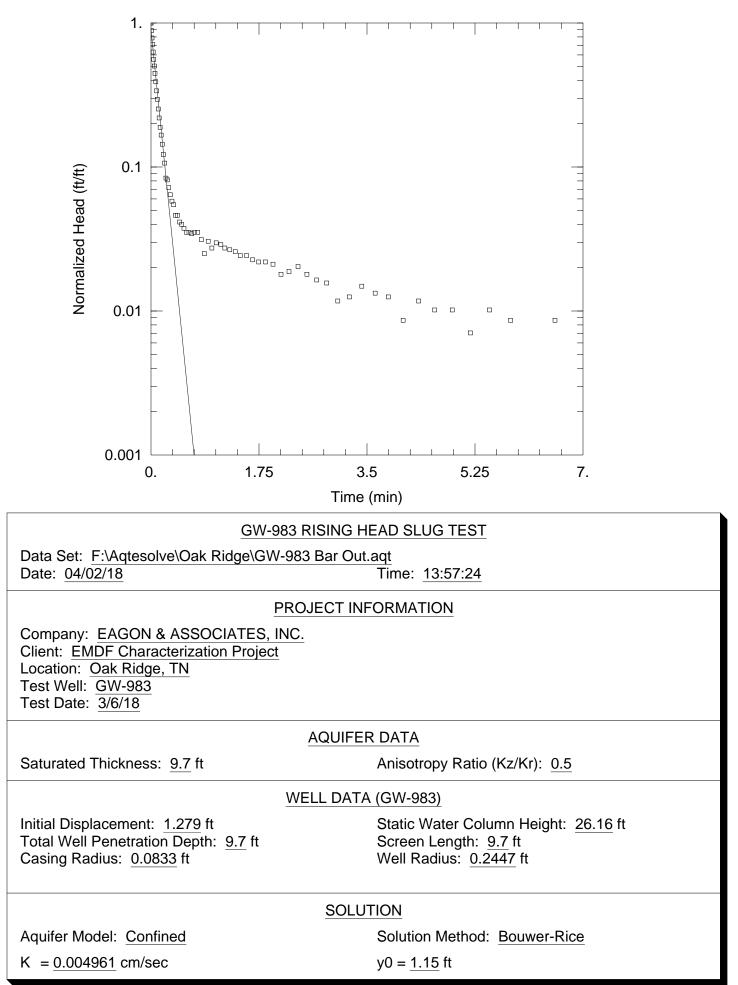

This page intentionally left blank.

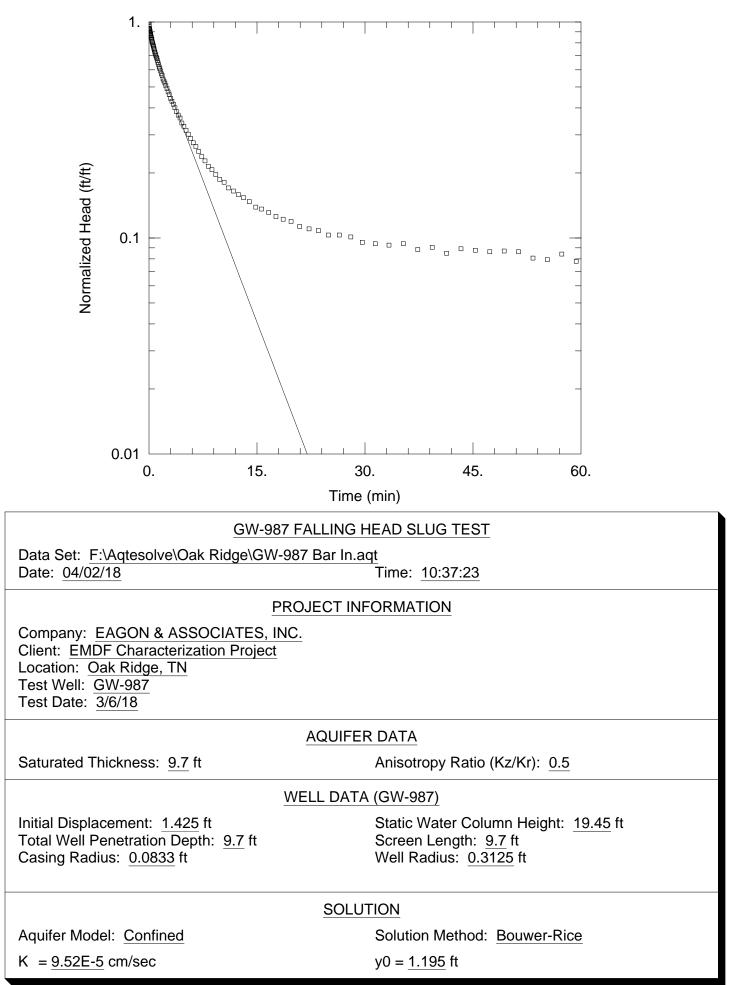

TABLE C.1. SUMMARY OF SLUG TESTING RESULTS PHASE I CHARACTERIZATION ENVIRONMENTAL MANAGEMENT DISPOSAL FACILITY CENTRAL BEAR CREEK VALLEY SITE (7c)

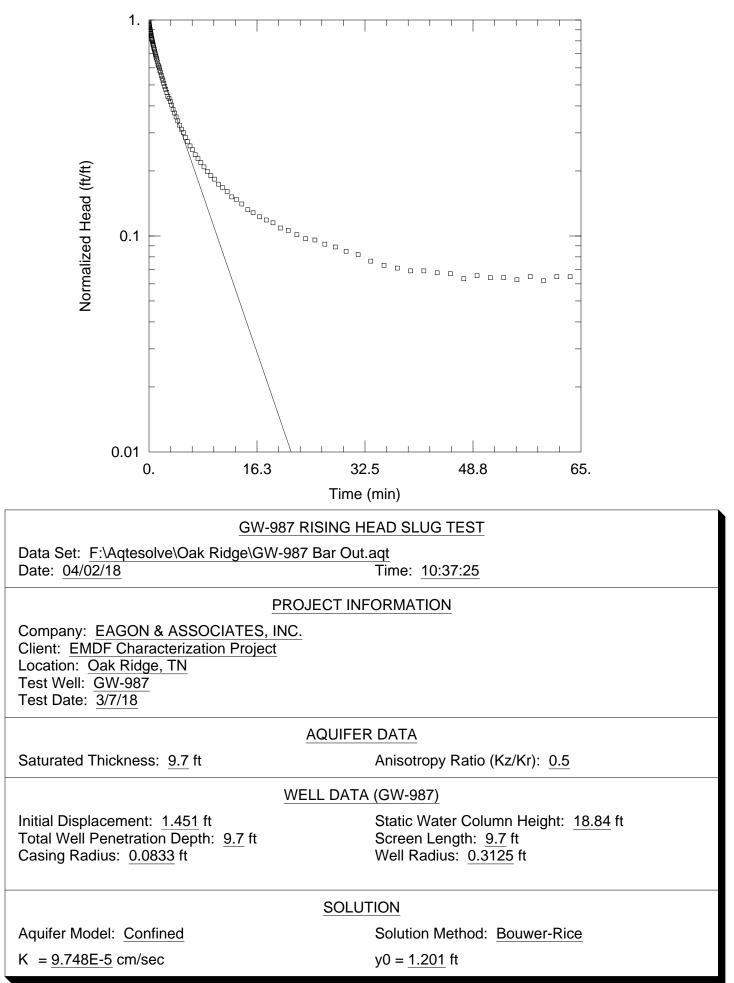

				Bouwer-Rice
	Screen	Saturated		Calculated
Well	Depth	Thickness ²	Type of	Hydraulic Conductvity
No.	(feet)	(feet)	Test	cm/sec
			Bar In	4.17 x 10 ⁻⁴
GW-979	26.3 - 36.3	9.7	Bar Out	4.96 x 10 ⁻⁴
			Average	4.56 x 10 ⁻⁴
			Bar In	6.39 x 10 ⁻⁵
GW-981	22.1 - 32.1	9.7	Bar Out	4.61 x 10 ⁻⁵
			Average	5.50 x 10 ⁻⁵
			Bar In	5.04 x 10 ⁻³
GW-983	79.2 - 89.2	9.7	Bar Out	4.96 x 10 ⁻³
			Average	5.00 x 10 ⁻³
			Bar In	9.52 x 10 ⁻⁵
GW-987	16.1 - 26.1	9.7	Bar Out	9.75 x 10 ⁻⁵
			Average	9.64 x 10 ⁻⁵
			Bar In	1.42 x 10 ⁻⁴
GW-989	33.6 - 43.6	9.7	Bar Out	6.68 x 10 ⁻⁵
			Geometric Mean	9.74 x 10 ⁻⁵
			Bar In	5.88 x 10 ⁻⁴
GW-993 ¹	23.0 - 33.0	9.7	Bar Out	6.98 x 10 ⁻⁴
			Average	6.43 x 10 ⁻⁴
			Bar In	1.85 x 10 ⁻⁴
GW-995	22.1 - 32.1	9.8	Bar Out	1.84 x 10 ⁻⁴
			Average	1.85 x 10 ⁻⁴
			Bar In	5.14 x 10 ⁻⁴
GW-999	10.3 - 20.3	9.7	Bar Out	4.54 x 10 ⁻⁴
			Average	4.84 x 10 ⁻⁴

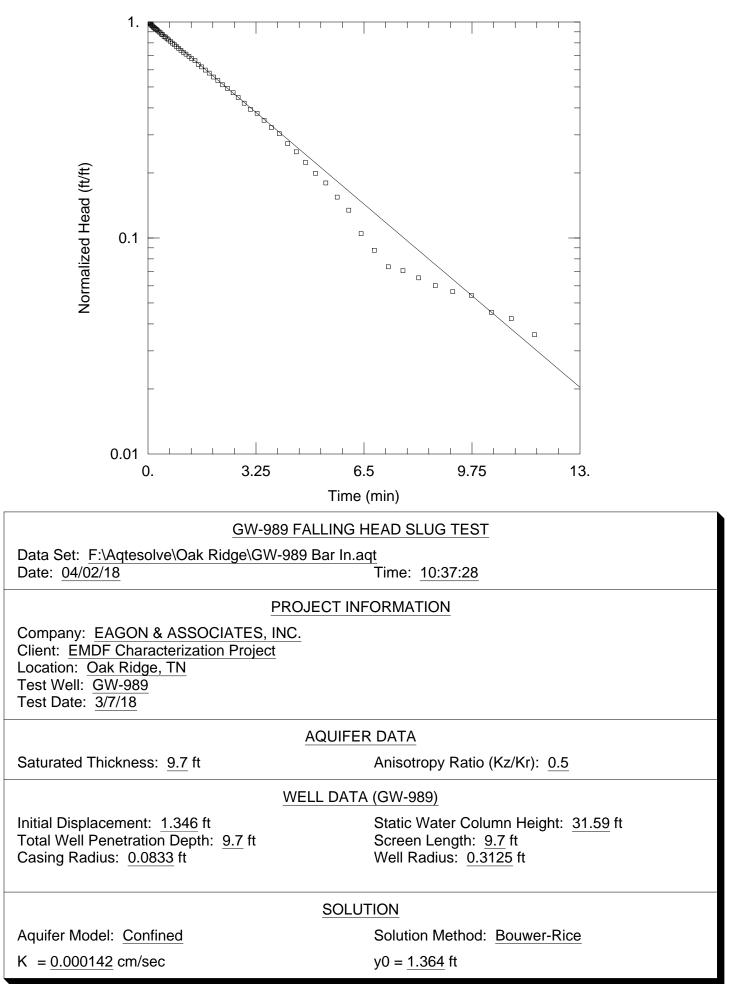

¹ Average borehole radius of screened interval in GW-993 assumed to be 17.4 inches based on volume of sand pack required. ² Saturated thickness equals the actual measured slotted interval of 10-foot screen section. Length of filter pack disregarded.

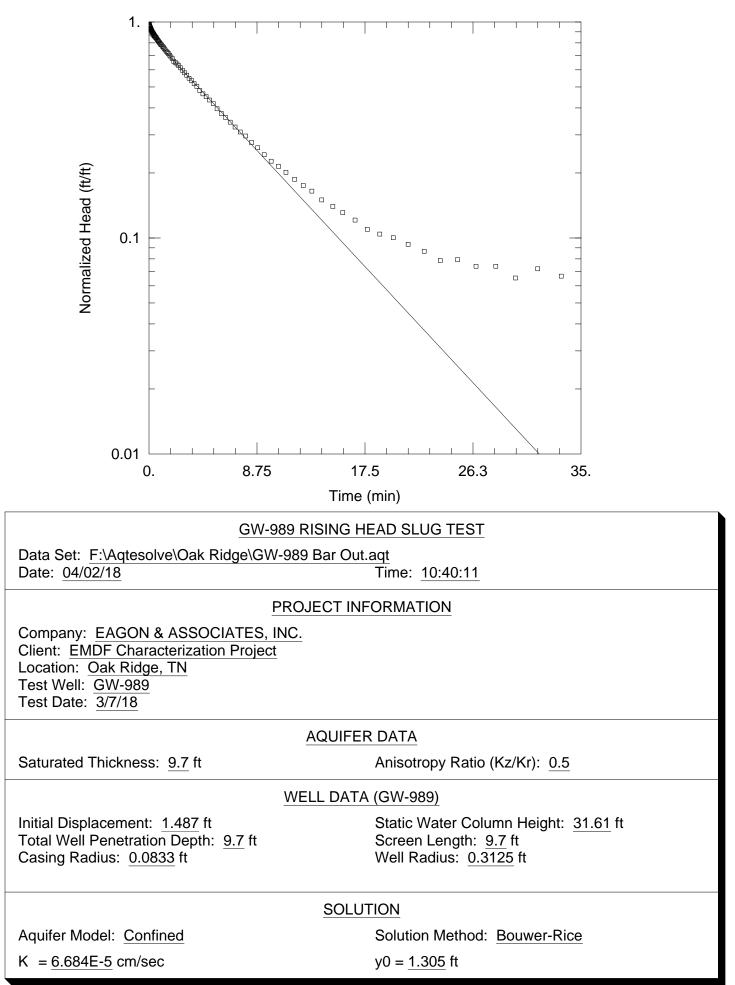

C-3 Office/Oak Ridge/Report/EMDF 7c Phase I Slug Testing Results.xlsx; 4/2/2018

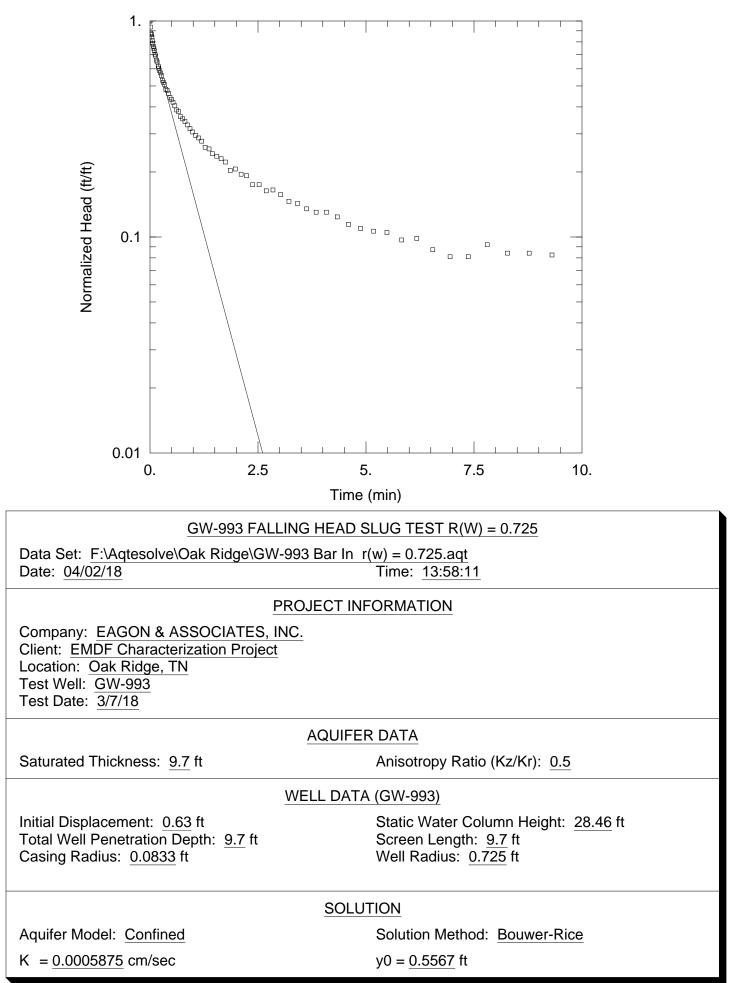


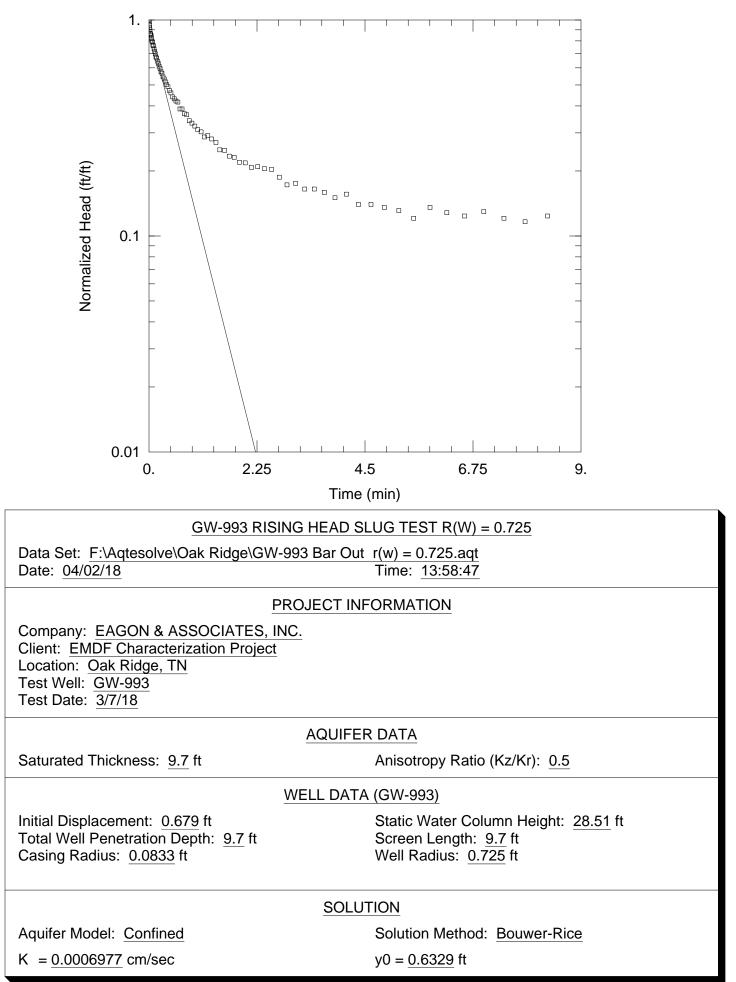


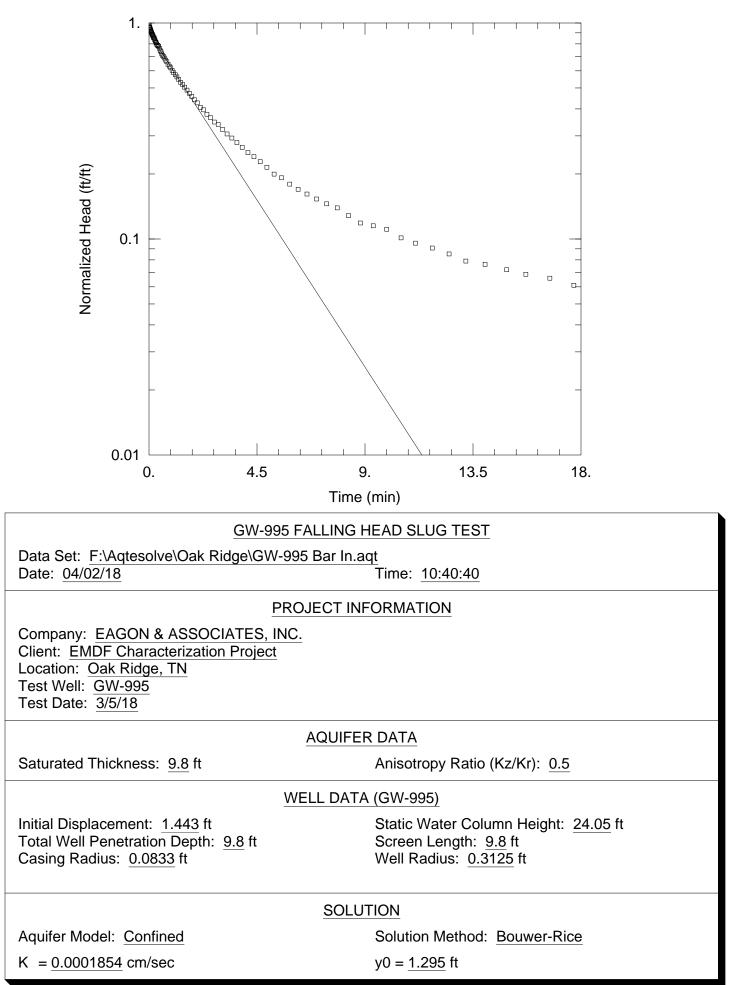


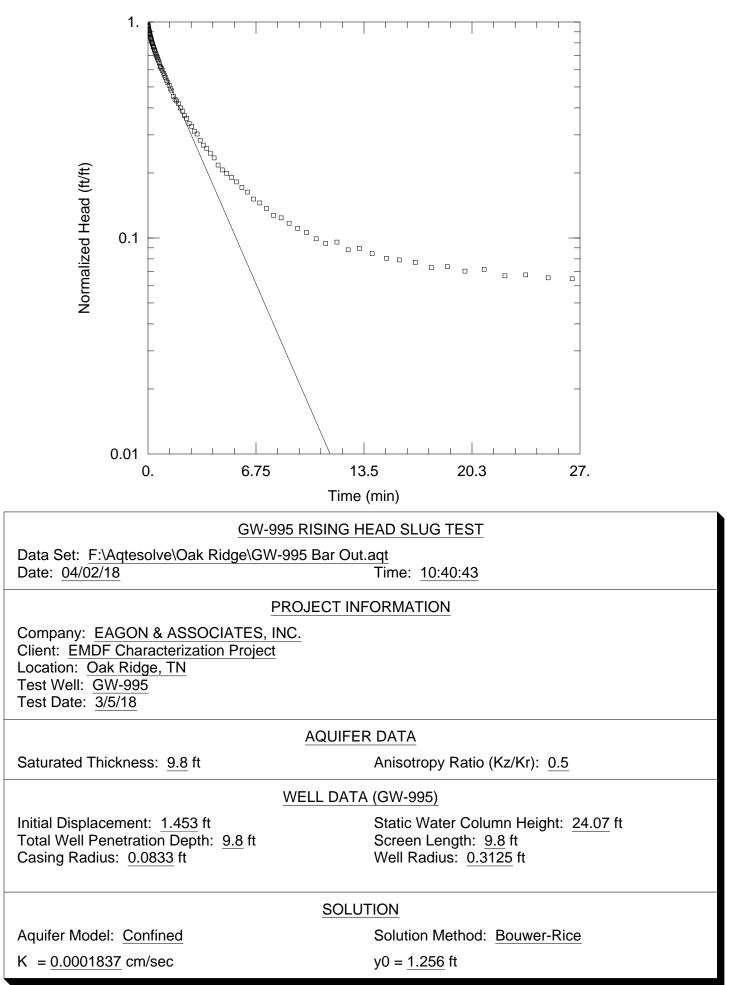


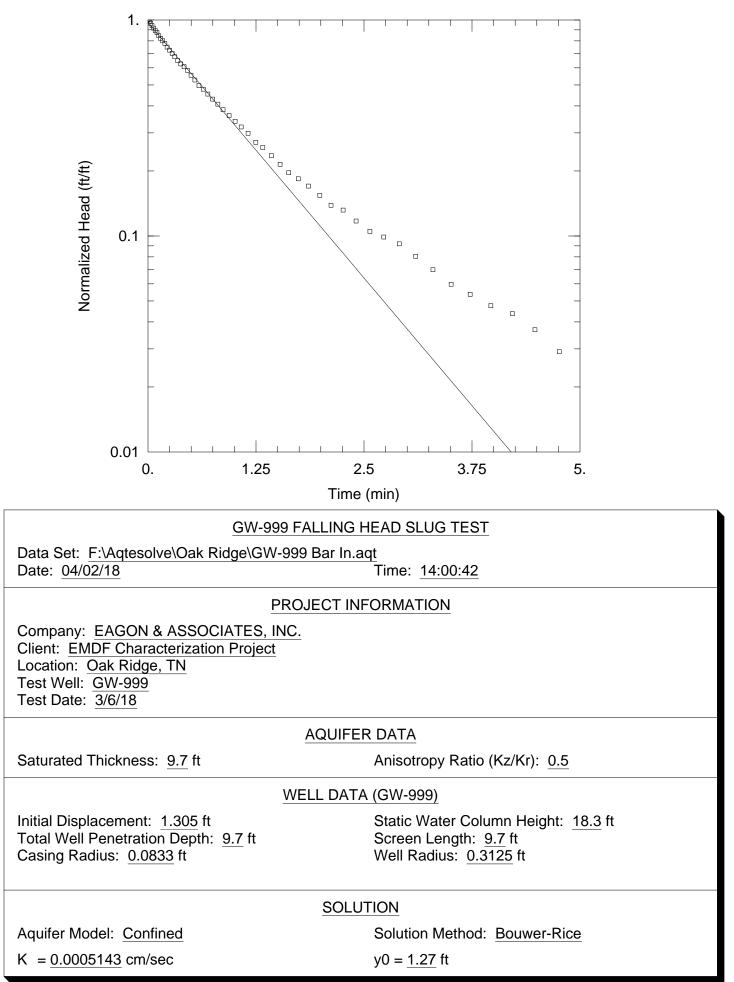

C-9

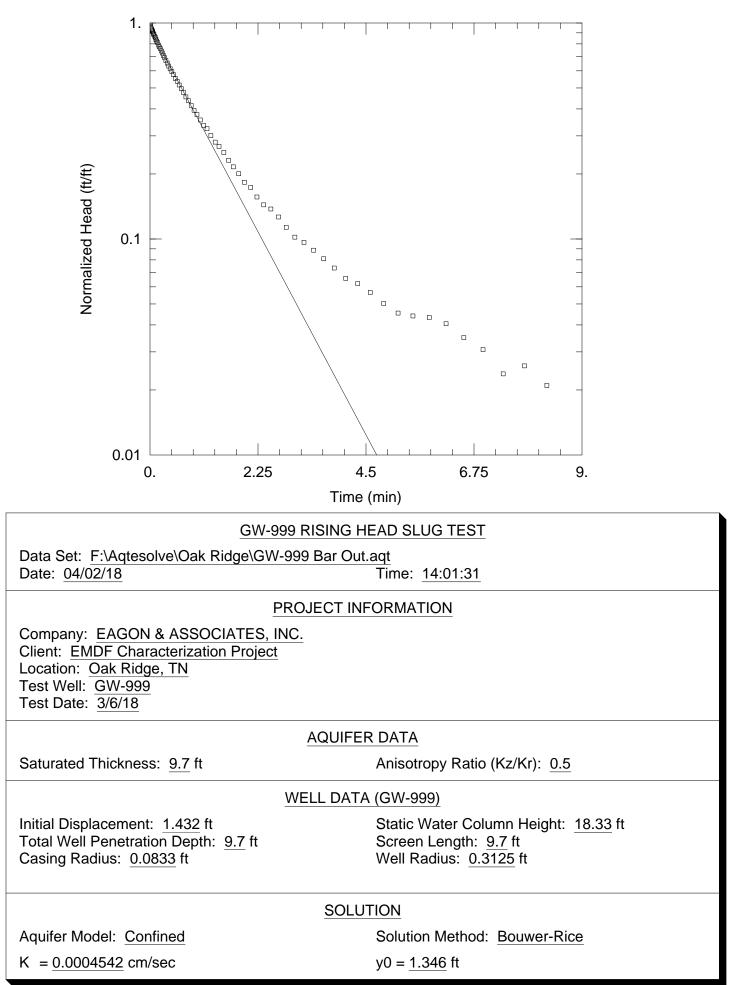



C-10



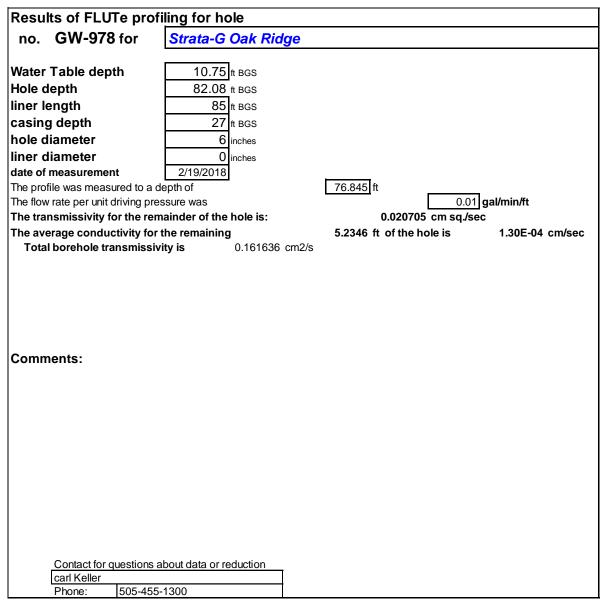






C-17

FLUTeTM TESTS


APPENDIX D

PHASE I CHARACTERIZATION EMDF CENTRAL BEAR CREEK VALLEY SITE (7C) TECHNICAL REPORT REVISION 0 – APRIL 2018

APPENDIX D

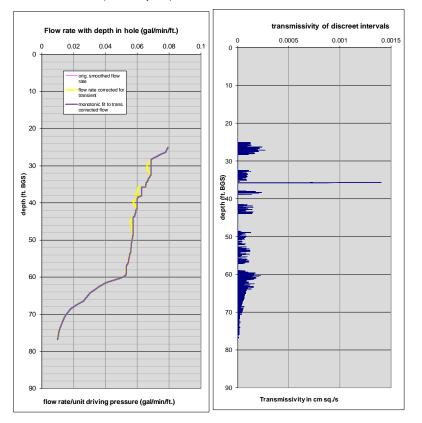
FLUTe Tests

GW	/-9	78
----	-----	----

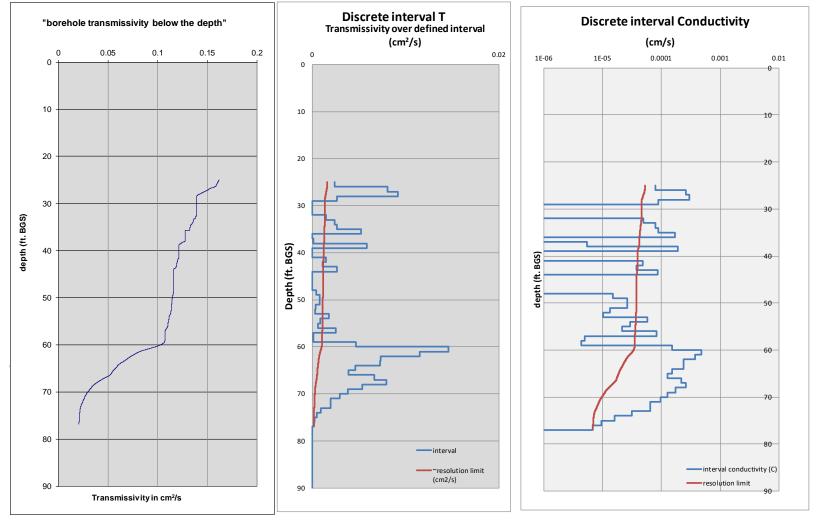
Note: the flow rate curve is the liner velocity multiplied by the borehole cross section

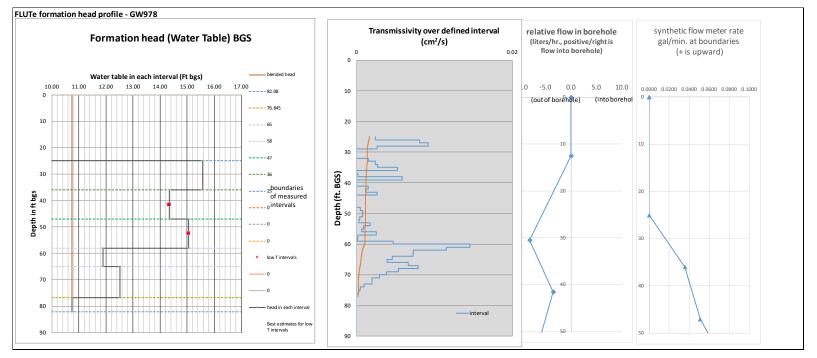
A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.


The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.


The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.


GW-978

Monotonic curve (black over yellow) is corrected for the transient

D-6

The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

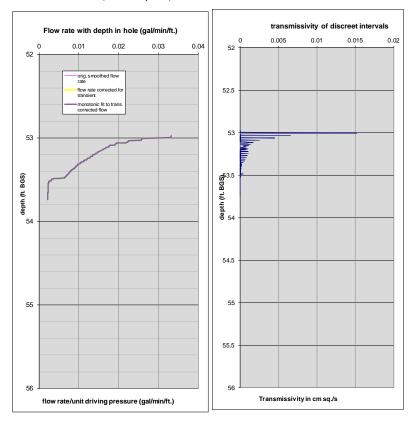
Revers	e head	profile	Borehol	e no.	GW-978	8 Oak F	Ridge Sti	rata G	date:	2/19/2018							
									synthetic							If below	
	head in				Water			flow	flow meter						DTi used in	not equal	Best
interval	the			bottom	table in			into/out of	rate gal/min						the	to 1.0, DTi	
depths		blended	ton of		formation		of intervals		at	low T					calculation	was	for low T
(ft)		head	interval								boundries	of meas i	range of plot		(cm2/s)	modified	intervals
82.08	10.75		76.845	82.08			80.46		4	0	82.08	82.08	0	100	0.020705418	-	1
76.845	10.75		65		12.5196905	2		3.561968762	-	0	76.845	76.845	0	100	0.036575691	-	1 13.161732
	12.51969	10.75			11.8847998	3		8.367427113	-	0	65	65	0	100	0.050088902	-	1 13.161732
65	12.51969	10.75	47	58	15.0609197	4	52.5	-6.35009474	0.0509	15.06091965	58	58	0	100	0.034994892	-	4 13.161732
65	11.8848	10.75	36	47	14.34278	5	41.5	-3.49309741	0.0356	14.34277995	47	47	0	100	0.034026639	-	3 13.161732
58	11.8848	10.75	25	36	15.5734649	6	30.5	-8.12329957	0.0000	0	36	36	0	100	0.034174829		1
58	15.06092	10.75	0	25	#DIV/0!	7	12.5	#DIV/0!	#DIV/0!	#DIV/0!	25	25	0	100	C		1
47	15.06092	10.75	0	0	#DIV/0!	8	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	C	_	1
47	14.34278	10.75	0	0	#DIV/0!	9	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	C	_	1
36	14.34278	10.75	0	0	#DIV/0!	10	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	C	_	1
	15.57346		0	0	#DIV/0!	11	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
-	15.57346		0	0	#DIV/0!	12	0		#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!	10.75	0	0	#DIV/0!	13	0	1	#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!	0	0	0	#DIV/0!	14			#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!	0	0	0	#DIV/0!	15			#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!	0	0	0	#DIV/0!	16	-	,	#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!	0	0	0	#DIV/0!	17			#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!	0	0	0	#DIV/0!	18		,	#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!	0	0	0	#DIV/0!	19	0	1	#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!	0	0	0		20		1	#DIV/0!	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!	0	0	0	#DIV/0!	21	0	#DIV/0!	0.0000	#DIV/0!	0	0	0	100	C	-	1
	#DIV/0!																
	#DIV/0!		total hel-	donth	02.00	ft bgs											
	#DIV/0! #DIV/0!		total hole hole diam			in.											
	#DIV/0! #DIV/0!		casing dep		-		integral of h	olo flow									
	#DIV/0! #DIV/0!		casing dep			in.	is 0??	#DIV/0!									
	#DIV/0! #DIV/0!		casing uld		0	m.	13 011	#017/0!									
0	#DIV/0!																

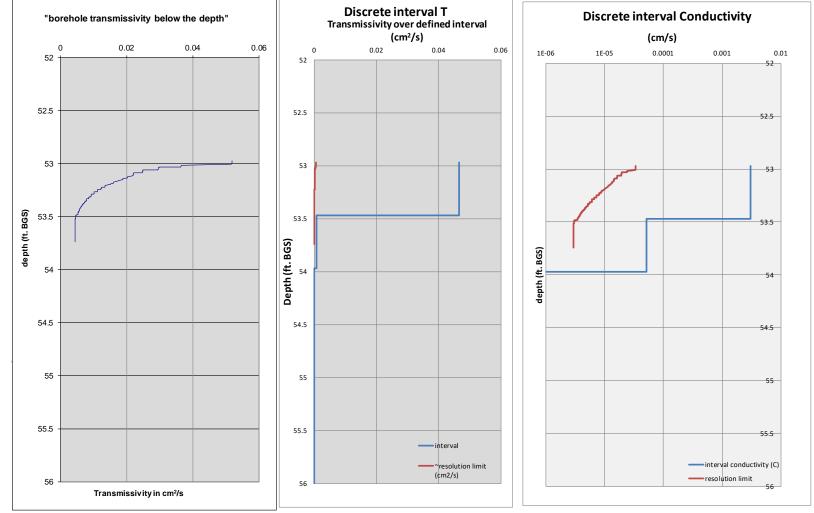
Results of FLUTe profil	ing for hole		
no. GW-982 for	Strata-G Oak Ridge		
Water Table depth	52.375 ft BGS		
Hole depth	125.3 ft BGS		
liner length	130 ft BGS		
casing depth	50 ft BGS		
hole diameter	6 inches		
liner diameter	6.5 inches		
date of measurement	2/19/2019	_	
The profile was measured to a de	pth of	53.741 ft	
The flow rate per unit driving press			gal/min/ft
The transmissivity for the rema		0.0045 cm sq./se	
The average conductivity for the		71.559 ft of the hole is	2.06E-06 cm/sec
Total borehole transmissivit	y is 0.051813 cm2/s		
Comments:			
Contact for questions ab carl Keller Phone: 505-455-			

Note: the flow rate curve is the liner velocity multiplied by the borehole cross section

A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.


The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

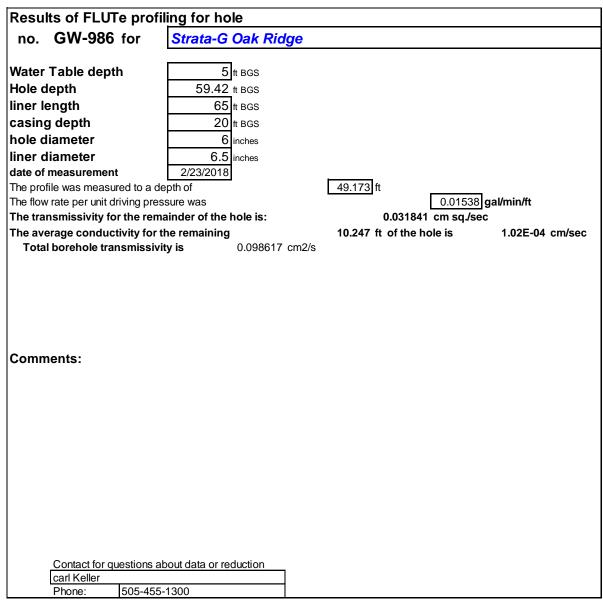

indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.

GW-982

Monotonic curve (black over yellow) is corrected for the transient

D-13


Vj ku'r ci g'kpygpykqpcm{ 'rghy'drcpn0'

'	,				
,	,				
,	,				
,	,				
,	,				
,	,				
,	,				
,	,				
,	,				
,	,				
,	,				
,	,				
,	,				
,	•				
,	,				
,	,				
,	,				
,	•				
,	,				
,	,	"			

"

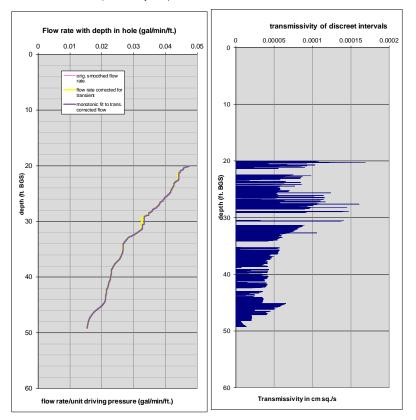
"

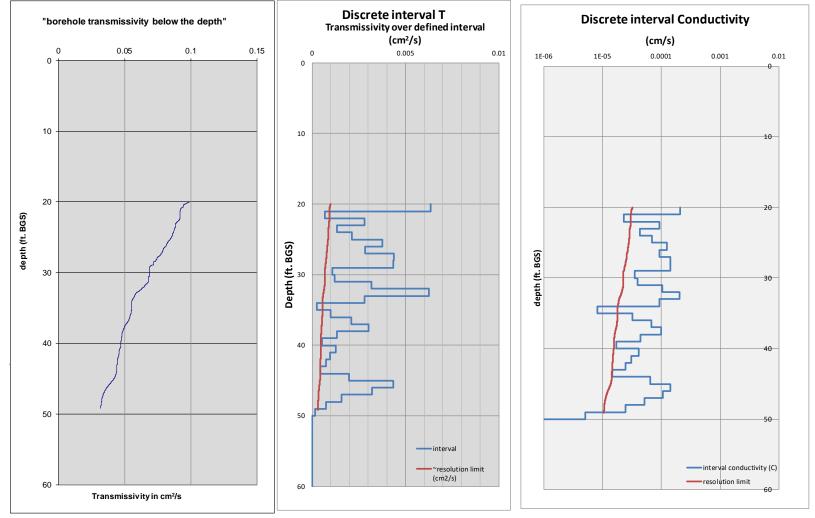
GW	-986
----	------

Note: the flow rate curve is the liner velocity multiplied by the borehole cross section

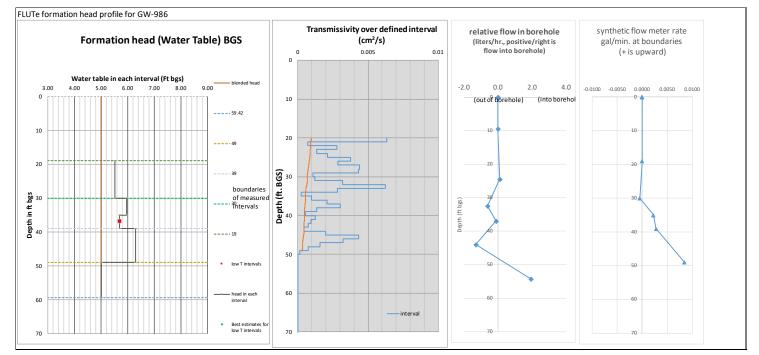
A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.


The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an


indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.


GW-986

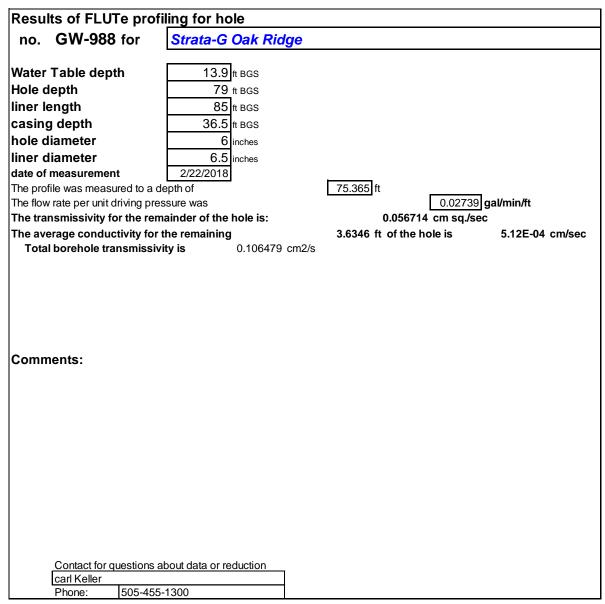
Monotonic curve (black over yellow) is corrected for the transient

D-17

The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.


The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

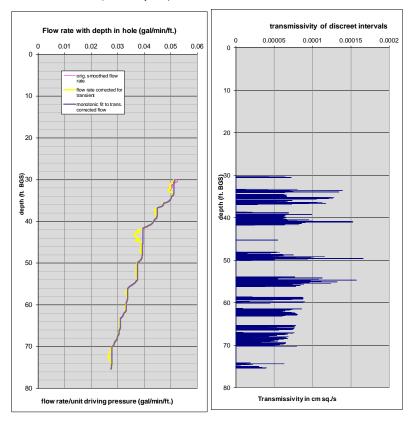
49 6.293312 5 35 35 70049765 39 39 0 100 0.007437049 1 #DIV,0 39 5.700498 5 19 30 5.558866 0 0 101/0 0.0027 5.700497648 39 39 0 100 0.007437049 1 #DIV,0 39 5.700498 5 19 #DIV/01 424.5 0.6129673 -0.0000 0 30 0 100 0.0027437049 1 #DIV,0 30 5.5700498 5 0 1 #DIV/01 #DIV/01 #DIV/01 #DIV/01 10 0 0 100 0 10 0 1 #DIV,0 #DIV/01 #DIV/01 10 0 1 #DIV,0 #DIV/01 #DIV/01 0	Revers	e head	profile	Boreho	le no.	GW-98	5 O. Ri	dge		date:	2/23/20	18								
Interval depths Interval interval (rt) Interval interval (rterval) Interval port of interval Interval interval Interva																				
Interval depths bottom interval (r) table in of formation (r) bottom formation formation formation (r) Interval interval (r) Interval (r) Interval interval (r) Interval (r) Inte																				
Interval depths bottom interval (r) table in of formation (r) bottom formation formation formation (r) Interval interval (r) Interval (r) Interval interval (r) Interval (r) Inte																				
Interval depths bottom interval (r) table in of formation (r) bottom formation formation formation (r) Interval interval (r) Interval (r) Interval interval (r) Interval (r) Inte		head in				Water		mid	flow	synthetic							DTi used in	If below pc	+ B	oct
depths interval blended top of of formation interval hole rate gal/min low T calculation DTi was for low 59.42 5 5 39 49 6.293312.3 1 54.25 1.29267.47 0.0085 0 59.42 5.0 0 59.42 0 100 0.03384057 1 #DV/01 49 5 5 39 49 6.293312.3 2 4.4 1.2967647 0.0028 0 49 49 100 0.03384057 1 #DV/01 39 6.293312 5 33 5.958660.8 19 30 5.598686.8 10 19.01/01 #DV/01 #DV/01 19 9 0 10 0 0 1 #DV/01 30 5.51968 5 0 19.01/01 #DV/01 #DV/01 #DV/01 #DV/01 0 0 1 1 #DV/01 30 5.51968 5	interval				bottom					'										
(t) (tft bgs) head interval (tft bgs) (tft			hlended						· ·		low T							•		
59.42 5 5 49 59.42 5 39 49 59.42 59.42 59.42 59.42 0 100 0.031840557 1 HDIV 49 5 5 39 49 6.293312 5 30 35 5.95886618 4 4.1.2967647 0.0028 0 49 49 0 100 0.007437049 1 #DIV 39 5.700498 5 30 35 5.95886618 4 2.25 0.01000 0 30 30 0 0.007437049 1 #DIV 1 0.0000 0 30 30 0 100 0.013716775 1 #DIV 1 #DIV 1 #DIV 1 #DIV 1 #DIV 1 #DIV 1 1 <div< td=""> 1 #DIV 1 #DIV 1 #DIV</div<>					-		interval			•		houn	dries of	meas i ran	ge of plot					
49 5 5 33 44 1.2967647 0.0028 0 49 49 0 100 0.002933604 1 #DIV/0 39 6.293312 5 33 39 5.700497648 39 39 0 100 0.002393604 1 #DIV/0 39 5.7004976 30 35 5.5958866 19 30 5.51958866 0 0.0013716775 1 #DIV/0 30 5.559866 5 0 9 49 49 0 100 0.0013716775 1 #DIV/0 35 5.598866 5 0 9 49 49 0 100 0.0013716775 1 #DIV/0 36 5.598866 5 0 9 49 9 0 0 0.00299904 1 #DIV/0 1 #DIV/0 1 #DIV/0 1 #DIV/0 1 #DIV/0 1 1 #DIV/0 1 1 #DIV/0 1 #DIV/0 1 1 #DIV/0 1 1 #DIV/0 1	· · ·						1				Intervals				•			-		iter vais
49 6.293312 5 33 33 5.70049765 39 39 0 100 0.007437049 1 #DIV,0 39 5.700498 5 19 30 5.5958866 0 0 100/0.027437049 1 #DIV,0 35 5.700498 5 19 #DIV/0 6 9.5 #DIV/0 0 0 0 0.0027437049 1 #DIV,0 35 5.700498 5 19 #DIV/0 4 32.5 0.6129673 0 0.0000 0 30 0 100 0.012715775 1 #DIV,0 35 5.700498 5 0 0 #DIV/0 #DIV/0 #DIV/0 0 0 0 0.022 5.70049648 39 39 0 100 0.0177437049 1 #DIV,0 1 0 0.0100 0 10 0 1 #DIV,0 1 0 0 1 0 1 1 DIV,0							2			-								-		#DIV/0!
39 6.293312 5 30 35 595886618 4 32.5 0.6129673 0.0005 0 35 35 0 100 0.013716775 1 #DIV/ 35 5.700498 5 19 30 5.51686049 5 24.5 0.10401272 0.0000 0 30 30 0 100 0.023689104 1 #DIV/01 35 5.700498 5 0 0 #DIV/01 #DIV/01 #DIV/01 #DIV/01 19 19 0 100 0 1 #DIV/01 #DIV/01 #DIV/01 0 0 0 100 0 1 1 1 0 1 0 0 100 0 10 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1			-				3			-	5,7004976							-		#DIV/0!
39 5.700498 5 19 30 5.51968049 5 24.5 0.10401723 0.0000 0 30 30 0 100 0.029689104 1 #DIV/0 35 5.700498 5 0 19 #DIV/01 DIIII #DIV/01 #DIV/							4													#DIV/0!
35 5.700498 5 0 19 HDIV/01							5					0							1	#DIV/0!
30 5.958866 5 0 0 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 0 0 0 100 0 1 19 5.51968 5 0 0 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 0 0 0 0 0 0 100 0 1 19 5.51968 5 0 0 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 0 0 0 0 100 0 1 0 #DIV/01 5 0 0 #DIV/01 #DIV/01 #DIV/01 #DIV/01 0 0 0 100 0 1 0 #DIV/01 0 0 #DIV/01 #DIV/01 #DIV/01 #DIV/01 0 0 0 100 0 1	35			-			6			-	#DIV/0!					100			1	,
30 5.51968 5 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 0 0 0 100 0 1 19 5.51968 5 0 0 #DIV/0! 10 0 #DIV/0! 0 0 0 0 0 0 100 0 1 0 #DIV/0! 5 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 0 0 0 1 0 #DIV/0! 5 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 0 0 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! 0 0 0 1 0 #DIV/0! 0 0 0 0 1 1 0 #DIV/0! 0 0 0 0 1 1 0 #DIV/0! 0 0 0 100 0 1 1 1 1 1	35	5.958866	5	0	0	#DIV/0!	7	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0		1	
19 5.51968 5 0 0 #DiV/0! #DiV/0! #DiV/0! #DiV/0! 0 0 0 0 0 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 1 0 100 0 1 0 100 0 1 0 100 0 1 0 100 0 0 0 0 0 100 0 1 0 100 0 0 0 0 1 0 100 0 0 0 0 0 1 0 100 0 0 0 0 0 1 0 100 0 0 0 0 1 0 100 0 0 0 1 0 100 0 0 0 1 0 100 0 0 0 1 0 100 0 0 0 1 0 100 0 0 0 1 0<	30	5.958866	5	0	0	#DIV/0!	8	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0		1	
19 5.51968 5 0 0 #DIV/0! 0 11 0 #DIV/0! #DIV/0! 0 0 0 0 0 0 11 0 #DIV/0! #DIV/0! 0 0 0 0 0 11 0 #DIV/0! #DIV/0! 0 0 0 0 0 11 0 #DIV/0! 0 0 0 0 0 11 0 #DIV/0! 0 0 0 0 0 11 0 #DIV/0! #DIV/0! 0 0 0 0 0 0 11 0 #DIV/0! #DIV/0! 0 0 0 0 0 11 0 #DIV/0! 0 0	30	5.51968	5	0	0	#DIV/0!	9	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0		1	
0 #DIV/0! 5 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 10 0 #DIV/0! 0 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 0 10 10 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	19	5.51968	5	0	0	#DIV/0!	10	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0		1	
0 #DIV/0! 5 0 0 #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 0 0 0 0 100 0	19	5.51968	5	0	0	#DIV/0!	11	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0		1	
0 #DIV/0! 0 0 0 #DIV/0! 0 0 0 14 0 #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 1 1 0 #DIV/0! #DIV/0! 0 0 0 1 0 #DIV/0! #DIV/0! 0 0 0 0 1 1 0 #DIV/0! #DIV/0! 0 0 0 0 1 0 #DIV/0! 1 0 0 0 0 0 1 1 0 #DIV/0! 0 0 0 0 1 1 1 0 #DIV/0! 0 0 0 0 1 1 0 1 0<	(#DIV/0!	5	0	0	#DIV/0!	12	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0		1	
0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 10 0 1 0 #DIV/0! 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 0 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0 0 0 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 10 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 10 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 10 0 1 0 #DIV/0! 0 0 0 0 0 0 0 10 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 </td <td>(</td> <td>#DIV/0!</td> <td>5</td> <td>0</td> <td>0</td> <td>#DIV/0!</td> <td>13</td> <td>0</td> <td>#DIV/0!</td> <td>#DIV/0!</td> <td>#DIV/0!</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>100</td> <td>0</td> <td></td> <td>1</td> <td></td>	(#DIV/0!	5	0	0	#DIV/0!	13	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0		1	
0 #DIV/0! 0 0 0 #DIV/0! 16 0 #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! 0 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0	() #DIV/0!	0	0	0	#DIV/0!	14	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0		1	
0 #DIV/0! 0 0 #DIV/0! 17 0 #DIV/0! #DIV/0! 0 0 0 0 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! 0 0 0 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! #DIV/0! 0 0 0 10 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! 0 0 0 10 0 1 0 #DIV/0! 0 0 0 0 0 0 10 0 1 0 #DIV/0! 0 0 0 0 0 10 0 1 0 #DIV/0! 0 0 0 0 0 0 10 0 1 0 #DIV/0! 0	() #DIV/0!	0	0	0	#DIV/0!	15	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0		1	
0 #DIV/0! 0 0 #DIV/0! 18 0 #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! 19 0 #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 #DIV/0! #DIV/0! 0 0 0 100 0 1 0 #DIV/0! 0 0 0 0 0 100 0 1 0 #DIV/0! 0 0 0 0 0 0 100 0 1 0 #DIV/0! 0 0 0 0 0 100 0 1 0 #DIV/0! 0 0 0 0 0 100 0 1 0 #DIV/0! 0 0 0 0 0 100 0 1 0 #DIV/0! total hole depth 59.42 ft bgs integral of hole fl	(#DIV/0!	0	0	0	#DIV/0!	16	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0	_	1	
0 #DIV/0! 0 0 #DIV/0! 19 0 #DIV/0! #DIV/0! 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 100 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 100 0 1 0 1 0 <	(#DIV/0!	0	0	0	#DIV/0!	17	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0	_	1	
0 #DIV/0! 0 0 #DIV/0! 20 0 #DIV/0! #DIV/0! 0 0 0 0 0 1 0 #DIV/0! 0 0 0 0 0 0 0 0 0 0 0 1 0 #DIV/0! 0 0 0 0 0 0 0 0 1 0 #DIV/0! 0 0 0 0 0 0 0 1 0 #DIV/0! total hole depth 59.42 ft bgs 0 0 0 0 0 0 1 0 #DIV/0! hole diameter 0 0 0 0 0 0 1 0 #DIV/0! casing depth 0 ft bgs integral of hole flow 0 is 0?? #DIV/0!	(#DIV/0!	0	0	0	#DIV/0!	18	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0	_	1	
0 #DIV/0! 0 0 #DIV/0! 0.0000 #DIV/0! 0 0 10 0 1 0 #DIV/0! 0 #DIV/0! 0.0000 #DIV/0! 0 0 10 0 1 0 #DIV/0! 0 #DIV/0! 0 0 10 0 1 0 #DIV/0! total hole depth 59.42 ft bgs 0 in. 0 1 0 #DIV/0! hole diameter 0 in. 0 1 1 0 #DIV/0! casing depth 0 ft bgs integral of hole flow 1 1 1 0 #DIV/0! casing diam. 0 in. is 0?? #DIV/0! 1 1 1	(#DIV/0!	0	0	0	#DIV/0!	19	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0	_	1	
0 #DIV/0! 0 #DIV/0! 0 #DIV/0! total hole depth 59.42 ft bgs 0 #DIV/0! hole diameter 0 in. 0 #DIV/0! casing depth 0 ft bgs integral of hole flow 0 #DIV/0! casing diam. 0 in. is 0?? #DIV/0!	(#DIV/0!	0	0	0	#DIV/0!	20	0	#DIV/0!	#DIV/0!	#DIV/0!		0	0	0	100	0	_	1	
0 #DIV/0! 0 #DIV/0! total hole depth 59.42 ft bgs 0 #DIV/0! hole diameter 0 in. 0 #DIV/0! casing depth 0 ft bgs integral of hole flow 0 #DIV/0! casing diam. 0 in. is 0??	(#DIV/0!	0	0	0	#DIV/0!	21	0	#DIV/0!	0.0000	#DIV/0!		0	0	0	100	0	_	1	
0 #DIV/0! total hole depth 59.42 ft bgs 0 #DIV/0! hole diameter 0 in. 0 #DIV/0! casing depth 0 ft bgs 0 #DIV/0! casing diam. 0 in. is 0?? #DIV/0!	(#DIV/0!								-										
0 #DIV/0! hole diameter 0 0 #DIV/0! casing depth 0 0 #DIV/0! casing diam. 0 0 #DIV/0! casing diam. 0	(#DIV/0!				-														
0 #DIV/0! casing depth 0 ft bgs integral of hole flow 0 #DIV/0! casing diam. 0 in. is 0?? #DIV/0!	(#DIV/0!		total hole	depth	59.42	ft bgs													
0 #DIV/0! casing diam. 0 in. is 0?? #DIV/0!	(#DIV/0!		hole diam	neter	0	in.													
	(#DIV/0!		casing de	pth	0	ft bgs	integral o	f hole flow											
	(#DIV/0!		casing dia	m.	0	in.	is 0??	#DIV/0!											
0 #DIV/0!	(#DIV/0!																		

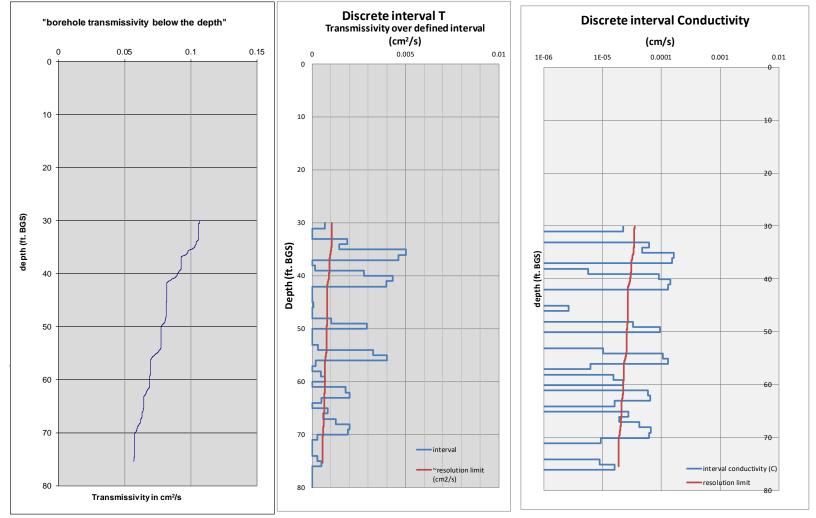
GW	-988
----	------

Note: the flow rate curve is the liner velocity multiplied by the borehole cross section

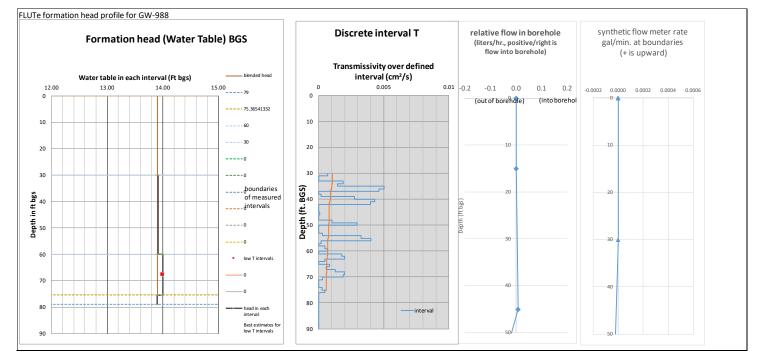
A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.


The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an


indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.


GW-988

Monotonic curve (black over yellow) is corrected for the transient

D-23

The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

Revers	se head	profile	Boreho	le no.	GW-98	8 Oak I	Ridge S	trata G	date:	2/22/2018						
	head in				Water		mid	flow	synthetic flow					DTi used	in If below no	ot Best
interval	the			bottom	table in		point of	into/out of	, meter rate					the	equal to 1.	0, estimates for
depths	interval	blended	top of	of	formation		intervals	hole	gal/min at					calculation	on DTi was	low T
(ft)	(ft bgs)	head	interval		(ft bgs)	interval	(ft)		boundaries	low T intervals	boundries	of meas. i	range of plot		modified	intervals
79				79	13.9	1	77.1825		0.0004		79	79	0	100 0.05671		1
75.36541			60			2	67.68271		0.0000				0	100 0.01209		1 #DIV/0!
	1 13.99671		30		13.9141733	3	45		0.0000		60	60	0	100 0.03766		1 #DIV/0!
	0 13.99671		0	30	#DIV/0!	4	15		#DIV/0!	#DIV/0!	30	30	0	100	0	1 #DIV/0!
60		13.9	0	0	#DIV/0!	5	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1 #DIV/0!
30) 13.91417) #DIV/0!	13.9 13.9	0	-	#DIV/0! #DIV/0!	6		#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	0	0	0 0	100 100	0	1 1
) #DIV/0!	13.9	0	v	#DIV/0!	/		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
) #DIV/0!	13.9	0	Ŭ	#DIV/0!	. o		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
) #DIV/0!	13.9	0	0	#DIV/0!	10		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
) #DIV/0!	13.9	0	0	#DIV/0!	10		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
) #DIV/0!	13.9	0	0	#DIV/0!	12	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
	D #DIV/0!	13.9	0	0	#DIV/0!	13	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
() #DIV/0!	0	0	0	#DIV/0!	14	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
() #DIV/0!	0	0	0	#DIV/0!	15	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
() #DIV/0!	0	0	0	#DIV/0!	16	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
) #DIV/0!	0	0	0	#DIV/0!	17	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
) #DIV/0!	0	0	0	#DIV/0!	18		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
) #DIV/0!	0	0	0	#DIV/0!	19		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
) #DIV/0!	0	0	- v	#DIV/0!	20		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	1
) #DIV/0!	0	0	0	#DIV/0!	21	. 0	#DIV/0!	0.0000	#DIV/0!	0	0	0	100	0	1
) #DIV/0!															
) #DIV/0!		total hole	donth	70	ft bgs										
) #DIV/0!		hole diam	•		in.										
) #DIV/0!		casing dep			ft bgs	integral o	f hole flow								
) #DIV/0!		casing dea			in.	is 0??	#DIV/0!								
) #DIV/0!		555115 010		0	1	15 0.1									

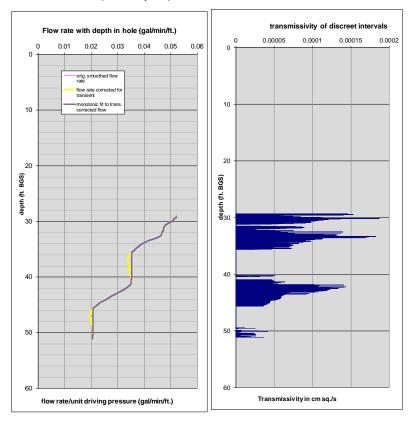
D-25

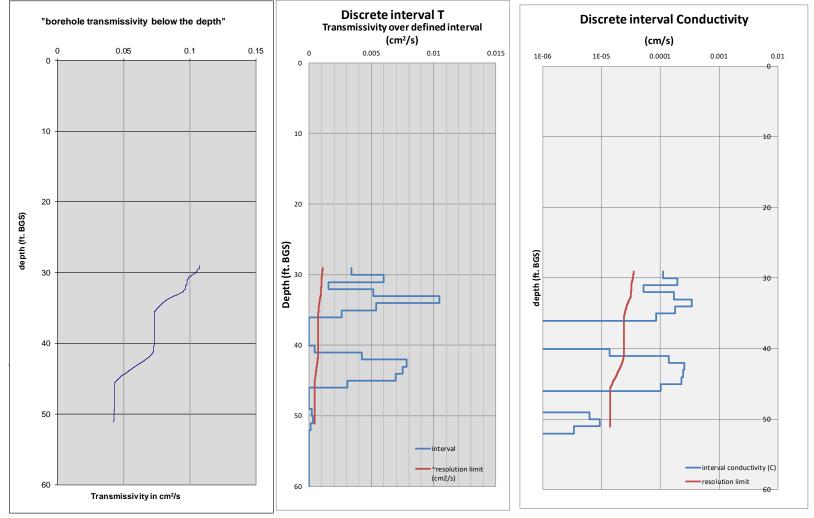
Results of FLUTe pr+C	1:Y40ofiling for	hole			
no. GW-992 for	Strata G Oak R	Ridge			
Water Table depth	1.5 ft BGS				
Hole depth	54.833 ft BGS				
liner length	60 ft BGS				
casing depth	31 ft BGS				
hole diameter	6 inches				
liner diameter	6.5 inches				
date of measurement	2/27/2018				
The profile was measured to a de	epth of		51.124 ft		
The flow rate per unit driving pres				0.02047 gal/m	nin/ft
The transmissivity for the rem			0.042393 cr	-	
The average conductivity for t			3.7092 ft of the hole	is 3.	75E-04 cm/sec
Total borehole transmissivi	ity is 0.10757	'2 cm2/s			
Comments:					
Contact for questions a carl Keller Phone: 505-455-		7			

Note: the flow rate curve is the liner velocity multiplied by the borehole cross section

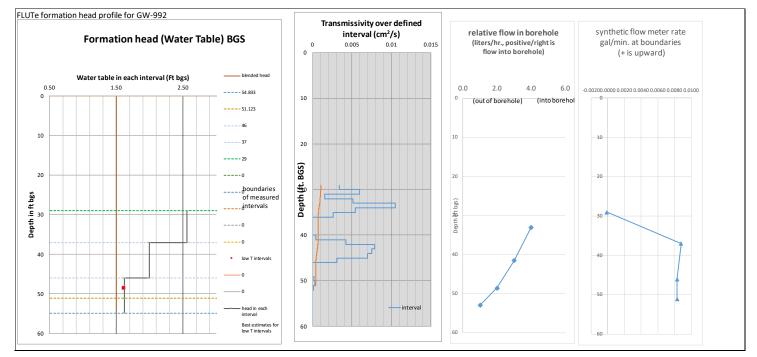
A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.


The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an


indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.


GW-992

Monotonic curve (black over yellow) is corrected for the transient

D-29

The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

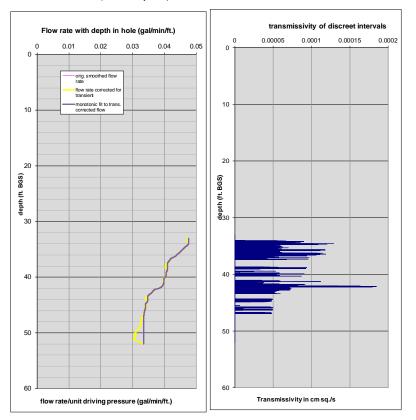
Revers	e head	profile	Borehol	e no.	GW-992	2 RHP	orofle (Dak Ridខ្ល	date:	2/27/2018								
	المحمط الم				14/-+			£1	synthetic						DTi used in	If below no		+
intorual	head in the			hottom	Water table in		mid point of	flow	flow meter						the			
interval depths		blended	top of		formation		intervals		rate gal/min at						calculation	equal to 1.0		or low T
				-	(ft bgs)	intonvol	(ft)			low T intervals	houndring of	f maar i	range of plat		(cm2/s)	modified		ntervals
(ft) 54.833	(11 bgs) 1.6185	head 1.5	interval 51.123	interval 54.833	(11 bgs) 1.6185	interval		1.89554973				54.833	range of plot	100			1	litervals
51.123	1.6185			51.123	1.6185		48.5615		0.0083			54.855	0	100		-	1	#DIV/0!
51.123	1.6185				1.99391215	2	48.3013	0.1058208	0.0083			46	0	100		-	1	#DIV/0!
46	1.6185				2.56087528		33		-0.0001			37	0	100		-	1	#DIV/0!
46						5	14.5		#DIV/0!	#DIV/0!	29	29	0	100	0.00404000	-	1	#DIV/0!
37					#DIV/0!	6		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		-	1	
37				0	#DIV/0!	7	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(-	1	
29	2.560875			0	#DIV/0!	8	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	()	1	
29	#DIV/0!	1.5	0	0	#DIV/0!	9	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	()	1	
0	#DIV/0!	1.5	0	0	#DIV/0!	10	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	()	1	
0	#DIV/0!	1.5	0	0	#DIV/0!	11	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	()	1	
0	#DIV/0!	1.5	0	0	#DIV/0!	12	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0)	1	
0	#DIV/0!	1.5	0	0	#DIV/0!	13	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	()	1	
0	#DIV/0!	0	0	0	#DIV/0!	14	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0)	1	
0	#DIV/0!	0	0	0	#DIV/0!	15	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	C	-	1	
	,	0	0	0	#DIV/0!	16		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	-	1	
	#DIV/0!	0	0	0	#DIV/0!	17	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	0	-	1	
	#DIV/0!	0	0	0	#DIV/0!	18		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(-	1	
0	#DIV/0!	0	0	0	#DIV/0!	19		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		-	1	
0		0	0	0		20		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		-	1	
	#DIV/0!	0	0	0	#DIV/0!	21	0	#DIV/0!	0.0000	#DIV/0!	0	0	0	100	(<u> </u>	1	
	#DIV/0!																	
	#DIV/0!				= 1 000	I												
	#DIV/0!		total hole	•	54.833	-												
	#DIV/0!		hole diam		-	in.		(h a l a fl a .										
	#DIV/0!		casing dep			ft bgs	-	f hole flow										
	#DIV/0!		casing dia	m.	0	in.	is 0??	#DIV/0!										
0	#DIV/0!																	

Results of FLUTe profil	ing for hole		
no. GW-994 for	Strata-G Oak Ridge		
Water Table depth	7.06 ft BGS		
Hole depth	54.75 ft BGS		
liner length	60 ft BGS		
casing depth	35 ft BGS		
hole diameter	6 inches		
liner diameter	6.5 inches		
date of measurement	2/21/1987		
The profile was measured to a de	pth of	52.024 ft	
The flow rate per unit driving press		0.03347 g	
The transmissivity for the rema		0.069317 cm sq./sec	
The average conductivity for the		2.7264 ft of the hole is	8.34E-04 cm/sec
Total borehole transmissivit	by is 0.098448 cm2/s		
Comments:			
Contact for questions ab			
Phone: 505-455-	1300		

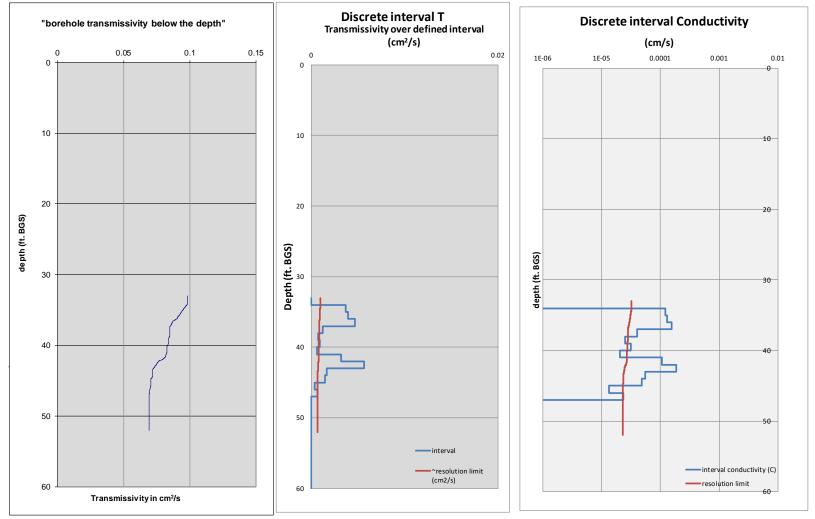
Note: the flow rate curve is the liner velocity multiplied by the borehole cross section

A drop in flow rate is usually associated with loss into the hole wall.

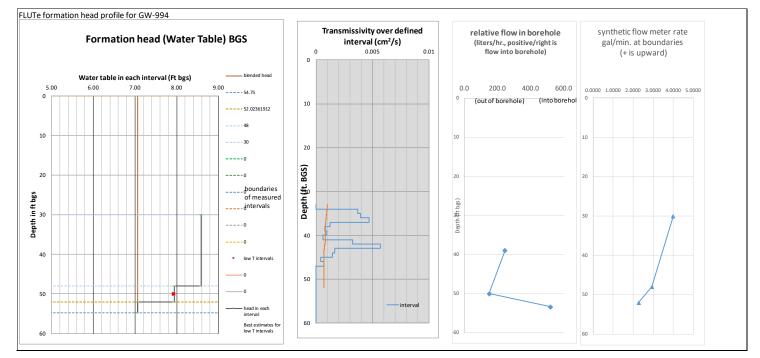
The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.


The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.


The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.

GW-994


Monotonic curve (black over yellow) is corrected for the transient

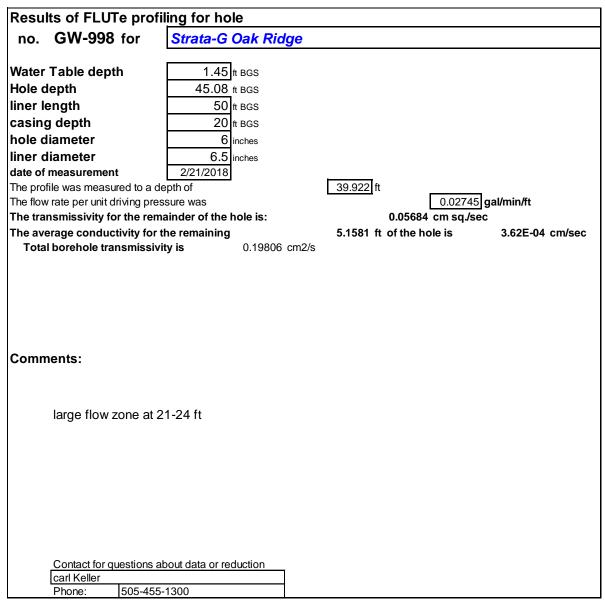
GW-994

D-35

The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.


The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

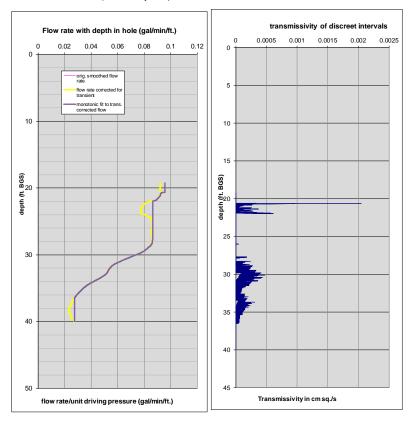
Revers	e head	profile	Borehol	e no.	GW-994	1 Oak I	Ridge S	trata G	date:	2/22/2018								
	head in				Water		mid	flow	synthetic						DTi used in	If below no	ot B	Best
interval	the			bottom	table in		point of	into/out of	flow meter						the	equal to 1.0), e	stimates
depths	interval	blended	top of	of	formation		intervals	hole	rate gal/min						calculation	DTi was	f	or low T
(ft)	(ft bgs)	head	interval	interval	(ft bgs)	interval	(ft)	(liters/hr)	at boundaries	low T intervals	boundries	of meas. i	range of plot		(cm2/s)	modified	ir	ntervals
54.75	7.06	7.06	52.02362	54.75	7.06	1	53.38681	519.1099214	2.2768	0	54.75	54.75	0	100			1	
52.02362	7.06	7.06	48	52.02362	7.94175274	2	50.01181	148.9073127	2.9299	7.941752744		52.02362	0	100	0.017562951	L	2	#DIV/0!
	7.941753	7.06				3		244.9294767	-	0	48	48	0	100	0.029130553	3	1	#DIV/0!
48	7.941753	7.06	-		#DIV/0!	4	15	#DIV/0!	#DIV/0!	#DIV/0!	30	30	0	100	(1	#DIV/0!
48		7.06		-	#DIV/0!	5	0	,	#DIV/0!	#DIV/0!	0	0	0	100	(-	1	#DIV/0!
	8.584227	7.06		-	#DIV/0!	6	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(_	1	
30	1	7.06		-	#DIV/0!	7	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(1	
	#DIV/0!	7.06		-	#DIV/0!	8	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(_	1	
	#DIV/0!	7.06			#DIV/0!	9	0		#DIV/0!	#DIV/0!	0	0	0	100	(_	1	
	#DIV/0!	7.06		-	#DIV/0!	10			#DIV/0!	#DIV/0!	0	0	0	100	(_	1	
	#DIV/0!	7.06		-	#DIV/0!	11	-	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(_	1	
C	#DIV/0!	7.06			#DIV/0!	12	-		#DIV/0!	#DIV/0!	0	0	0	100	(-	1	
C	#DIV/0!	7.06		0	#DIV/0!	13	-	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(-	1	
C	#DIV/0!	0	0	0	#DIV/0!	14	-	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(_	1	
C	1	0	0	0	#DIV/0!	15	-	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(-	1	
	#DIV/0!	0	0	-	#DIV/0!	16		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(1	
	#DIV/0!	0	0		#DIV/0!	17	-	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(1	
	#DIV/0!	0	0	-	#DIV/0!	18		,	#DIV/0!	#DIV/0!	0	0	0	100	(_	1	
	#DIV/0!	0	0	-	#DIV/0!	19		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(1	
	#DIV/0!	0	0	-	#DIV/0!	20		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	(1	
	#DIV/0!	0	0	0	#DIV/0!	21	0	#DIV/0!	0.0000	#DIV/0!	0	0	0	100	()	1	
	#DIV/0!																	
	#DIV/0!				F 4 7F	6 1 . .												
	#DIV/0!		total hole	•	54.75	-												
	#DIV/0!		hole diam		-	in.		f hala flau										
	#DIV/0!		casing dep			ft bgs	-	f hole flow										
	#DIV/0!		casing dia	m.	6	in.	is 0??	#DIV/0!										
0	#DIV/0!																	

GW-9	998
------	-----

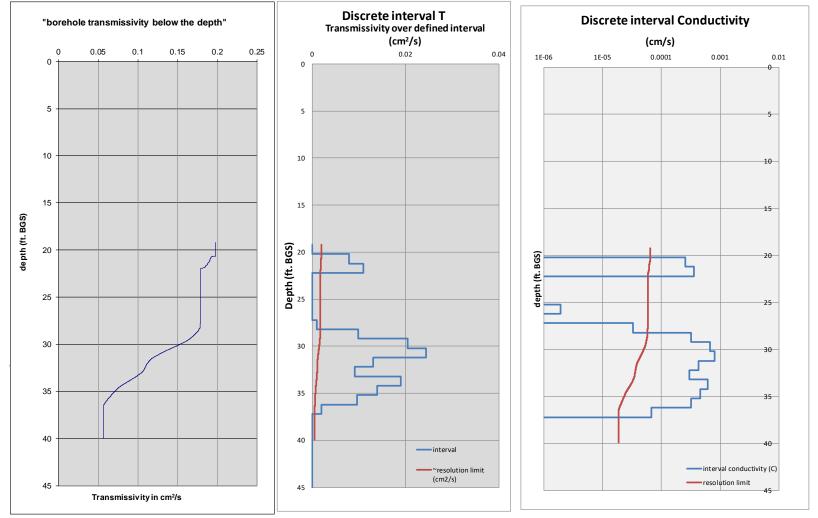
Note: the flow rate curve is the liner velocity multiplied by the borehole cross section

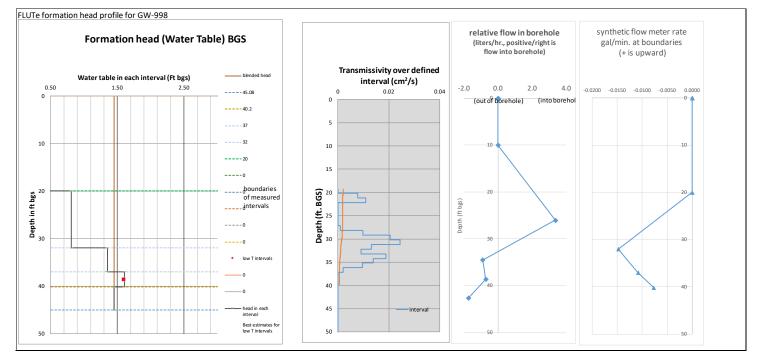
A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.


The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.


The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.


GW-998

Monotonic curve (black over yellow) is corrected for the transient

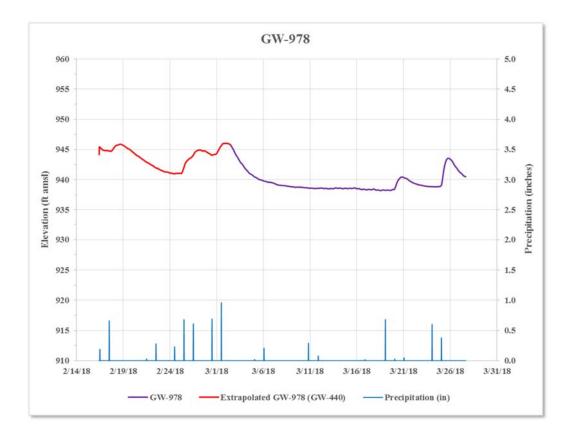
GW-998

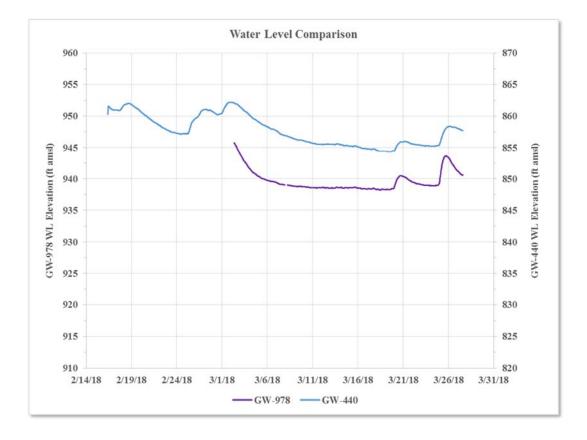
The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

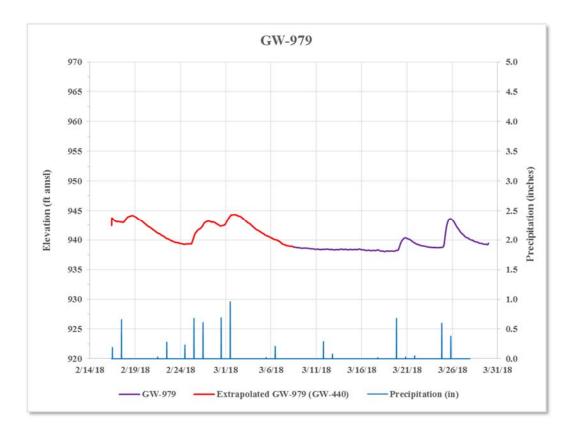
The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

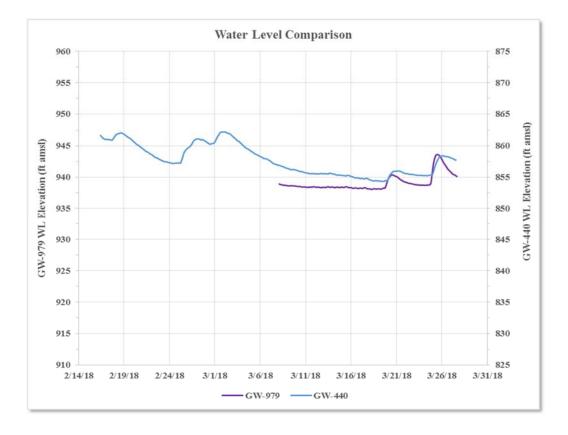
The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

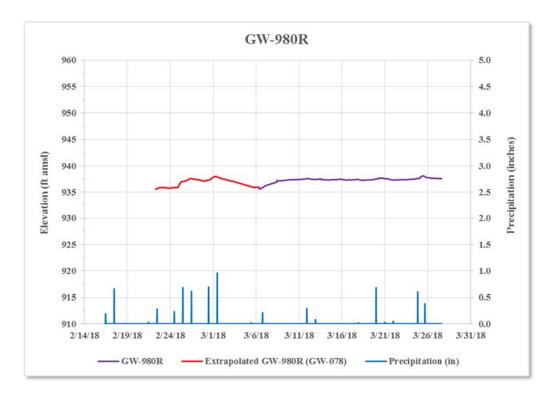
The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

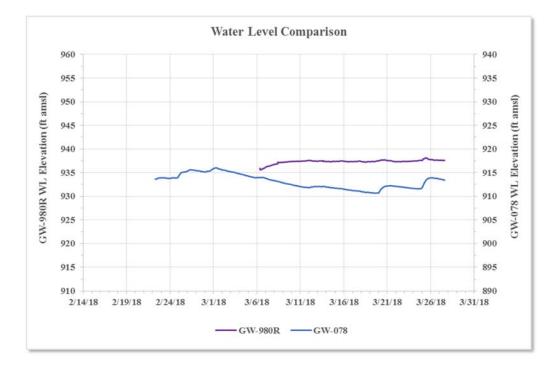

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

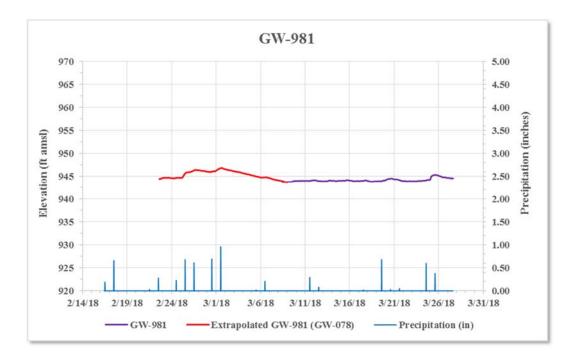

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

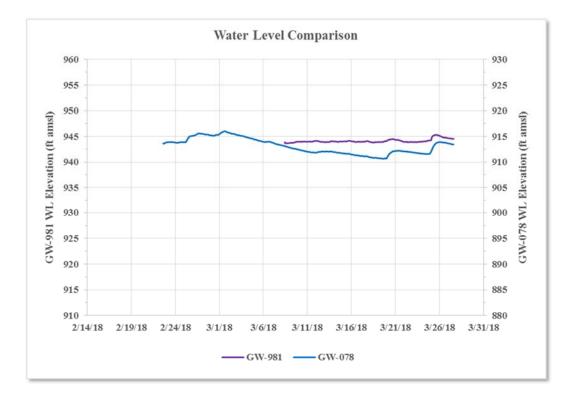

Revers	e head	profile	Boreho	le no.	GW-99	8 Oak F	Ridge S	trata G	date:	2/21/2018						
																l
																l
																l
									synthetic					DTi used ir		I
	head in				Water		mid	flow	flow meter						in below not	
	the				table in		point of	into/out of	rate gal/min					the	equal to 1.0,	estimates
depths			top of		formation		intervals		at					calculation		for low T
		head			(ft bgs)	interval	(ft)	(liters/hr)		low T intervals			•	(cm2/s)	modified	intervals
45.08						1		-1.74266785	-		45.08	45.08	0	100 0.0568399		1
40.2					1.60586612	2		-0.71643114	-		40.2	40.2	0	100 0.0		
	1.605866				1.35262602	3	34.5		-		37	37	0	100 0.0453204		1 #DIV/0!
	1.605866		20		0.81364878	4	26		-		32	32	0	100 0.0858991		1 #DIV/0!
	1.352626		0	-		5	10	,	#DIV/0!	#DIV/0!	20	20	0	100	_	1 #DIV/0!
-	1.352626	-	0		1	6	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		1
	0.813649			-		/	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		1
20		1.45		-	,	8	0	#DIV/0!	#DIV/0!	#DIV/0!	v	0	0	100	-	1
20	,	1.45	0	-	1	9	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100	<u> </u>	1
0		1.45 1.45			1	10	0	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	0	0 0	0 0	100 100	0	1
0	#DIV/0! #DIV/0!	1.45	0	-		11	0	#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	-	0	1
	#DIV/0!	1.45	0	-		12 13	0	#DIV/0!	- #DIV/0!	#DIV/0!	0	0	0	100 100	0	1
	#DIV/0! #DIV/0!	1.45	0	-	1	13		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		1
	#DIV/0!	0	0	-		14		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		1
	#DIV/0!	0	0	-		15		#DIV/0!	- #DIV/0!	#DIV/0!	0	0	0	100	_	1
0	#DIV/0!	0	0	-		10		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		1
0	#DIV/0!	0	0	-	,	17		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		1
0		0	0	-	-	19		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		1
-	#DIV/0!	0	0			20		#DIV/0!	#DIV/0!	#DIV/0!	0	0	0	100		1
	#DIV/0!	0	0	-	,	20		#DIV/0!	0.0000	#DIV/0!	0	0	0	100		1
	#DIV/0!	0	0	<u>د</u>	1010/0:	1 21	0	1010/01	- 0.0000	1010/0.	5	5	v		<u> </u>	-
0																
-	#DIV/0!		total hole	depth	45 08	ft bgs										
	#DIV/0!		hole diam	•		in.										
	#DIV/0!		casing de		-	ft bgs	integral o	f hole flow								
	#DIV/0!		casing dia			in.	is 0??	#DIV/0!								
	#DIV/0!		cashing and			I										
0																

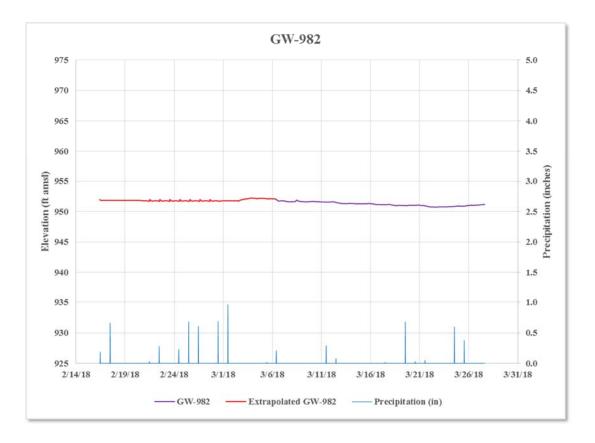

APPENDIX E

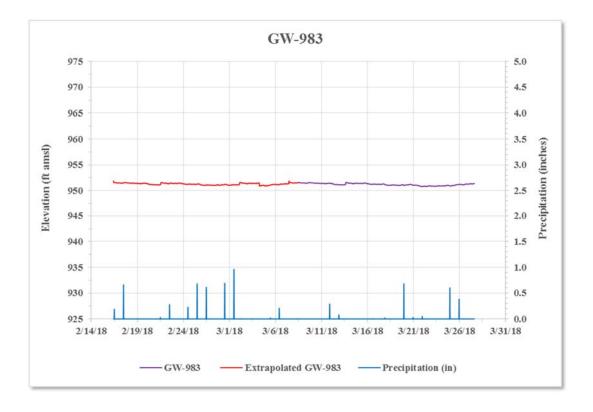

GROUNDWATER ELEVATION PLOTS

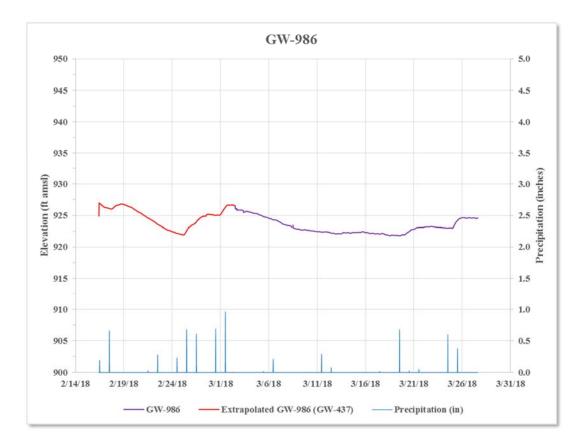


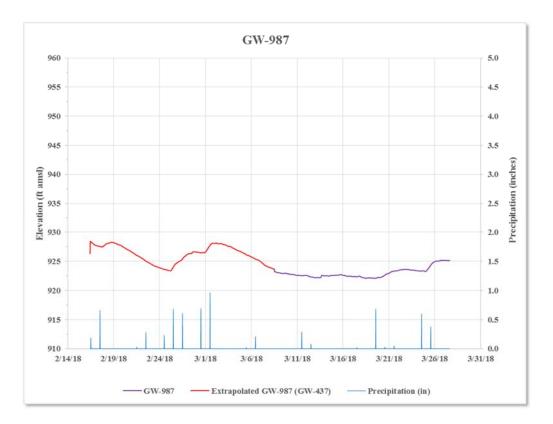




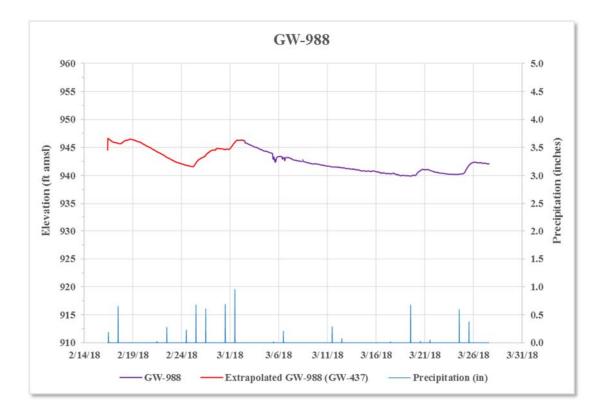


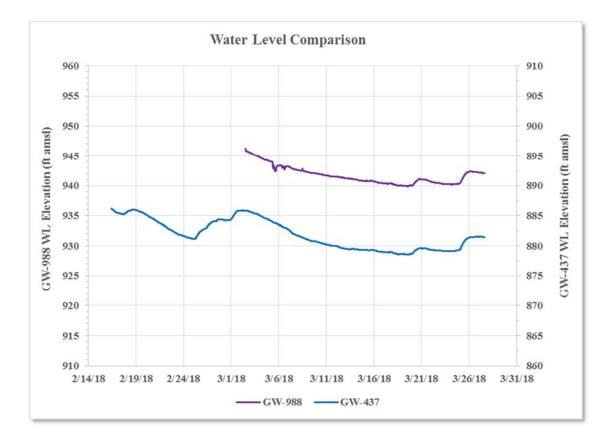


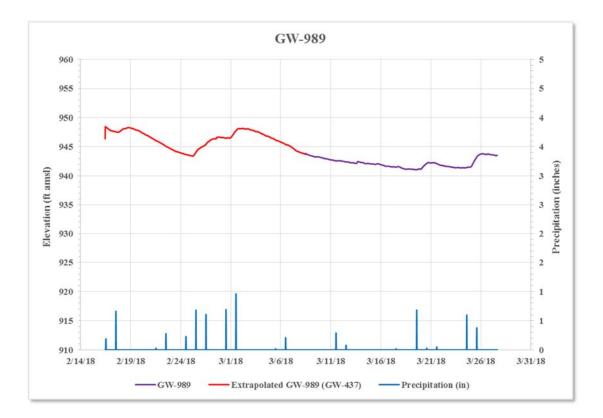


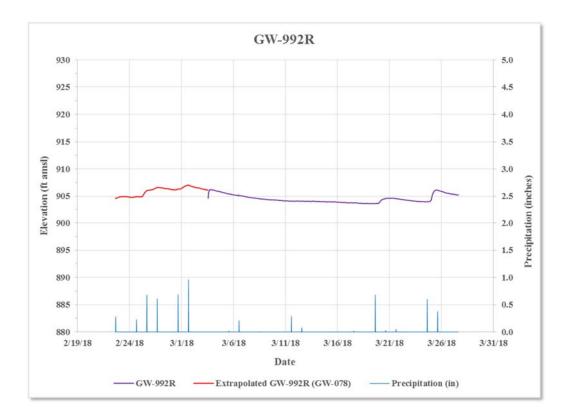


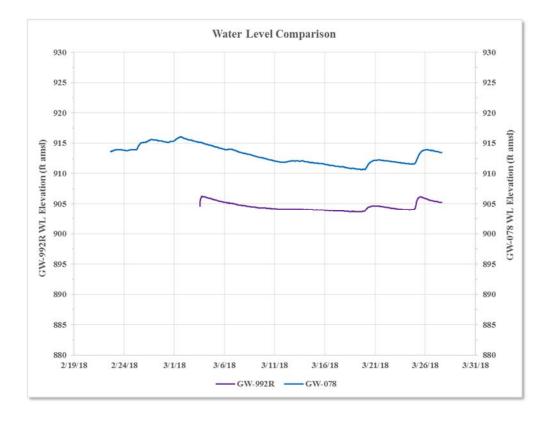


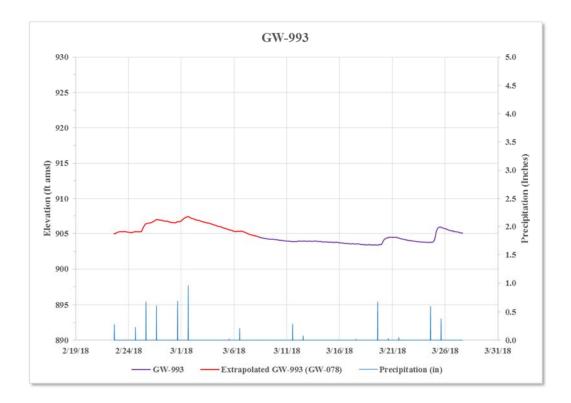


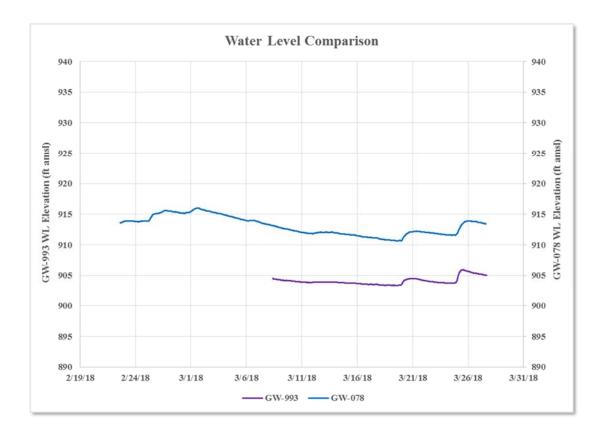


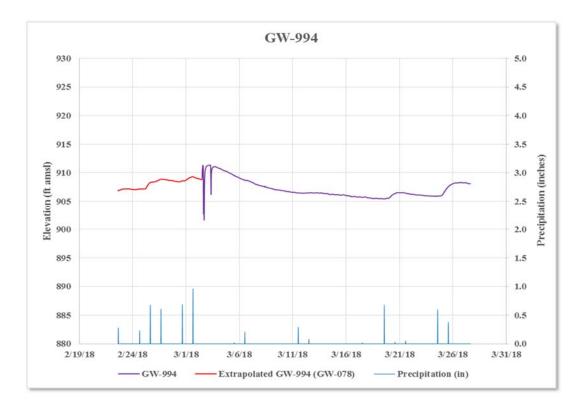


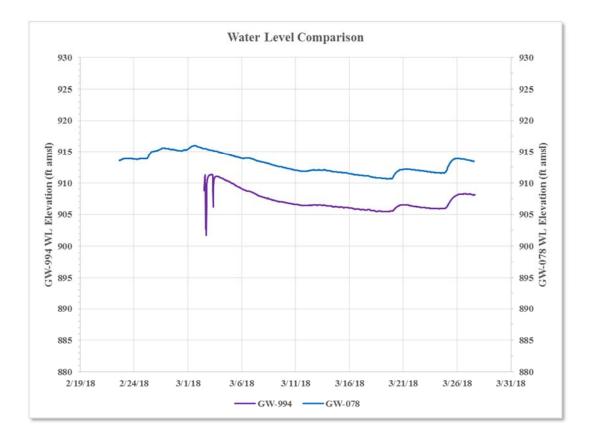


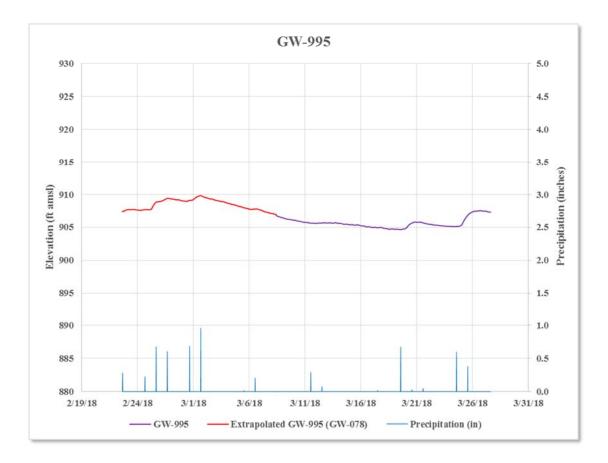


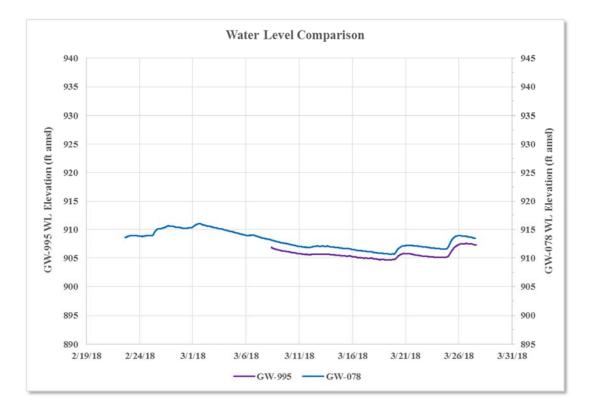


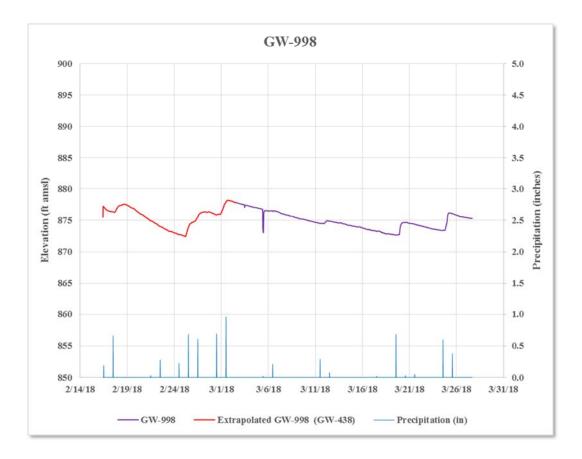


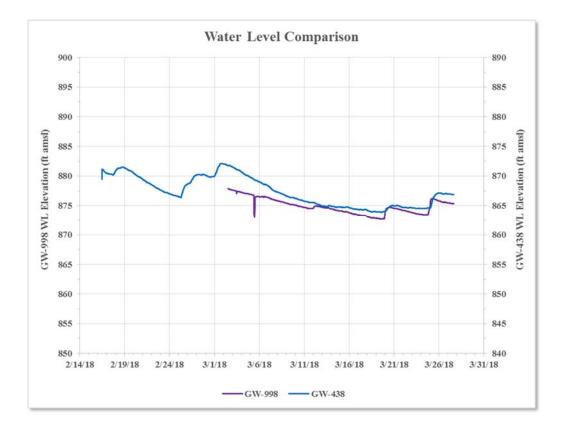


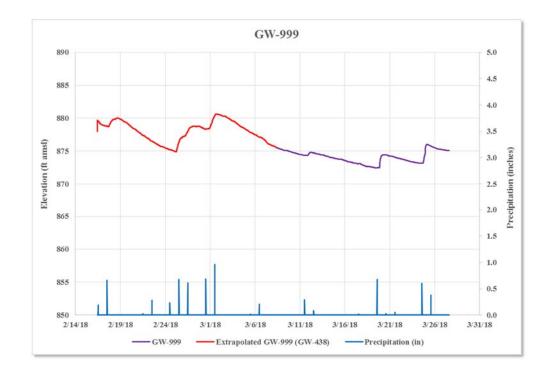


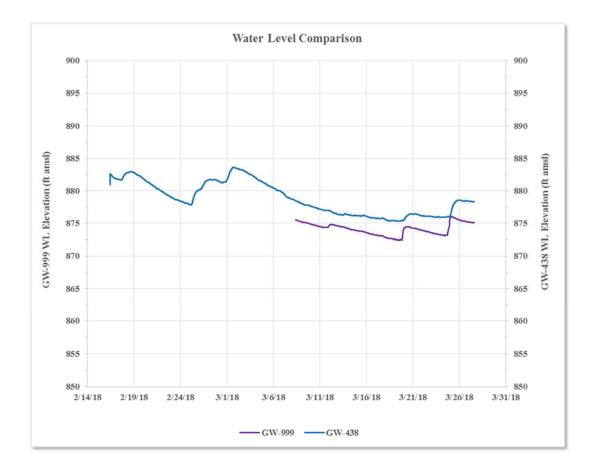












This page intentionally left blank.

APPENDIX F

GEOTECHNICAL LABORATORY REPORTS

This page intentionally left blank.

Appendix F – Laboratory Test Results

This Page Intentionally Left Blank.

Appendix F.1 – Soil Index Testing

This Page Intentionally Left Blank.

Mater	ial Test	Report				-	Project No.: 1188070011-09 ReportNo: ASM:FH18-W003		
Client:	Strata-G, LLO	C		CC:		This report the written of		oduced (in part o	r whole) witho
Project:	EMDF Site 7	c Characterizatior	1						
	Oak Ridge,	Tennessee				AASH	10 N M	mothy a	
						Reviewe	d By: Timot	thy A. Moore,	Jr.
Material	Details								
Source Geoted		etechnical Drilling S ve Existing Materia		Locatio	ed From on ng Method	Split Spo Oak Ride Split Spo	ge, Tennesse	е	
Sample									
Sample ID	_ • • • • • • • •	FH	18-W00338-S0 F	H18-W00338-S0 F	H18-W00338-S0 F	H18-W00338-S0 F	H18-W00338-S0 F	H18-W00338-S0	
Field Sam	ole ID		GW978-SS1	GW978-SS3	GW978-SS4	GW978-SS5	GW978-SS8	GW978-SS9	
Date Samp			2/10/2018	2/10/2018	2/10/2018	2/10/2018	2/10/2018	2/10/2018	
	est Results								
Descriptio	n	Method			Resi	ılts			Limits
Water Conte	ent (%)	ASTM D 2216	21.8	19.3	24.0	21.0	11.5	11.7	
Method			В	В	В	В	В	В	
Group Symb	loc	ASTM D 2487			CL				
Group Name					Sandy lean clay				
	naximum grain size	ASTM D 4318							
	l on 425µm (No. 40) (%)			12.1				
Method of R					Matal				
Grooving To		-			Metal				
	reparation metho	a			Wet Air				
Drying Meth					Quartered				
Rolling Meth	ction process				Hand				
	/ater Content (%)				24.0				
	Device Type				Z4.0 Manual				
Liquid Limit	Device Type				45				
Plastic Limit					21				
Plasticity Inc					24				
Liquid Limit					Multipoint (A)				
Method		ASTM D 6913			Method B				
Sample Obt	ained While				Air-Dried				
Group Name					Sandy lean clay				
Group Symb					CL				
	Sieving Used				No				
Dispersion N					Dispersant by hand				
Prior Testing	3				Atterberg limits				

Comments

Method

28001 Cabot Drive, Suite 250 Novi, MI 48377 Phone: (248) 486-5100 Fax: (248) 486-5050

						Fax. (240) 400-5050
Mater	ial Te	est Report			Project No.: ReportNo:	1188070011-05B ASM:FH18-W00338
Client:	Strata-G	, LLC		CC:	This report shall not be re the written constent of:	eproduced (in part or whole) without
Project:	EMDF S	Site 7c Characterization	1			- al and l
	Oak Ric	dge, Tennessee				Simothy a More of
					Reviewed By: Tim	othy A. Moore, Jr.
Material	Details					
Source		Geotechnical Drilling Sa		Sampled From	Split Spoon	
Description Specification		Native Existing Material USCS	1	Location Sampling Method	Oak Ridge, Tennes Split Spoon	see
Sample I	Details					
Sample ID Field Samp Date Samp			18-W00338-S0 GW978-SS10 2/10/2018			
Other Te	st Resu	lts				
Description Water Conte		Method ASTM D 2216	11.1	Resu	ilts	Limits

В

									(248) 486-50
Mater	ial Test	Report					Project No.: ReportNo:		8070011-05 -W00338-S0
Client:	Strata-G, LLC			CC:			This report shall not b the written constent o	e reproduced (in pa f:	rt or whole) witho
Project:	EMDF Site 7c	: Characterizat	ion					Λ	
	Oak Ridge, T	ennessee						Simothy	a More 1
							Reviewed By:	Timothy A. Moo	re, Jr.
Sample D	etails						Atterberg Li	mit:	
Sample ID Field Sam Location Sampled B Date Sam Source	ple ID By	GW978 Oak Rid Mike Pa 2/10/20	ge, Tennes rtenio	see	s		P	iquid Limit: 4 astic Limit: 2 ticity Index: 24	1
Material Specificat	ion	Native E USCS	Existing Mat	erial			Sample Des	cription:	
Sampling Contracto	Method	Split Sp N/A	oon				Brown mottle	d sandy lean cla	ay (CL)
							Grading: AS	TM D 6913	
	ize Distributio						Drying by: Date Tested: Tested By:	Oven 2/15/2018 David Cook	
% Pas	ssing						Sieve Size	% Passing	Limits
100 + · · +					• • • • • • • • • • •		3/8in	100.0	LIIIIIS
90 - • •							No.4 No.8	99.5 97.2	
80							No.10 No.16	96.4 93.6	
70 - • •						×	No.30	93.0 89.7	
60 - • •		•••••••••••			• • • • • • • • • •		No.40 No.50	87.9 85.9	
50 - • •	•••••••••••••••••••••••••••••••••••••••				• • • • • • • • • •	• • • • • • •	No.100	80.3	
40					••••••••	•••	No.200	65.3	
30 - • •			••••••••••••			• • • • • • • •			
20 - • •		••••				• • • • • • • •			
10 - • •									
oŢ									
	9.5mm 4.75mm	2.36mm 2.0mm 1.18mm	600µm 425µm	300µm	150µm	75µm			
			Sieve						
	GRAVEL		SAND		FINE	S (65.3%)	D85: 0.2684	D60: N/A	
COBBLES									D50: N/A

			Fax. (240) 400-5050
Mate	rial Test Report		Project No.: 1188070011-05B ReportNo: MAT:FH18-W00338-S03
Client:	Strata-G, LLC	CC:	This report shall not be reproduced (in part or whole) without the written constent of:
Project:	EMDF Site 7c Characterization		A man of amount
	Oak Ridge, Tennessee		AASHIO ACCENTION Junsthy a More M

Reviewed By: Timothy A. Moore, Jr.

Sample Details

Sample ID	FH18-W00338-S03
Field Sample ID	GW978-SS4
Location	Oak Ridge, Tenness
Sampled By	Mike Partenio
Date Sampled	2/10/2018
Date Completed	
Source	Geotechnical Drilling
Material	Native Existing Mate
Specification	USCS
Sampling Method	Split Spoon
Contractor	N/A
Dispersion Method	

GW978-SS4 Oak Ridge, Tennessee Mike Partenio 2/10/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

Other Test Results

Description	Method	Result	Limits
Water Content (%)	ASTM D 2216	24.0	
Method		В	
Date Tested		2/15/2018	
Group Symbol	ASTM D 2487	CL	
Group Name		Sandy lean clay	
Date Tested		2/20/2018	
Approximate maximum grain size	ASTM D 4318		
Material retained on 425µm (No. 40) (%)		12.1	
Method of Removal			
Grooving Tool Type		Metal	
Specimen preparation method		Wet	
Drying Method		Air	
Special selection process		Quartered	
Rolling Method for PL		Hand	
As Received Water Content (%)		24.0	
Liquid Limit Device Type		Manual	
Liquid Limit		45	
Plastic Limit		21	
Plasticity Index		24	
Liquid Limit Procedure		Multipoint (A)	
Date Tested		2/15/2018	
Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name		Sandy lean clay	
Group Symbol		CL	
Composite Sieving Used		No	

				Fax: (248) 486-5050
al Test	Report		Project No.: ReportNo:	1188070011-05B MAT:FH18-W00338-S03
Strata-G, LL	C	CC:	This report shall not	be reproduced (in part or whole) without
EMDF Site	7c Characterization			
Oak Ridge,	Tennessee			Simility a More J
			Reviewed By:	Timothy A. Moore, Jr.
ils				
e ID d ted ted thod lethod	GW978-SS4 Oak Ridge, Tennessee Mike Partenio 2/10/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A			
Results				
ethod			Dispersant by h Atterberg li	and
	Strata-G, LL EMDF Site ⁻ Oak Ridge, ils ID d ted ted ted	FH18-W00338-S03 FID GW978-SS4 Oak Ridge, Tennessee Mike Partenio d 2/10/2018 ted Geotechnical Drilling Samples Native Existing Material USCS thod Split Spoon N/A lethod Results Method	Strata-G, LLC CC: EMDF Site 7c Characterization Oak Ridge, Tennessee ils FH18-W00338-S03 ID GW978-SS4 Oak Ridge, Tennessee Mike Partenio d 2/10/2018 ted Geotechnical Drilling Samples Native Existing Material USCS thod Split Spoon N/A lethod Method	Instruction CC: This report shall not the written constant of the

28001 Cabot Drive, Suite 250 Novi, MI 48377

Mater		t Report				Project ReportN		11880	48) 486-505 70011-05 18-W0038
Client:	Strata-G, LL	-		CC:				oduced (in part o	
Drojostu		Za Characterizatia	~			the written o	constent of:		
Project:	EMDE SILE	EMDF Site 7c Characterization					1 ~	- 1- 11	10
	Oak Ridge,	Tennessee				AASH		mothy a	More !
						Reviewe	d By: Timot	hy A. Moore,	Jr.
Material	Details								
Source Description Specification	Geotechnical Drilling Samples on Native Existing Material tion Unified Soil Classification System			Locatio	ed From on ng Method		Split Spoon Oak Ridge, Tennessee Split Spoon		
Sample I			- ,						
Sample ID Field Samp Date Samp	ple ID	Fł	118-W00381-S0 F GW980-SS2 2/13/2018	H18-W00381-S0 F GW980-SS3 2/13/2018	H18-W00381-S0 F GW980-SS4 2/13/2018	FH18-W00381-S0 F GW980-SS6 2/13/2018	[:] H18-W00381-S0 F GW980-SSຄົ້ 2/13/2018	H18-W00381-S0 GW980-SS9 2/13/2018	
Particle 3	Size Distri	bution							
Distribution i	n: Particle Size in Soils. Sieving 5μm, Hydromet) 91 n) 83 n) 74 m) 55 m) 40 m) 31 27		% Pa	assing			Limits
Other Te	est Results	6							
Description Water Conte Method		Method ASTM D 2216	13.8 B	15.1 B	Res 15.0 B	ults 12.6 B	14.5 B	10.2 B	Limits
Dispersion d Dispersion ti Shape Hardness		ASTM D 422 ^D	ispersion Cup and Mixer 1						
Approximate m	naximum grain size 1 on 425µm (No. 40) (%	ASTM D 4318							

Form No: 18980, Report No: ASM:FH18-W00381

Method of Removal Grooving Tool Type

Drying Method

Liquid Limit

Plastic Limit

Plasticity Index

Comments NP = Non Plastic

Specimen preparation method

Special selection process

As Received Water Content (%)

Liquid Limit Device Type

Liquid Limit Procedure

Rolling Method for PL

F-12

Plastic

Quartering

Wet

Air

Hand

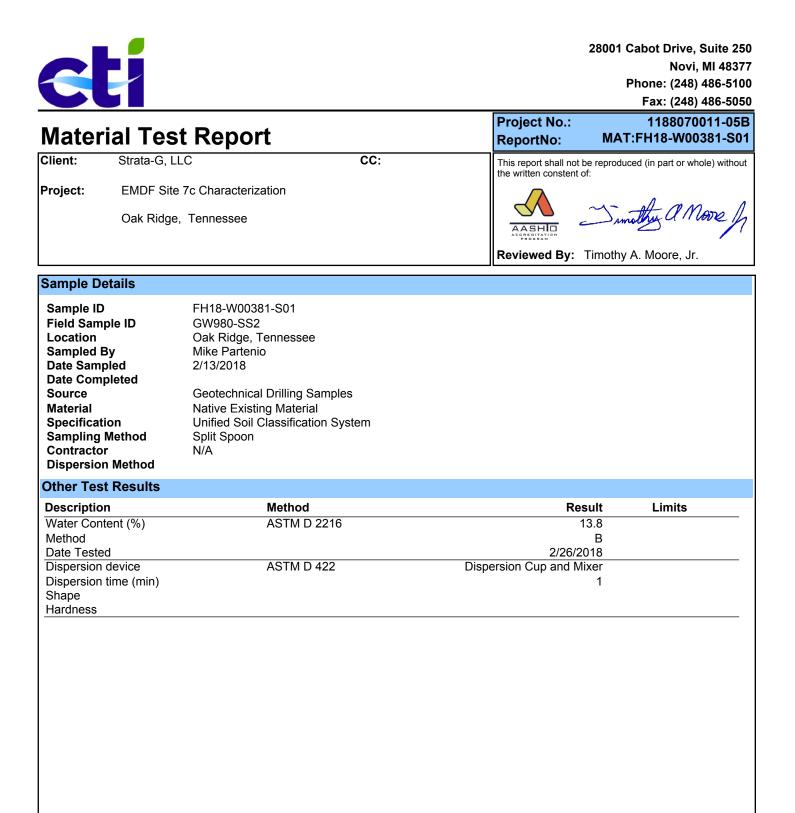
Manual

Multipoint (A)

15.1

N/A NP

NP



				()
Mate	rial Test Report		Project No.: ReportNo:	1188070011-05B ASM:FH18-W00381
Client:	Strata-G, LLC	CC:	This report shall not be repro the written constent of:	oduced (in part or whole) without
Project:	EMDF Site 7c Characterization			A
(Oak Ridge, Tennessee			insthe a More of
			Reviewed By: Timot	hy A. Moore, Jr.
Materia	I Details			
Source	Geotechnical Drilling Samples	Sampled From	Split Spoon	
Descriptio	n Native Existing Material	Location	Oak Ridge Tennesse	2

Description Specification	Native Existing Material	mpico	Locatio	on ng Method	Oak Ridge, Tennessee Split Spoon	
Sample Details						
Sample ID Field Sample ID Date Sampled Other Test Resu	G	_	-H18-W00381-S0 F GW980-SS12 2/13/2018			
Description Water Content (%) Method	Method ASTM D 2216	4.3 B	11.7 B	Resu 12.3 B	lts	Limits

Project No.: 1188070011-05B **Material Test Report** MAT:FH18-W00381-S01 **ReportNo:** Client: Strata-G, LLC CC: This report shall not be reproduced (in part or whole) without the written constent of: Project: EMDF Site 7c Characterization a More Oak Ridge, Tennessee Reviewed By: Timothy A. Moore, Jr. **Sample Details** Sample ID FH18-W00381-S01 **Field Sample ID** GW980-SS2 Location Oak Ridge, Tennessee Sampled By Mike Partenio **Date Sampled** 2/13/2018 Geotechnical Drilling Samples Source Native Existing Material Material Sample Description: Unified Soil Classification System Specification Brown silty sand with gravel (SM) Sampling Method Split Spoon Contractor N/A Grading: ASTM D 422 **Particle Size Distribution** Drying by: Oven Date Tested: 2/28/2018 Tested By: Sheila Bowers % Passing 100 Sieve Size % Passing Limits 11∕₂in 100 90 1in 91 83 ¹⁄₂in 80 3/8in 74 70 No.4 55 No.10 40 60 No.40 31 No.100 27 50 No.200 23 28.9 µm 13.4 40 19.1 µm 10.7 11.6 µm 30 8.1 8.3 µm 7.3 20 6.0 µm 5.9 3.0 µm 4.5 10 1.3 µm 2.7 0 No.10 No.40 No.100 No.200 1in 1in ½in 8/8in Vo.4 퇴퇴 퇴퇴 Б 3 µm 28.9 19.1 11.6 8.3 9 3 Sieve COBBLES GRAVEL SAND FINES **D85:** 14.8651 **D60:** 5.7005 D50: 3.5602 Medium Coarse Fine Coarse Fine Silt Clay **D30:** 0.3276 D10: 0.0167 **D15:** 0.0339 (0.0%) (12.8%) (32.2%) (15.0%) (9.0%) (8.0%) (17.6%) (5.4%) Cu: 341.34 Cc: 1.13

Mater	ial Te	st Report				Project Report)70011-05 18-W0034
Client:	Strata-G,	LLC		CC:			t shall not be repr constent of:	oduced (in part c	r whole) witho
Project:	EMDF Site 7c Characterization						λ	Λ	
	Oak Rid	ge, Tennessee						mothy a	More
						Reviewe	ed By: Timo	thy A. Moore	Jr.
Material	Details								
Source Descriptior Specification	n	Geotechnical Drilling S Native Existing Materia USCS		Locatio	ed From on ng Method	Split Sp Oak Ric Split Sp	lge, Tennesse	e	
Sample I	Details								
Sample ID Field Samp Date Samp		Fł	118-W00342-S0 F GW982-SS2 2/7/2018	H18-W00342-S0 F GW982-SS3 2/7/2018	H18-W00342-S0 F GW982-SS ³ 2/7/2018	H18-W00342-S0 GW982-SS5 2/7/2018	FH18-W00342-S0 F GW982-SS8 2/7/2018	H18-W00342-S0 GW982-SS10 2/7/2018	
Other Te		lts							
Descriptior	n	Method			Resu	ilts			Limits
Water Conte Method		ASTM D 2216	11.0 B	13.1 B	12.5 B	12.3 B	13.9 B	10.8 B	
Group Symb Group Name	9	ASTM D 2487				CL Sandy lean clay			
Approximate ma Material retained	-					28.3			
Method of Re Grooving To	ol Type					Metal Wet			
Specimen pr Drying Metho Special select	od					Air Quartered			
Rolling Meth As Received W	od for PL					Hand 12.3			
Liquid Limit I Liquid Limit	Device Type					Manual 33			
Plastic Limit Plasticity Ind	lex					23 10			
Liquid Limit F Method Sample Obta		ASTM D 6913				Multipoint (A) Method B Air-Dried	Method B Air-Dried		
Group Name Group Symb	e ool					Sandy lean clay	N/A N/A		
Composite S Dispersion M Prior Testing	lethod						No Dispersant by hand Atterberg limits		

Mater	ial Tes	t Report				Project Report		1188070011-0 ASM:FH18-W003
Client:	Strata-G, Ll	LC		CC:			shall not be repro	duced (in part or whole) with
Project:	EMDF Site	7c Characterization						A man
	Oak Ridge,	, Tennessee						mother a More
						Reviewe	d By: Timoth	y A. Moore, Jr.
Material	Details							
Source Descriptio Specificati	Ge n Na	eotechnical Drilling Sa ative Existing Material SCS	Imples	Locatio	ed From on ing Method	Split Spo Oak Rid Split Spo	ge, Tennessee	
Sample				•	Ŭ			
Sample ID Field Samp Date Samp	ple ID		8-W00342-S0 F W982-SS13 2/7/2018		FH18-W00342-S0 F GW982-SS18 2/8/2018	H18-W00342-S1 F GW982-SS21 2/8/2018	H18-W00342-S1 GW982-SS23 2/8/2018	
Other Te	est Results	5						
Descriptio	n	Method			Res	ults		Limits
Water Conte Method	ent (%)	ASTM D 2216	11.9 B	4.7 B	8.9 B	7.0 B	5.5 B	
Group Symb	е	ASTM D 2487				SC Clayey sand		
	haximum grain size I on 425µm (No. 40) (⁶					54.5		
Method of R Grooving To						Metal		
Specimen p	reparation meth	od				Wet		
Drying Meth	od ction process					Air Quartered		
Rolling Meth						Hand		
	Vater Content (%)					7.0		
•	Device Type					Manual		
Liquid Limit Plastic Limit						28 19		
Plasticity Inc						9		
Liquid Limit						Multipoint (A)		
Method		ASTM D 6913				Method B		
Sample Obta						Air-Dried		
Group Name						Clayey sand		
Group Symb						SC		
•	Sieving Used					No Dispersant by hand		
Dispersion N	vietnod g					Atterberg limits		

									(248) 486-50
Mater	ial Tes	st Repo	rt				Project No.: ReportNo:		8070011-05 -W00342-S0
Client:	Strata-G,	LC		CC:			This report shall not b the written constent o	e reproduced (in pai	t or whole) witho
Project:	EMDF Sit	e 7c Characteri	zation						
	Oak Ridg	e, Tennessee						Simothy C	I More I
							Reviewed By:	Timothy A. Moor	re, Jr.
Sample D	etails						Atterberg Li	mit:	
Sample ID Field Sam Location Sampled I Date Sam Source	nple ID By	GW9 Oak Mike 2/7/2 Geot	echnical Drilli	ssee ng Sample	s		P	iquid Limit: 33 lastic Limit: 23 ticity Index: 10	3
Material Specificat	tion	Nativ USC:	e Existing Ma S	terial			Sample Des	cription:	
Sampling Contracto	Method		Spoon				Brown sandy	lean clay (CL)	
							Grading: AS	TM D 6913	
Particle 5	ize Distribu	ltion					Drying by: Date Tested: Tested By:	Oven 2/15/2018 David Cook	
% Pa: T	ssing						Sieve Size	% Passing	Limits
100+•							3/8in	100.0	Linito
90+.			_				No.4 No.8	97.8 91.0	
80 -							No.10 No.16	90.0 83.3	
70 + · +					·····		No.30	75.0	
60 + · -						••••	No.40 No.50	71.7 68.4	
50 - · +					•••••		No.100	61.1	
40 - •	•••••••••••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • •	No.200	50.8	
30 - •	••••••••					•••			
20 - •						• • • • • • • •			
10						••••			
oţ									
	9.5mm 4.75mm	2.36mm 2.0mm	600µm	300µm	150µm	75µm			
	4		Sieve						
COBBLES	GRAVI	L	SAND		FINE	S (50.8%)			
(0.0%)	Coarse	Fine Coars (2.2%) (7.8%	e Medium	Fine (20.9%)	Silt	Clay	D85: 1.3490 D30: N/A	D60: 0.1393 D15: N/A	D50: N/A D10: N/A

			T ax. (240) 400-3030
Mate	rial Test Report	Project No.: 1188070011-05B ReportNo: MAT:FH18-W00342-S04	
Client:	Strata-G, LLC	CC:	This report shall not be reproduced (in part or whole) without the written constent of:
Project:	EMDF Site 7c Characterization		A man of anon A
	Oak Ridge, Tennessee		AASHID ALEXANDER JUNE JUNE AMORE J

Reviewed By: Timothy A. Moore, Jr.

Sample Details

Sample ID Field Sample ID Location Sampled By Date Sampled Date Completed Source Material Specification Sampling Method Contractor Dispersion Method

GW982-SS5 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

FH18-W00342-S04

Other Test Results

Description	Method	Result	Limits
Water Content (%)	ASTM D 2216	12.3	
Method		В	
Date Tested		2/15/2018	
Group Symbol	ASTM D 2487	CL	
Group Name		Sandy lean clay	
Date Tested		2/20/2018	
Approximate maximum grain size	ASTM D 4318		
Material retained on 425µm (No. 40) (%)		28.3	
Method of Removal		•• • •	
Grooving Tool Type		Metal	
Specimen preparation method		Wet	
Drying Method		Air	
Special selection process		Quartered	
Rolling Method for PL		Hand	
As Received Water Content (%)		12.3	
Liquid Limit Device Type		Manual	
Liquid Limit		33	
Plastic Limit		23	
Plasticity Index		10	
Liquid Limit Procedure		Multipoint (A)	
Date Tested		2/15/2018	
Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name		Sandy lean clay	
Group Symbol		CL	
Composite Sieving Used		No	

Mater	rial Tes	st Report	Project No.: ReportNo:	Fax: (248) 486-5050 1188070011-05B MAT:FH18-W00342-S04
Client:	Strata-G, I		This report shall not be rep	produced (in part or whole) without
Project:	EMDF Sit	te 7c Characterization	the written constent of:	- 1 210 1
	Oak Ridg	e, Tennessee	Reviewed By: Time	Simothy a More J
Comple D				
Sample D	etalis			
Sample ID Field Sam Location Sampled I Date Sam Date Com Source Material Specificat Sampling Contracto Dispersio	nple ID By npled npleted tion Method or	FH18-W00342-S04 GW982-SS5 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A		
Other Tes	st Results			
Description Dispersion Prior Testin	n Method	Method	Result Dispersant by hand Atterberg limits	Limits

Project No.: 1188070011-05B **Material Test Report** MAT:FH18-W00342-S05 **ReportNo:** Client: Strata-G, LLC CC: This report shall not be reproduced (in part or whole) without the written constent of: Project: EMDF Site 7c Characterization a More Oak Ridge, Tennessee Reviewed By: Timothy A. Moore, Jr. **Sample Details** Sample ID FH18-W00342-S05 **Field Sample ID** GW982-SS8 Location Oak Ridge, Tennessee Sampled By Mike Partenio **Date Sampled** 2/7/2018 Source **Geotechnical Drilling Samples** Native Existing Material Material Sample Description: Specification USCS Dark brown clayey sand with unweathered Split Spoon Sampling Method shale Contractor N/A Grading: ASTM D 6913 **Particle Size Distribution** Drying by: Oven Date Tested: 2/15/2018 Tested By: David Cook % Passing **Sieve Size** % Passing Limits 100 ¹∕₂in 100.0 3/8in 98.6 90 No.4 95.2 80 No.8 91.2 No.10 90.4 70 No.16 87.5 No.30 83.2 60 No.40 81.0 50 No.50 77.1 No.100 44.4 40 29.3 No.200 30 20 10 0 2.36mm 2.0mm .75mm 300µm 12.5mm 1.18mm 600µm 425µm 50µm 9.5mm 75µm Sieve COBBLES GRAVEL SAND FINES (29.3%) **D85:** 0.7964 **D60:** 0.2088 **D50:** 0.1689 Medium Coarse Fine Coarse Fine D30: 0.0774 D15: N/A Silt Clay D10: N/A (0.0%) (0.0%) (4.8%) (4.8%) (9.4%) (51.7%)

Mater	ial Test Report		Project No.: 1188070011-05B ReportNo: MAT:FH18-W00342-S05
Client:	Strata-G, LLC	CC:	This report shall not be reproduced (in part or whole) without the written constent of:
Project:	EMDF Site 7c Characterization		
	Oak Ridge, Tennessee		ACRESIATION ACRESIATION PROBABAN
			Reviewed By: Timothy A. Moore, Jr.

Sample ID Field Sample ID Location Sampled By Date Sampled Date Completed Source Material Specification Sampling Method Contractor Dispersion Method

GW982-SS8 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

FH18-W00342-S05

Other Test Results

Description	Method	Result	Limits
Water Content (%)	ASTM D 2216	13.9	
Method		В	
Date Tested		2/15/2018	
Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name		N/A	
Group Symbol		N/A	
Composite Sieving Used		No	
Dispersion Method		Dispersant by hand	
Prior Testing		Atterberg limits	

									Р	roject No.:	118	(248) 486-50 8070011-05
	ial Te		port						R	eportNo:	MAT:FH18	W00342-S1
Client:	Strata-G	, LLC				CC:			Th the	is report shall not be written constent of	e reproduced (in par	t or whole) witho
Project:	EMDF S	Site 7c Cha	racterizati	ion							0	
	Oak Rid	ge, Tenne	ssee								Simothy C	a More 1
									Re	eviewed By: 1	imothy A. Moo	re, Jr.
Sample D	etails									Atterberg Li	mit:	
Sample ID Field Sam Location Sampled B Date Sam Source	iple ID By		GW982- Oak Rid Mike Pa 2/8/2018	ge, Tenne rtenio	ssee		6			Pl	quid Limit: 28 astic Limit: 19 icity Index: 9	
Material	lion			xisting Ma						Sample Des	cription:	
Specificat Sampling Contracto	Method		Split Spo N/A	oon						Brown clayey	sand (SC)	
		-								Grading: AS	TM D 6913	
Particle S	ize Distrib	oution								Drying by: Date Tested: Tested By:	Oven	
% Pas 100 90 80 60 50 40 10 0	9.5 ² mm 	4.76mm	2.36mm 2.0mm	mutooo	425µm	300µm	150µm	75µm		Sieve Size ³ ⁄ ₄ in ¹ ⁄ ₂ in 3/8in No.4 No.8 No.10 No.16 No.30 No.40 No.50 No.100 No.200	% Passing 100.0 98.6 96.2 85.3 71.6 70.0 60.4 49.8 45.5 41.5 34.5 28.5	Limits
COBBLES	GRA	/EL		SAND			FINE	S (28.5%)	<u>,</u>			
			r						·	D85: 4.6778	D60: 1.1503	D50: 0.607

			FdX. (240) 400-5050
Mate	rial Test Report	Project No.: 1188070011-05B ReportNo: MAT:FH18-W00342-S10	
Client:	Strata-G, LLC	CC:	This report shall not be reproduced (in part or whole) without the written constent of:
Project:	EMDF Site 7c Characterization		A man of any A
	Oak Ridge, Tennessee		AASHID MODERAN ACCESSION A

Reviewed By: Timothy A. Moore, Jr.

Sample Details

Sample ID Field Sample ID Location Sampled By Date Sampled Date Completed Source Material Specification Sampling Method Contractor Dispersion Method

GW982-SS21 Oak Ridge, Tennessee Mike Partenio 2/8/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

FH18-W00342-S10

Other Test Results

Description	Method	Result	Limits
Water Content (%)	ASTM D 2216	7.0	
Method		В	
Date Tested		2/15/2018	
Group Symbol	ASTM D 2487	SC	
Group Name		Clayey sand	
Date Tested		2/20/2018	
Approximate maximum grain size	ASTM D 4318		
Material retained on 425µm (No. 40) (%)		54.5	
Method of Removal			
Grooving Tool Type		Metal	
Specimen preparation method		Wet	
Drying Method		Air	
Special selection process		Quartered	
Rolling Method for PL		Hand	
As Received Water Content (%)		7.0	
Liquid Limit Device Type		Manual	
Liquid Limit		28	
Plastic Limit		19	
Plasticity Index		9	
Liquid Limit Procedure		Multipoint (A)	
Date Tested		2/15/2018	
Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name		Clayey sand	
Group Symbol		SC	
Composite Sieving Used		No	

					Fax: (248) 486-5050
Materi	ial Test	t Report		Project No.: ReportNo:	1188070011-05B MAT:FH18-W00342-S10
Client:	Strata-G, LL	_C	CC:	This report shall not b the written constent o	be reproduced (in part or whole) without f:
Project:	EMDF Site	7c Characterization			
	Oak Ridge,	Tennessee			Simothy a More of
				Reviewed By:	Timothy A. Moore, Jr.
Sample De	tails				
Sample ID Field Samp Location Sampled B Date Samp Date Comp Source Material Specification Sampling M Contractor Dispersion	ole ID By Died Dieted on Method	FH18-W00342-S10 GW982-SS21 Oak Ridge, Tennessee Mike Partenio 2/8/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A			
Description		Method		Res	sult Limits
Dispersion f Prior Testing				Dispersant by ha Atterberg lin	

Material Test Report							No.: lo:	1188070011-05 ASM:FH18-W0038	
Client:	Strata-G, LLC			CC:			shall not be repro	oduced (in part c	r whole) withou
Project:	EMDF Site 7c	Characterizatior	ı						
	Oak Ridge, T	ennessee				AASH Accredita Probra	d By: Timot	inthe a	
						Reviewe	а ву. тіпіо		JI.
Material	Details								
Source Description Specificati	n Nativo	echnical Drilling S e Existing Materia S		Locatio	ed From on ng Method	Split Spo Oak Ridg Split Spo	ge, Tennesse	е	
Sample		-							
Sample ID		FH	18-W00388-S0 F	H18-W00388-S0 F	H18-W00388-S0 F	H18-W00388-S0 F	H18-W00388-S0 F	H18-W00388-S0	
Field Samp	ole ID		GW986-SS2	GW986-SS3	GW986-SS4	GW986-SS6	GW986-SS7	GW986-SS9	
Date Samp			2/15/2018	2/15/2018	2/15/2018	2/15/2018	2/15/2018	2/15/2018	
Other Te	est Results								
Description		Method			Resu	ults			Limits
Water Conte	ent (%)	ASTM D 2216	20.4	21.1	14.6	8.4	8.7	4.3	
Method			В	В	В	В	В	В	
	aximum grain size on 425µm (No. 40) (%)	ASTM D 4318							
Method of R									
Grooving To			Metal Wet						
Drying Meth	reparation method		Air						
	ction process		Quartering						
Rolling Meth			Hand						
-	/ater Content (%)		20.4						
Liquid Limit	Device Type		Manual						
Liquid Limit			37						
Plastic Limit			18						
Plasticity Inc			19 Multipoint (A)						
Liquid Limit	Procedure	ASTM D 6913	Multipoliti (A)		Method B				
Sample Obta	ained While	ASTM D 0913			Air-Dried				
Group Name					Clayey sand				
Group Symb					SC				
	Sieving Used				No				
Dispersion N					Dispersant by hand				
Prior Testing	9				Moisture				

Comments

Project No.: 1188070011-05B **Material Test Report** MAT:FH18-W00388-S03 **ReportNo:** Client: Strata-G, LLC CC: This report shall not be reproduced (in part or whole) without the written constent of: Project: EMDF Site 7c Characterization a More Oak Ridge, Tennessee Reviewed By: Timothy A. Moore, Jr. **Sample Details** Sample ID FH18-W00388-S03 **Field Sample ID** GW986-SS4 Location Oak Ridge, Tennessee Sampled By Mike Partenio **Date Sampled** 2/15/2018 Source **Geotechnical Drilling Samples** Native Existing Material Material Sample Description: Specification USCS Brown clayey sand (SC) Split Spoon Sampling Method Contractor N/A Grading: ASTM D 6913 **Particle Size Distribution** Drying by: Oven Date Tested: 3/2/2018 Tested By: David Cook % Passing **Sieve Size** % Passing Limits 100 ¹∕₂in 100.0 3/8in 99.3 90 No.4 92.2 80 No.8 81.5 No.10 79.8 70 No.16 72.0 No.30 62.7 60 No.40 59.0 50 No.50 55.4 No.100 47.9 40 No.200 39.4 30 20 10 0 2.36mm 2.0mm .75mm 300µm 12.5mm 1.18mm 600µm 425µm 50µm 9.5mm 75µm Sieve COBBLES GRAVEL SAND FINES (39.4%) D85: 2.9667 D60: 0.4665 D50: 0.1821 Medium Coarse Fine Coarse Fine D30: N/A Silt Clay D15: N/A D10: N/A (0.0%) (0.0%) (7.8%) (12.4%) (20.8%) (19.6%)

Mater	ial Test	Report		Project No.: ReportNo:	1188070011-05B MAT:FH18-W00388-S03
Client:	Strata-G, LL	С	CC:	This report shall not the written constent of	be reproduced (in part or whole) without of:
Project:	EMDF Site	7c Characterization			
	Oak Ridge,	Tennessee			Similty a More f
				Reviewed By:	Timothy A. Moore, Jr.
Sample De	etails				
Sample ID Field Samp Location Sampled B Date Samp	ple ID 3y	FH18-W00388-S03 GW986-SS4 Oak Ridge, Tennessee Mike Partenio 2/15/2018			

Date Sampled Date Completed Source Material Specification Sampling Method Contractor Dispersion Method Mike Partenio 2/15/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

Other Test Results

Description	Method	Result	Limits
Water Content (%)	ASTM D 2216	14.6	
Method		В	
Date Tested		2/26/2018	
Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name		Clayey sand	
Group Symbol		SC	
Composite Sieving Used		No	
Dispersion Method		Dispersant by hand	
Prior Testing		Moisture	

Mater	ial Tes	t Report				Project ReportN			070011-05 18-W0034
Client:	Strata-G, L	LC		CC:		This report the written of		roduced (in part c	or whole) with
Project:	EMDF Site	e 7c Characterization							
	Oak Ridge	, Tennessee				AASH	M	Simothy a	
						Reviewe		thy A. Moore	, Jr.
Material	Details								
Source Descriptio Specificati	n Na	eotechnical Drilling Sa ative Existing Material SCS	imples	Locatio	ed From on ng Method	Split Spo Oak Ride Split Spo	ge, Tennesse	e	
Sample	-			Campin	ng method	Opint Opt			
-		EH1	8-W00343-S0 F	H18-W00343-S0 F	H18-W00343-S0 F	H18-W00343-S0 F	H18-W00343-S0	EH18-W00343-S0	
Sample ID Field Sam			6-000343-50 F GW988-SS2	GW988-SS3	GW988-SS4	GW988-SS6	GW988-SS8	GW988-SS11	
Date Samp			2/7/2018	2/7/2018	2/7/2018	2/7/2018	2/7/2018	2/7/2018	
	est Result	e	2/1/2010	2/1/2010	2/1/2010	2/1/2010	2/1/2010	2///2010	
		Method			Resu	ulto			Limits
Descriptio Water Conte		ASTM D 2216	34.6	25.1	33.6	29.8	26.2	21.5	LIIIIIIS
Method	5111 (70)	ACTIN D 2210	54.0 В	20.1 B	B	20.0 B	20.2 B	21.5 B	
Group Symb	ool	ASTM D 2487			ML				
Group Name					Sandy silt				
	aximum grain size	ASTM D 4318							
Material retained	l on 425µm (No. 40)	(%)			24.3				
Method of R	lemoval								
Grooving To	ol Type				Metal				
Specimen p	reparation meth	nod			Wet				
Drying Meth	od				Air				
	ction process				Quartered				
Rolling Meth					Hand				
	Vater Content (%)				33.6				
•	Device Type				Manual				
Liquid Limit					41				
Plastic Limit					27				
Plasticity Inc					14 Multipoint (A)				
Liquid Limit Method	FIOLEUUIE	ASTM D 6913			Method B				
	ained While	ASTIVI D 0913			Air-Dried				
Group Name					Sandy silt				
Group Symb					ML				
	Sieving Used				No				
Dispersion N	-				Dispersant by hand				
Prior Testing					Atterberg limits				

Mater	ial Test	Report				Project No.: ReportNo:	1188070011-05 ASM:FH18-W0034
Client:	Strata-G, LLC			CC:		This report shall not be r the written constent of:	eproduced (in part or whole) witho
Project:	EMDF Site 70	Characterization					and man
	Oak Ridge, 1	ennessee					Similty a More 1
						Reviewed By: Tir	nothy A. Moore, Jr.
Material	Details						
Source		echnical Drilling San	noles	Sample	ed From	Split Spoon	
Descriptio		e Existing Material		Locatio		Oak Ridge, Tennes	see
Specificati					ing Method	Split Spoon	
Sample							
Sample ID		FH18-	W00343-S0 F	- H18-W00343-S0 F	FH18-W00343-S0		
Field Samp			/988-SS13	GW988-SS16	GW988-SS18		
Date Samp			2/7/2018	2/7/2018	2/7/2018		
•	est Results		2,11,2010	211/2010	2///2010		
Descriptio		Method			Resu	ilte	Limits
Water Conte	ent (%)	ASTM D 2216	16.0	9.9	9.9	11.5	Linits
Method			В	В	В		
Group Symb	ol	ASTM D 2487		SC			
Group Name				Clayey sand			
	aximum grain size on 425µm (No. 40) (%)	ASTM D 4318		48.6			
Method of R Grooving To				Metal			
	reparation method			Wet			
Drying Meth	od			Air			
	ction process			Quartered			
Rolling Meth				Hand			
	/ater Content (%)			9.9			
	Device Type			Manual			
Liquid Limit				32			
Plastic Limit				19			
Plasticity Inc				13 Multipoint (A)			
Method		ASTM D 6913		Method B			
	ained While	AGTW D 0313		Air-Dried			
Group Name				Clayey sand			
Group Symb				SC			
	Sieving Used			No			
Dispersion N				Dispersant by hand			
Prior Testing				Atterberg limits			

									Fax:	(248) 486-50
Mater	rial Te	est R	eport					Project No.: ReportNo:		8070011-05 -W00343-S0
Client:	Strata-0			-	CC	:		This report shall not b	e reproduced (in par	t or whole) witho
Project:	EMDF	Site 7c Ch	aracterizat	ion						
	Oak Ri	dge, Tenn	lessee						Simothy C	A More 1
								Reviewed By:	Timothy A. Moor	[.] e, Jr.
Sample D	etails							Atterberg Li	mit:	
Sample ID Field Sam Location Sampled I Date Sam Source	nple ID By		GW988 Oak Ric Mike Pa 2/7/201 Geotec	lge, Tenne artenio 8 nnical Drilli	essee ing Sample	es		PI PI	iquid Limit: 41 astic Limit: 27 icity Index: 14	,
Material Specificat	tion		Native I USCS	Existing Ma	aterial			Sample Des	cription:	
Sampling Contracto	Method		Split Sp N/A	oon				Brown mottlee	d sandy silt (ML))
								Grading: AS	TM D 6913	
Particle S	lize Distri	bution						Drying by: Date Tested: Tested By:	Oven 2/16/2018 David Cook	
% Pa:	ssing								~ - .	
100 + · +	· · · · <u></u>		······			•••••		Sieve Size 3/8in	% Passing 100.0	Limits
90 - · -				·····		••••••		No.4 No.8	99.4 95.4	
80 - •					· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • •		No.10	94.2	
70 - •		· · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •				• • • • • • • •	No.16 No.30	88.4 79.8	
60 - •			• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			.	No.40	75.7	
50								No.50 No.100	71.8 64.5	
40 + ·								No.200	57.4	
30										
20 + ·										
10 + ·										
0										
0	9.5mm -	4.75mm - 2.36mm -	2.0mm - 1.18mm -	- mµ009	425µm - 300µm -	150µm -	75µm -			
	ର	4 <u>5</u>		Bieve	4 θ	~				
	1		Γ			1				
COBBLES		VEL		SAND		FINE	S (57.4%)	D85: 0.9031	D60: 0.0967	D50: N/A
(0.0%)	Coarse (0.0%)	Fine (0.6%)	Coarse	Medium	Fine	Silt	Clay	D30: N/A	D15: N/A	D10: N/A

				T ax. (240) 400-3030
Material Test Report			Project No.: ReportNo:	1188070011-05B MAT:FH18-W00343-S03
Client:	Strata-G, LLC	CC:	This report shall no the written conster	ot be reproduced (in part or whole) without t of:
Project:	EMDF Site 7c Characterization			and and a
	Oak Ridge, Tennessee			Simothy a More of
			Reviewed By:	Timothy A. Moore, Jr.

Sample Details

Sample ID Field Sample ID Location Sampled By Date Sampled Date Completed Source Material Specification Sampling Method Contractor Dispersion Method FH18-W00343-S03 GW988-SS4 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

Other Test Results

Description	Method	Result	Limits
Water Content (%)	ASTM D 2216	33.6	
Method		В	
Date Tested		2/16/2018	
Group Symbol	ASTM D 2487	ML	
Group Name		Sandy silt	
Date Tested		2/20/2018	
Approximate maximum grain size	ASTM D 4318		
Material retained on 425µm (No. 40) (%)		24.3	
Method of Removal			
Grooving Tool Type		Metal	
Specimen preparation method		Wet	
Drying Method		Air	
Special selection process		Quartered	
Rolling Method for PL		Hand	
As Received Water Content (%)		33.6	
Liquid Limit Device Type		Manual	
Liquid Limit		41	
Plastic Limit		27	
Plasticity Index		14	
Liquid Limit Procedure		Multipoint (A)	
Date Tested		2/16/2018	
Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name		Sandy silt	
Group Symbol		ML	
Composite Sieving Used		No	

			Fax: (248) 486-5050
ial Te	st Report	Project No.: ReportNo: MA	1188070011-05B AT:FH18-W00343-S03
Strata-G,	LLC CC:	This report shall not be repro	oduced (in part or whole) without
EMDF Sit	te 7c Characterization		A non A
Oak Ridg	_l e, Tennessee	PRUSRAM	mothy a More J
		Reviewed By: Timoth	ny A. Moore, Jr.
etails			
ple ID By bled pleted ion Method r	GW988-SS4 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A		
t Results			
Method	Method	Result Dispersant by hand Atterberg limits	Limits
	Strata-G, EMDF Si ^r Oak Ridg etails	EMDF Site 7c Characterization Oak Ridge, Tennessee etails FH18-W00343-S03 ple ID GW988-SS4 Oak Ridge, Tennessee By Mike Partenio oled 2/7/2018 pleted Geotechnical Drilling Samples Native Existing Material ion USCS Method Split Spoon r N/A n Method t Results n Method	Ital Test Report ReportNo: M/ Strata-G, LLC CC: This report shall not be reprotive written constent of: Itel sectors and the sector of the written constent of: Itel sectors and the sectors and th

									(248) 486-505
Mater	ial Test	Report					Project No.: ReportNo:		8070011-05 W00343-S0
Client:	Strata-G, LLC			CC:			This report shall not b the written constent o	e reproduced (in pai	t or whole) witho
Project:	EMDF Site 7c	Characterizati	on					0	
	Oak Ridge, T	ennessee						Simothy C	A More I
							Reviewed By:	Timothy A. Moor	e, Jr.
Sample D	etails						Atterberg Li	mit:	
Sample ID Field Sam Location Sampled E Date Samp Source	ple ID By	GW988- Oak Ride Mike Pa 2/7/2018	ge, Tennes rtenio	see	s		P	iquid Limit: 32 astic Limit: 19 ticity Index: 13)
Material	lan	Native E	xisting Mat		-		Sample Des	cription:	
Specificat Sampling Contracto	Method	USCS Split Spo N/A	oon				Gray clayey s	and (SC)	
							Grading: AS	TM D 6913	
	ize Distributior	1					Drying by: Date Tested: Tested By:	Oven 2/16/2018 David Cook	
% Pas 100 90 80 70 60 50 40 20 10 10 0	mu G G G	2.36mm 2.0mm 1.18mm	600µm	300µm	150µm	75µm	Sieve Size 3/8in No.4 No.8 No.10 No.16 No.30 No.40 No.50 No.100 No.200	% Passing 100.0 96.7 86.6 84.4 72.1 57.1 51.4 46.2 37.3 29.8	Limits
COBBLES	GRAVEL		SAND		FINE	6 (29.8%)			
	Coarse Fine	e Coarse	Medium	Fine	Silt	Clay	D85: 2.0923 D30: 0.0764	D60: 0.6838 D15: N/A	D50: 0.387 D10: N/A

				T ax. (240) 400-5050
Mate	rial Test Report	Project No.: ReportNo:	1188070011-05B MAT:FH18-W00343-S08	
Client:	Strata-G, LLC	CC:	This report shall no the written consten	t be reproduced (in part or whole) without t of:
Project:	EMDF Site 7c Characterization			and all all a
	Oak Ridge, Tennessee			Simothy a More of
			Reviewed By:	Timothy A. Moore, Jr.

Sample Details

Sample ID
Field Sample ID
Location
Sampled By
Date Sampled
Date Completed
Source
Material
Specification
Sampling Method
Contractor
Dispersion Method

FH18-W00343-S08 GW988-SS16 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

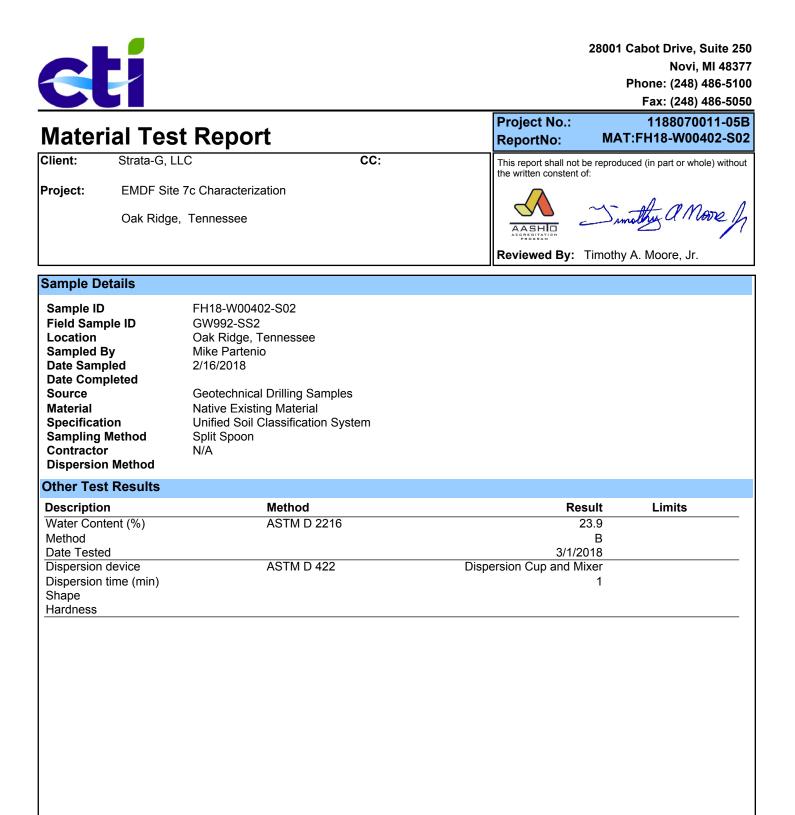
Other Test Results

Description	Method	Result	Limits
Water Content (%)	ASTM D 2216	9.9	
Method		В	
Date Tested		2/16/2018	
Group Symbol	ASTM D 2487	SC	
Group Name		Clayey sand	
Date Tested		2/20/2018	
Approximate maximum grain size	ASTM D 4318		
Material retained on 425µm (No. 40) (%)		48.6	
Method of Removal			
Grooving Tool Type		Metal	
Specimen preparation method		Wet	
Drying Method		Air	
Special selection process		Quartered	
Rolling Method for PL		Hand	
As Received Water Content (%)		9.9	
Liquid Limit Device Type		Manual	
Liquid Limit		32	
Plastic Limit		19	
Plasticity Index		13	
Liquid Limit Procedure		Multipoint (A)	
Date Tested		2/16/2018	
Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name		Clayey sand	
Group Symbol		SC	
Composite Sieving Used		No	

Mater	rial Te	st Report		Project No.: ReportNo:	1188070011-05B MAT:FH18-W00343-S08
Client:	Strata-G,		CC:	This report shall not be the written constent of:	reproduced (in part or whole) without
Project:	EMDF Si	ite 7c Characterization			
	Oak Ridg	ge, Tennessee			Simothy a More of
				Reviewed By: Ti	imothy A. Moore, Jr.
Sample D	etails				
Field Sam Location Sampled I Date Sam Date Com Source Material Specificat Sampling Contracto Dispersion	By ppled ppleted tion Method or on Method	GW988-SS16 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling S Native Existing Materia USCS Split Spoon N/A	Samples		
Other Tes Descriptio		Method		Resu	ult Limits
Dispersion Prior Testir	n Method			Dispersant by har Atterberg limi	nd

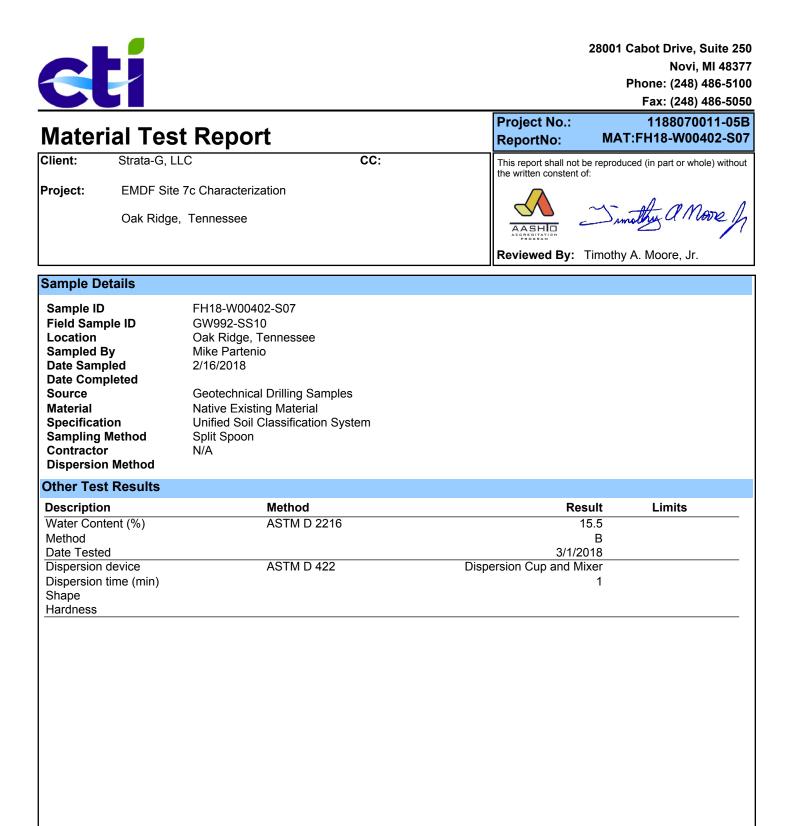
								48) 486-50
Material Test	Report				Project ReportN			070011-05 118-W0040
Client: Strata-G, LLC			CC:		This report the written of	shall not be repr	oduced (in part o	or whole) witho
Project: EMDF Site 7	c Characterization							
Oak Ridge,	Tennessee				Reviewe	d By: Timot		, Jr.
Material Details								
SourceGeoDescriptionNatiSpecificationUSC	technical Drilling Sa ve Existing Material S	mples	Locatio	ed From on ng Method	Split Spo Oak Ride Split Spo	ge, Tennesse	e	
Sample Details								
Sample ID Field Sample ID Date Sampled	(3-W00402-S0 F GW992-SS1 2/16/2018	H18-W00402-S0 F GW992-SS2 2/16/2018	H18-W00402-S0 F GW992-SS4 2/16/2018	H18-W00402-S0 F GW992-SS5 2/16/2018	H18-W00402-S0 F GW992-SS7 2/16/2018	GW992-SS8 2/16/2018	
Other Test Results								
Description	Method			Resi	ults			Limits
Water Content (%) Method	ASTM D 2216	29.3 B	23.9 B	37.1 B	13.4 B	21.3 B	16.2 B	
Material retained on 425µm (No. 40) (%) Method of Removal Grooving Tool Type Specimen preparation method Drying Method Special selection process Rolling Method for PL As Received Water Content (%) Liquid Limit Device Type Liquid Limit Plastic Limit Plastic Limit Plasticity Index Liquid Limit Procedure Dispersion device Dispersion time (min) Shape Hardness	3	Metal Wet Air Quartering Hand 29.3 Manual 38 20 18 Iultipoint (A)	Dispersion Cup and Mixer 1					

Mate	rial Test Report		Project No.: 1188070011-05B ReportNo: ASM:FH18-W00402
Client:	Strata-G, LLC	CC:	This report shall not be reproduced (in part or whole) without the written constent of:
Project:	EMDF Site 7c Characterization		
	Oak Ridge, Tennessee		AASHID ACCREATION ACCR
			Reviewed By: Timothy A. Moore, Jr.
Materia	I Detalis		
Sourco	Geotechnical Drilling Samples	Sampled From	Split Spoon


Source Description Specification	Geotechnical Drilling Native Existing Mater Unified Soil Classifica	ial .	Locatio	ed From on ing Method	Split Spoon Oak Ridge, Tennessee Split Spoon	
Sample Details						
Sample ID Field Sample ID Date Sampled	F		FH18-W00402-S0 F GW992-SS12 2/16/2018			
Particle Size Dis	tribution					
Method: ASTM D 422 Description: Analysis of Particle Size Distribution in Soils. Sie Particles >75μm, Hydro Drying by: Oven Washed: Sample Washed	ving for 3/8in (9.5m	n) m) 100 nm) 99 nm) 86 µm) 54 41		% Pa	assing	Limits

Other Test Results

Description	Method			Results	Limits
Water Content (%)	ASTM D 2216	15.5	17.6	10.8	
Method		В	В	В	
Dispersion device	ASTM D 422 Dispers	sion Cup and Mixer			
Dispersion time (min)		1			
Shape					
Hardness					



Project No.: 1188070011-05B **Material Test Report** MAT:FH18-W00402-S02 **ReportNo:** Client: Strata-G, LLC CC: This report shall not be reproduced (in part or whole) without the written constent of: Project: EMDF Site 7c Characterization a More Oak Ridge, Tennessee Reviewed By: Timothy A. Moore, Jr. **Sample Details** Sample ID FH18-W00402-S02 **Field Sample ID** GW992-SS2 Location Oak Ridge, Tennessee Sampled By Mike Partenio **Date Sampled** 2/16/2018 Geotechnical Drilling Samples Source Native Existing Material Material Sample Description: Unified Soil Classification System Specification Brown / orange sandy lean clay (CL) Sampling Method Split Spoon Contractor N/A Grading: ASTM D 422 Particle Size Distribution Drying by: Oven Date Tested: 2/28/2018 Tested By: Sheila Bowers % Passing 100 Sieve Size % Passing Limits 1½in 100 90 1in 100 99 ¹⁄₂in 80 3/8in 98 70 No.4 93 No.10 80 60 No.40 67 No.100 61 50 No.200 57 23.4 µm 40.6 40 15.5 µm 37.5 9.5 µm 30 32.7 7.0 µm 29.6 20 5.1 µm 27.2 2.6 µm 22.2 10 1.2 µm 16.7 0 No.10 No.40 No.100 23.4 µm 15.5 µm 9.5 µm 7 µm 5.1 µm 1in 1in No.200 Ē ½in 8/8in Vo.4 Ę 2.6 2 Sieve COBBLES GRAVEL SAND FINES **D85:** 2.7894 **D60:** 0.1261 D50: 0.0456 Medium Coarse Fine Coarse Fine Silt Clay D30: 0.0073 D15: N/A D10: N/A (27.0%) (0.0%) (0.5%) (6.5%) (13.0%) (13.0%) (10.0%) (30.0%)

Project No.: 1188070011-05B **Material Test Report** MAT:FH18-W00402-S07 **ReportNo:** Client: Strata-G, LLC CC: This report shall not be reproduced (in part or whole) without the written constent of: Project: EMDF Site 7c Characterization a More Oak Ridge, Tennessee Reviewed By: Timothy A. Moore, Jr. **Sample Details** Sample ID FH18-W00402-S07 **Field Sample ID** GW992-SS10 Location Oak Ridge, Tennessee Sampled By Mike Partenio **Date Sampled** 2/16/2018 Geotechnical Drilling Samples Source Native Existing Material Material Sample Description: Unified Soil Classification System Specification Brown clayey sand Sampling Method Split Spoon Contractor N/A Grading: ASTM D 422 Particle Size Distribution Drying by: Oven Date Tested: 2/28/2018 Tested By: Sheila Bowers % Passing 100 **Sieve Size** % Passing Limits 3/8in 100 90 No.4 99 No.10 86 80 No.40 54 70 41 No.100 No.200 37 60 29.1 µm 24.8 19.0 µm 21.5 50 11.3 µm 18.1 8.2 µm 15.6 40 5.8 µm 13.9 3.0 µm 30 9.8 1.2 µm 8.1 20 10 0 No.10 No.40 No.100 11.3 µm 8.2 µm 5.8 µm No.200 Ę ш 3/8in No.4 Щ 3 µm 29.1 19 2 Sieve COBBLES GRAVEL SAND FINES **D85:** 1.9055 D60: 0.5682 D50: 0.3085 Medium Silt Coarse Fine Coarse Fine Clay **D30:** 0.0436 D10: 0.0031 **D15:** 0.0073 (12.7%) (0.0%) (0.0%) (1.0%) (13.0%) (32.0%) (17.0%) (24.3%) Cu: 183.41 Cc: 1.08

Project: El	ak Ridge, Te ails Geote	chnical Drilling S		CC:		the written of		roduced (in part o	·
Oa Material Det Source Description Specification Sample Deta Sample ID	ak Ridge, Te ails Geote Native	ennessee chnical Drilling S						inthe a	More 1
Material Det Source Description Specification Sample Deta Sample ID	ails Geote Native	chnical Drilling S				AASH		mothy a	11 Love 1
Source Description Specification Sample Deta Sample ID	Geote Native					Reviewe	d By: Timo	thy A. Moore,	
Source Description Specification Sample Deta Sample ID	Geote Native								
Sample Deta Sample ID		Existing Materia		Locatio	ed From on ng Method	Split Spo Oak Rido Split Spo	ge, Tennesse	e	
Sample ID	ails			Campin	ing method	op.it op o			
		FH	18-W00403-S0 F	H18-W00403-S0 F	H18-W00403-S0 F	H18-W00403-S0 F	H18-W00403-S0 I		
	1		GW994-SS2	GW994-SS3	GW994-SS4	GW994-SS6	GW994-SS8	GW994-SS10	
Date Sampled			2/16/2018	2/16/2018	2/16/2018	2/16/2018	2/16/2018	2/16/2018	
Other Test F	Results								
Description		Method			Resi	ilts			Limits
Water Content (%)	ASTM D 2216	22.8	23.6	21.7	39.2	24.4	16.6	
Method			В	В	В	В	В	В	
Approximate maximur Material retained on 425	-	ASTM D 4318							
Method of Remov									
Grooving Tool Typ			Metal						
Specimen prepara			Wet						
Drying Method			Air						
Special selection	process		Quartering						
Rolling Method for			Hand						
As Received Water Co	. ,		22.8						
Liquid Limit Device	е Туре		Manual						
Liquid Limit Plastic Limit			47 18						
Plasticity Index			29						
Liquid Limit Proce	dure		Multipoint (A)						
Method	-	ASTM D 6913	. ,		Method B				
Sample Obtained	While				Air-Dried				
Group Name					Lean clay				
Group Symbol					CL				
Composite Sieving	-				No Dispersant by hand				
Dispersion Method Prior Testing	L				Moisture				

Comments

								Fax: (248) 486-5050
Materi	al Te	st Report				Project Report		1188070011-05B ASM:FH18-W00403
Client:	Strata-G	, LLC		CC:			shall not be repro	oduced (in part or whole) without
Project:	EMDF S	Site 7c Characterization	า					0
	Oak Rid	ge, Tennessee						mothy a More J
						Reviewe	ed By: Timot	hy A. Moore, Jr.
Material	Details							
Source Description Specificatio		Geotechnical Drilling S Native Existing Materia USCS	•	Locatio	ed From on ing Method	Split Spo Oak Rid Split Spo	ge, Tennesse	e
Sample D)etails				-			
Sample ID Field Sampl Date Sampl	ed			FH18-W00403-S0 I GW994-SS14 2/16/2018				
Other Tes	st Resu	lts						
Description		Method			Res			Limits
Water Conter Method	nt (%)	ASTM D 2216	18.7 B	13.6 B	13.3 B	15.9 B	14.6 B	
Method Sample Obtai Group Name Group Symbo		ASTM D 6913		Method B Air-Dried				
Composite Si Dispersion Me	eving Usec	I		No Dispersant by hand				
Prior Testing				Moisture				

Project No.: 1188070011-05B **Material Test Report** MAT:FH18-W00403-S03 **ReportNo:** Client: Strata-G, LLC CC: This report shall not be reproduced (in part or whole) without the written constent of: Project: EMDF Site 7c Characterization a More Oak Ridge, Tennessee Reviewed By: Timothy A. Moore, Jr. **Sample Details** Sample ID FH18-W00403-S03 **Field Sample ID** GW994-SS4 Location Oak Ridge, Tennessee Sampled By Mike Partenio **Date Sampled** 2/16/2018 Source Geotechnical Drilling Samples Native Existing Material Material Sample Description: Specification USCS Brown mottled lean clay (CL) Split Spoon Sampling Method Contractor N/A Grading: ASTM D 6913 **Particle Size Distribution** Drying by: Oven Date Tested: 3/2/2018 Tested By: David Cook % Passing **Sieve Size** % Passing Limits 100 ¹⁄₂in 100.0 3/8in 99.7 90 No.4 99.4 80 No.8 98.6 No.10 98.4 70 No.16 97.7 No.30 97.1 60 No.40 96.9 50 No.50 96.4 No.100 94.6 40 90.0 No.200 30 20 10 0 2.36mm 2.0mm .75mm 12.5mm 1.18mm 600µm 425µm 50µm 9.5mm 300µm 75µm Sieve COBBLES GRAVEL SAND FINES (90.0%) D85: N/A D60: N/A D50: N/A Medium Coarse Fine Coarse Fine D30: N/A Silt Clay D15: N/A D10: N/A (0.0%) (0.0%) (0.6%) (1.0%) (1.5%) (6.9%)

Mate	rial Test Report		Project No.: 1188070011-05 ReportNo: MAT:FH18-W00403-S0
Client:	Strata-G, LLC	CC:	This report shall not be reproduced (in part or whole) without the written constent of:
Project:	EMDF Site 7c Characterization		
	Oak Ridge, Tennessee		AASHIO AASHIO MIDDAAN
			Reviewed By: Timothy A. Moore, Jr.
Sample D	Details		
Sample II Field San Location	nple ID GW994-SS4		

	011994-004
Location	Oak Ridge, Tennessee
Sampled By	Mike Partenio
Date Sampled	2/16/2018
Date Completed	
Source	Geotechnical Drilling Samples
Material	Native Existing Material
Specification	USCS
Sampling Method	Split Spoon
Contractor	N/A
Dispersion Method	

Other Test Results

Description	Method	Result	Limits
Water Content (%)	ASTM D 2216	21.7	
Method		В	
Date Tested		3/1/2018	
Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name		Lean clay	
Group Symbol		CL	
Composite Sieving Used		No	
Dispersion Method		Dispersant by hand	
Prior Testing		Moisture	

Project No.: 1188070011-05B **Material Test Report** MAT:FH18-W00403-S08 **ReportNo:** Client: Strata-G, LLC CC: This report shall not be reproduced (in part or whole) without the written constent of: Project: EMDF Site 7c Characterization a More Oak Ridge, Tennessee Reviewed By: Timothy A. Moore, Jr. **Sample Details** Sample ID FH18-W00403-S08 **Field Sample ID** GW994-SS14 Location Oak Ridge, Tennessee Sampled By Mike Partenio **Date Sampled** 2/16/2018 Source Geotechnical Drilling Samples Native Existing Material Material Sample Description: Specification USCS Brown clayey sand Split Spoon Sampling Method Contractor N/A Grading: ASTM D 6913 **Particle Size Distribution** Drying by: Oven Date Tested: 3/2/2018 Tested By: David Cook % Passing **Sieve Size** % Passing Limits 100 ¹⁄₂in 100.0 3/8in 90 97.3 No.4 90.8 80 No.8 77.6 75.4 No.10 70 No.16 64.6 No.30 54.2 60 No.40 50.2 50 No.50 46.4 No.100 39.7 40 No.200 33.9 30 20 10 0 2.36mm 2.0mm .75mm 300µm 12.5mm 1.18mm 600µm 425µm 50µm 9.5mm 75µm Sieve COBBLES GRAVEL SAND FINES (33.9%) D85: 3.4931 D60: 0.8749 **D50:** 0.4173 Medium Coarse Fine Coarse Fine D30: N/A Silt Clay D15: N/A D10: N/A (0.0%) (0.0%) (9.2%) (15.4%) (25.2%) (16.3%)

						Fax: (248) 486-5050
Mate	Material Test Report			Project No.: ReportNo:	МАТ	1188070011-05B FH18-W00403-S08:
Client: Strata-G		_C	CC:	This report shall not the written constent		ced (in part or whole) without
Project:	EMDF Site	7c Characterization				0
	Oak Ridge,	Tennessee			JAW	why a more of
				Reviewed By:	Timothy	A. Moore, Jr.
Sample D	etails					
-	nple ID By Ipled Ipleted tion Method or Method	FH18-W00403-S08 GW994-SS14 Oak Ridge, Tennessee Mike Partenio 2/16/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A				
	st Results					
Descriptio		Method			sult	Limits
Water Cor Method	ntent (%)	ASTM D 2216			13.6 B	
Date Test	ed			3/1/2	_	
Method		ASTM D 6913		Metho	od B	
Comple O	htainad While			Air D	\riad	

Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name			
Group Symbol			
Composite Sieving Used		No	
Dispersion Method		Dispersant by hand	
Prior Testing		Moisture	

Material Tes	t Report				Project ReportN		11880 ASM:FH)70011-0 18-W004
Client: Strata-G, L	LC		CC:		This report s	shall not be repro	oduced (in part o	r whole) with
Project: EMDF Site	e 7c Characterizatio	n				onstent of.	Λ	
Oak Ridge	, Tennessee						imothy a	More
					Reviewe	d By: Timot	hy A. Moore,	Jr.
Material Details								
Description N	eotechnical Drilling S ative Existing Materia SCS		Locatio	ed From on ng Method	Split Spo Oak Ridg Split Spo	ge, Tennesse	9	
Sample Details								
Sample ID Field Sample ID Date Sampled	Fł	118-W00404-S0 F GW998-SS1 2/14/2018	H18-W00404-S0 F GW998-SS2 2/14/2018	H18-W00404-S0 F GW998-SS3 2/14/2018	H18-W00404-S0 F GW998-SS4 2/14/2018	H18-W00404-S0 F GW998-SS5 2/14/2018	H18-W00404-S0 GW998-SS7 2/14/2018	
Other Test Result	S	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010	2/14/2010	
Description	Method			Resi	ults			Limits
Water Content (%) Method Approximate maximum grain size	ASTM D 2216 ASTM D 4318	18.9 B	22.0 B	27.4 B	18.6 B	26.0 B	23.8 B	
Material retained on 425µm (No. 40) Method of Removal Grooving Tool Type Specimen preparation meti Drying Method Special selection process Rolling Method for PL As Received Water Content (%) Liquid Limit Device Type Liquid Limit Plastic Limit		Metal Wet Air Quartering Hand 27.4 Manual 38 22						

Comments N/A

Method

28001 Cabot Drive, Suite 250 Novi, MI 48377 Phone: (248) 486-5100 Fax: (248) 486-5050

						Fax. (240) 400-5050
Mater	ial Te	est Report			Project No.: ReportNo:	1188070011-05B ASM:FH18-W00404
Client:	Strata-G	i, LLC		CC:	This report shall not be re the written constent of:	eproduced (in part or whole) without
Project:	EMDF	Site 7c Characterization				a al an a
	Oak Rid	lge, Tennessee				Simithy a More J
					Reviewed By: Tin	nothy A. Moore, Jr.
Material	Details					
Source		Geotechnical Drilling Sa		Sampled From	Split Spoon	
Description		Native Existing Material		Location	Oak Ridge, Tennes	see
Specificatio		USCS		Sampling Method	Split Spoon	
Sample [Details					
Sample ID		FH1	18-W00404-S0			
Field Samp	ole ID		GW998-SS9			
Date Samp	led		2/14/2018			
Other Te	st Resi	ılts				
Description	า	Method		Resu	Ilts	Limits
Water Conte	nt (%)	ASTM D 2216	15.4			

В

Project No.: 1188070011-05B **Material Test Report** MAT:FH18-W00404-S04 **ReportNo:** Client: Strata-G, LLC CC: This report shall not be reproduced (in part or whole) without the written constent of: Project: EMDF Site 7c Characterization a More Oak Ridge, Tennessee Reviewed By: Timothy A. Moore, Jr. **Sample Details** Sample ID FH18-W00404-S04 **Field Sample ID** GW998-SS4 Location Oak Ridge, Tennessee Sampled By Mike Partenio **Date Sampled** 2/14/2018 Source Geotechnical Drilling Samples Native Existing Material Material Sample Description: Specification USCS Brown clayey sand Split Spoon Sampling Method Contractor N/A Grading: ASTM D 6913 Particle Size Distribution Drying by: Oven Date Tested: 3/2/2018 Tested By: David Cook % Passing **Sieve Size** % Passing Limits 100 ¹⁄₂in 100.0 3/8in 99.9 90 No.4 95.7 80 No.8 84.9 No.10 82.9 70 No.16 73.3 No.30 63.2 60 No.40 58.5 50 No.50 53.6 No.100 44.3 40 37.3 No.200 30 20 10 0 2.36mm 2.0mm .75mm 300µm 12.5mm 1.18mm 600µm 425µm 50µm 9.5mm 75µm Sieve COBBLES GRAVEL SAND FINES (37.3%) D85: 2.3753 **D60:** 0.4744 D50: 0.2294 Medium Coarse Fine Coarse Fine D30: N/A Silt Clay D15: N/A D10: N/A (0.0%) (0.0%) (4.3%) (12.8%) (24.4%) (21.2%)

Mater	rial Tes	t Report		Project No.: ReportNo:	1188070011-05B MAT:FH18-W00404-S04
Client:	Strata-G, Ll	LC	CC:	This report shall not the written constent	be reproduced (in part or whole) without of:
Project:		7c Characterization , Tennessee			Sumother a More J
				Reviewed By:	Timothy A. Moore, Jr.
Sample D	etails				
Sample II Field Sam Location Sampled Date Sam Date Com Source Material Specifica Sampling Contracto Dispersio	iple ID By pled ipleted tion Method	FH18-W00404-S04 GW998-SS4 Oak Ridge, Tennessee Mike Partenio 2/14/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A	3		

Other Test Results

Description	Method	Result	Limits
Water Content (%)	ASTM D 2216	18.6	
Method		В	
Date Tested		3/13/2018	
Method	ASTM D 6913	Method B	
Sample Obtained While		Air-Dried	
Group Name			
Group Symbol			
Composite Sieving Used		No	
Dispersion Method		Dispersant by hand	
Prior Testing		Moisture	

Appendix F.2 – Bulk Soil Sample Testing

This Page Intentionally Left Blank.

				Cabot Drive, Suite 250 Novi, MI 48377 Phone: (248) 486-5100 Fax: (248) 486-5050 1188070011-05B
Procte	or Report		Project No.: ReportNo: PTR	2:FH18-W00468-S01
Client:	Strata-G, LLC CC:		This report shall not be reproduce the written constent of:	ced (in part or whole) without
Project:	EMDF Site 7c Characterization			\mathcal{T}
	Oak Ridge, Tennessee		Reviewed By: Peng Lo	rengolo C r
Sample I				
Sample ID: Date Sampl	FH18-W00468-S01	Field Sample Sampled By:	ID: GW979 Mike Partenio	
Source: Material: Specificatio Location: Tested By:	Geotechnical Drilling Samples Native Existing Material N/A Boring Spoils Sheila Bowers Weight - Water Content Relationship	Date Tested:	3/16/2018 Test Results	
Dry Offic	0% Air Voids		ASTM D 1	557
11 11 11 11 11 11 11 11	5.0 4.0 3.0 2.0 1.0 9.0 9.0 9.0 9.0 1.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 3 Water Content (%)		Maximum Dry Unit Weight (lbf/ft³): Optimum Water Content (% Method: Preparation Method: Specific Gravity (Fines): Visual Description:	114.8 b): 13.5 B Moist 2.70 Redish/Brown Clay

cti		Pho F	oot Drive, Suite 250 Novi, MI 48377 one: (248) 486-5100 Fax: (248) 486-5050
Proctor Report		•	1188070011-05B H18-W00468-S02
Client: Strata-G, LLC		report shall not be reproduced (written constent of:	(in part or whole) without
Project: EMDF Site 7c Characterization			
Oak Ridge, Tennessee	Rev	viewed By: Peng Lor	golo C
Sample Details			
Sample ID: FH18-W00468-S02 Date Sampled: 2/23/2018 Sampling Method: In-Place	•	W981 like Partenio	
Contractor: N/A Source: Geotechnical Drilling Samples Material: Native Existing Material Specification: N/A Location: Boring Spoils Tested By: Sheila Bowers		/16/2018	
Dry Unit Weight - Water Content Relations 0% Air Voids 121.0 120.0 119.0 119.0 119.0 118.0 118.0 116.0 116.0 115.0 116.0 115.0 116.0 117.0 116.0 117.0 116.0 117.0 116.0 117.0 116.0 117.0 116.0 117.0 116.0 117.0 116.0 117.0 110.0 1	Maximu Optimu Method: Preparati Specific (Results ASTM D 1557 um Dry Unit Weight (lbf um Water Content (%): ion Method: Gravity (Fines): escription:	

Mater	rial Test R	leport			Project No.: ReportNo:		8070011-05I -W00468-S0
lient:	Strata-G, LLC		CC:		This report shall not be the written constent of	e reproduced (in par	t or whole) withou
roject:	EMDF Site 7c C	haracterization					
	Oak Ridge, Ter	inessee				Pengdo	$i \ge 1$
					Reviewed By: F		
Sample D	etails					09 _0.	
Sample IE Field Sam Location		FH18-W00468-S03 GW983 Boring Spoils	3				
Sampled Date Sam Date Com	pled	Mike Partenio 2/21/2018 3/13/2018					
Source Material		Geotechnical Drillin Native Existing Ma			Sample Des		
Specificat Sampling Contracto	Method	N/A In-Place N/A			Brown Sandy	Clay	
ortiolo C	ize Distribution				Grading: AS	TM D 422	
article S					Drying by: Date Tested: Tested By:	Oven 3/22/2018 David Cook	
% Pa 100 ⊤	assing						
90 -					Sieve Size ½in 3/8in	% Passing 100 99	Limits
80 - •			• • • • • • • • • • • • • • • • • • • •		No.4 No.10	96 87	
70 - •					No.40	74	
60 - ·		······			No.100 No.200	67 59	
50			X		28.0 μm 18.7 μm	41.8 33.4	
40+.					11.3 µm	27.4	
30					8.1 μm 5.8 μm	23.8 21.4	
20+-			`	_	2.9 μm 1.2 μm	16.8 13.2	
10+.					1.2 μπ	10.2	
0							
v	%in - 3/8in No.4 -	No.10 - No.40 - No.100 - No.200 -	28 µm 18.7 µm 11.3 µm 8.1 µm	5.8 µm 2.9 µm 1.2 µm			
		– – z z Sieve	°, 6 ± ∞,	- 10 CV			
	CDAVE	CAND		EINES	,		
COBBLES	GRAVEL Coarse Fine	SAND Coarse Medium	Fine	FINES Silt Clay	D85: 1.5760	D60: 0.0818	
(0.0%)	(0.0%) (4.0%)	(9.0%) (13.0%)		8.9%) (20.1%)	D30: 0.0141	D15: 0.0019	D10: N/A

Mate	rial Test Report		Project No.: ReportNo:	1188070011-05B MAT:FH18-W00468-S03
Client:	Strata-G, LLC	CC:	This report shall not be the written constent of:	reproduced (in part or whole) without
Project:	EMDF Site 7c Characterization			\mathcal{D}
	Oak Ridge, Tennessee			Tengolo
			Reviewed By: Pe	eng Lor

Sample Details

Sample ID Field Sample ID Location Sampled By	FH18-W00468-S03 GW983 Boring Spoils Mike Partenio
Date Sampled	2/21/2018
Date Completed	3/13/2018
Source	Geotechnical Drilling Samples
Material	Native Existing Material
Specification	N/A
Sampling Method	In-Place
Contractor	N/A
Dispersion Method	

Other Test Results

Description	Method	Result	Limits
Maximum Dry Unit Weight (lbf/ft ³)	ASTM D 1557	120.2	
Corrected Maximum Dry Unit Weight (lbf/ft3)		120.2	
Optimum Water Content (%)		11.3	
Corrected Optimum Water Content (%)		11.3	
Method		В	
Preparation Method		Moist	
Visual Description		Brown Sandy Clay	
Specific Gravity (Fines)		2.70	
Date Tested		3/20/2018	
Dispersion device	ASTM D 422	Soil Dispersion Cup and Mixer	
Dispersion time (min)		1	
Shape			
Hardness			
Maximum Dry Unit Weight (lbf/ft ³)	ASTM D 698	112.2	
Corrected Maximum Dry Unit Weight (lbf/ft3)		112.2	
Optimum Water Content (%)		11.7	
Corrected Optimum Water Content (%)		11.7	
Method		В	
Preparation Method		Moist	
Visual Description		Brown Sandy Clay	
Retained Sieve 3/8" (9.5mm) (%)		0	
Specific Gravity (Fines)		2.70	
Date Tested		3/20/2018	

				28001 Cabot Drive, Suite 250 Novi, MI 48377 Phone: (248) 486-5100 Fax: (248) 486-5050
Procto	or Report		Project No.: ReportNo:	1188070011-05B PTR:FH18-W00468-S03
Client:	Strata-G, LLC CC:		This report shall not b the written constent of	e reproduced (in part or whole) without
Project:	EMDF Site 7c Characterization			
	Oak Ridge, Tennessee		Reviewed By: F	Peng Lor
Sample [Details			
Sample ID: Date Sample	FH18-W00468-S03	Field Sample Sampled By:		
Contractor: Source: Material: Specificatio Location: Tested By:	Geotechnical Drilling Samples Native Existing Material on: N/A Boring Spoils Sheila Bowers	Date Tested:		
Dry Unit	Weight - Water Content Relationship			STM D 1557
12: 120 110 111 111 111 111		6.5 18.0	Maximum Dry Unit V (lbf/ft ³): Optimum Water Con Method: Preparation Method: Specific Gravity (Fines): Visual Description:	ntent (%): 11.3 B Moist

ct			Project No.:	28001 Cabot Drive, Suite 250 Novi, MI 48377 Phone: (248) 486-5100 Fax: (248) 486-5050 1188070011-05B
Proctor	Report		ReportNo:	PTR:FH18-W00468-S03
	ata-G, LLC CC:		This report shall not b the written constent o	e reproduced (in part or whole) without
Project: El	MDF Site 7c Characterization			
0	ak Ridge, Tennessee		Reviewed By:	Peng do C
Sample Deta	silo			
Sample ID: Date Sampled: Sampling Metho Contractor: Source: Material: Specification:	FH18-W00468-S03 2/21/2018	Field Sample Sampled By:	ID: GW983 Mike Partenio	
Location:	N/A Boring Spoils			
Tested By:	Sheila Bowers	Date Tested:	3/20/2018	
113.0	ight - Water Content Relationship 0% Air Voids		Test Results Maximum Dry Uni (lbf/ft ³): Optimum Water C Method: Preparation Method: Specific Gravity (Fines) Retained Sieve 3/8" (9.5 Visual Description:	acontent (%): 11.7 B Moist :: 2.70 5mm) (%): 0 mm) (%): 100

Mater	rial Test R	eport			Project No.: ReportNo:		8070011-056 -W00468-S04
Client:	Strata-G, LLC	-	CC:		This report shall not the written constent	be reproduced (in pa	rt or whole) withou
Project:	EMDF Site 7c Cl	naracterization					
	Oak Ridge, Ten	nessee				Pengolo	l
					Reviewed By:	Peng Lor	
Sample D							
Sample ID Field Sam Location Sampled I Date Sam Date Com Source	nple ID By Ipled	FH18-W00468-3 GW989 Boring Spoils Mike Partenio 2/27/2018 3/13/2018 Geotechnical Dr		5	Sample Do	scription	
Material Specificat	tion	Native Existing I N/A	• .	-	Sample De Brown Clay		
Sampling Contracto	Method	In-Place N/A					
					Grading: A	STM D 6913	
Particle 5	ize Distribution				Drying by: Date Tested Tested By:		
% Pa	assing						
$ \begin{array}{c} 100 \\ 90 \\ - \\ 80 \\ - \\ 70 \\ - \\ 60 \\ - \\ 50 \\ - \\ 40 \\ - \\ 20 \\ - \\ 10 \\ - \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	19.0mm 12.5mm 9.5mm 4.75mm				Sieve Size ³ ⁄ ₄ in ³ ⁄ ₂ in 3/8in No.4 No.8 No.10 No.16 No.30 No.40 No.50 No.100 No.200	% Passing 100.0 99.5 99.5 98.6 95.4 94.7 91.2 86.9 85.0 83.3 80.2 75.7	Limits
COBBLES	GRAVEL	SAND		FINES (75.7%)	D85: 0.4250	D60: N/A	D50 : N/A
(0.0%)	Coarse Fine (0.0%) (1.4%)	Coarse Mediur (3.9%) (9.7%		Silt Clay		D15: N/A	D50: N/A D10: N/A

				· · · ·
Material Test Report			Project No.: ReportNo:	1188070011-05B MAT:FH18-W00468-S04
Client:	Strata-G, LLC	CC:	This report shall not the written constent of	be reproduced (in part or whole) without of:
Project:	EMDF Site 7c Characterization			\mathcal{T}
	Oak Ridge, Tennessee			1 engolo 🧲
			Reviewed By:	Peng Lor

Sample Details

Sample ID	FH18-W00468-S04
Field Sample ID	GW989
Location	Boring Spoils
Sampled By	Mike Partenio
Date Sampled	2/27/2018
Date Completed	3/13/2018
Source	Geotechnical Drilling Samples
Material	Native Existing Material
Specification	N/A
Sampling Method	In-Place
Contractor	N/A
Dispersion Method	

Other Test Results

Description	Method	Result	Limits
Maximum Dry Unit Weight (lbf/ft ³)	ASTM D 1557	107.8	Liiiito
Corrected Maximum Dry Unit Weight (lbf/ft ³)		107.8	
Optimum Water Content (%)		12.5	
		12.5	
Corrected Optimum Water Content (%)			
Method		В	
Preparation Method		Moist	
Visual Description		Brown Clay with Sand	
Specific Gravity (Fines)		2.70	
Method	ASTM D 6913	Method B	
Sample Obtained While		Oven-Dried	
Group Name			
Group Symbol			
Composite Sieving Used		No	
Dispersion Method		Dispersant by hand	
Prior Testing		Moisture	

cti				01 Cabot Drive, Suite 250 Novi, MI 48377 Phone: (248) 486-5100 Fax: (248) 486-5050
Proctor Re	eport		Project No.: ReportNo: P	1188070011-05B TR:FH18-W00468-S04
Client: Strata-	G, LLC CC	C:	This report shall not be reproted the written constent of:	oduced (in part or whole) without
Project: EMDF	Site 7c Characterization			
Oak R	lidge, Tennessee		Reviewed By: Peng	leng de E
Date Sampled:2Sampling Method:InContractor:NSource:C	FH18-W00468-S04 2/27/2018 n-Place N/A Geotechnical Drilling Samples	Field Sample II Sampled By:	D: GW989 Mike Partenio	
Specification: N Location: E	Native Existing Material N/A Boring Spoils Sheila Bowers	Date Tested:		
Dry Unit Weigh	t - Water Content Relationsh	ip T	est Results	
	0% Air Voids		ASTM aximum Dry Unit /eight (lbf/ft³): ptimum Water Content 6): ethod: reparation Method: becific Gravity (Fines): sual Description:	D 1557 107.8 12.5 B Moist 2.70 Brown Clay with Sand

Mater	rial Test F	Report		Project No.: ReportNo:		8070011-05I -W00468-S0
Client:	Strata-G, LLC	CC:		This report shall not be the written constent of	e reproduced (in par	t or whole) withou
Project:	EMDF Site 7c C	haracterization				4
	Oak Ridge, Tei	nessee			Pengolo	1
				Reviewed By: F	V	
Sample D	etails					
Sample ID Field Sam Location Sampled B Date Sam Date Com Source	ıple ID By pled	FH18-W00468-S06 GW999 Boring Spoils Mike Partenio 2/20/2018 3/13/2018 Geotechnical Drilling Sample	5			
Material		Native Existing Material	:5	Sample Des	•	
Specificat Sampling Contracto	Method	N/A In-Place N/A		Brown Sandy	Clay	
Dortiolo S	ize Distribution			Grading: AS	TM D 6913	
				Drying by: Date Tested: Tested By:	Oven 3/15/2018 Sheila Bowers	
% Pas	ssing					
	9.5mm 4.75mm	2.36mm 2.0mm boolum 600lum 300lum 330lum	150µm	Sieve Size ½in 3/8in No.4 No.8 No.10 No.16 No.30 No.40 No.50 No.100 No.200	% Passing 100.0 99.5 96.5 88.6 87.2 80.7 74.7 72.3 69.8 64.9 61.1	Limits
COBBLES	GRAVEL	SAND	FINES (61.1%)			
	Coarse Fine	Coarse Medium Fine	Silt Clay	D85: 1.6729 D30: N/A	D60: N/A D15: N/A	D50: N/A D10: N/A

Mate	rial Test Report	Project No.: ReportNo:	1188070011-05B MAT:FH18-W00468-S06	
Client:	Strata-G, LLC	CC:	This report shall not be the written constent of:	e reproduced (in part or whole) without
Project:	EMDF Site 7c Characterization			\mathcal{D}
	Oak Ridge, Tennessee			Tengolo
			Reviewed By: P	Peng Lor

Sample Details

Sample ID	FH18-W00468-S06
Field Sample ID	GW999
Location	Boring Spoils
Sampled By	Mike Partenio
Date Sampled	2/20/2018
Date Completed	3/13/2018
Source	Geotechnical Drilling Samples
Material	Native Existing Material
Specification	N/A
Sampling Method	In-Place
Contractor	N/A
Dispersion Method	

Other Test Results

Description	Method	Result	Limits
Maximum Dry Unit Weight (lbf/ft ³)	ASTM D 1557	110.6	
Corrected Maximum Dry Unit Weight (Ibf/ft	')	110.6	
Optimum Water Content (%)	, ,	12.1	
Corrected Optimum Water Content (%)		12.1	
Method		В	
Preparation Method		Moist	
Visual Description		Brown Sandy Clay	
Specific Gravity (Fines)		2.70	
Method	ASTM D 6913	Method B	
Sample Obtained While		Oven-Dried	
Group Name			
Group Symbol			
Composite Sieving Used		No	
Dispersion Method		Dispersant by hand	
Prior Testing		Moisture	

				1 Cabot Drive, Suite 250 Novi, MI 48377 Phone: (248) 486-5100 Fax: (248) 486-5050
	or Report		Project No.: ReportNo: P	1188070011-05B TR:FH18-W00468-S06
Client:	Strata-G, LLC CC:		This report shall not be repro	oduced (in part or whole) without
Project:	EMDF Site 7c Characterization			
	Oak Ridge, Tennessee		Reviewed By: Peng	lengale Lor
Sample [Details		-	
Sample ID: Date Sample	FH18-W00468-S06 Fie	ld Sample ID: npled By:	: GW999 Mike Partenio	
Contractor: Source: Material: Specificatio Location: Tested By:	Geotechnical Drilling Samples Native Existing Material on: N/A Boring Spoils Sheila Bowers Dat	e Tested:		
Dry Unit	Weight - Water Content Relationship	IE	est Results ASTM I	0 1557
A jiun Alu		- (Ib Op Me Spo	trimum Dry Unit Weigh f/ft³): htimum Water Content thod: eparation Method: ecific Gravity (Fines): ual Description:	110.6

Appendix F.3 – Shelby Tube Sample Testing

This Page Intentionally Left Blank.

BOWSER-MORNER, INC.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377

Report Date: April 17, 2018 Job No.: 183923 **Report No.:** 430211 No. of Pages: 2

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW993 – ST-1, 3.0'-5.0' – Sample Date: 2/22/18 Depth of Test Specimen: 3.5' - 3.8'

On March 5, 2018, one Shelby tube sample was submitted for laboratory determination of permeability. Testing was performed as specified by the client and in accordance with ASTM D 5084, "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter".

Results are presented in the following table.

Test Parameter	Results
Average Permeability, cm/sec:	5.5 x 10 ⁻⁷

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER. INC

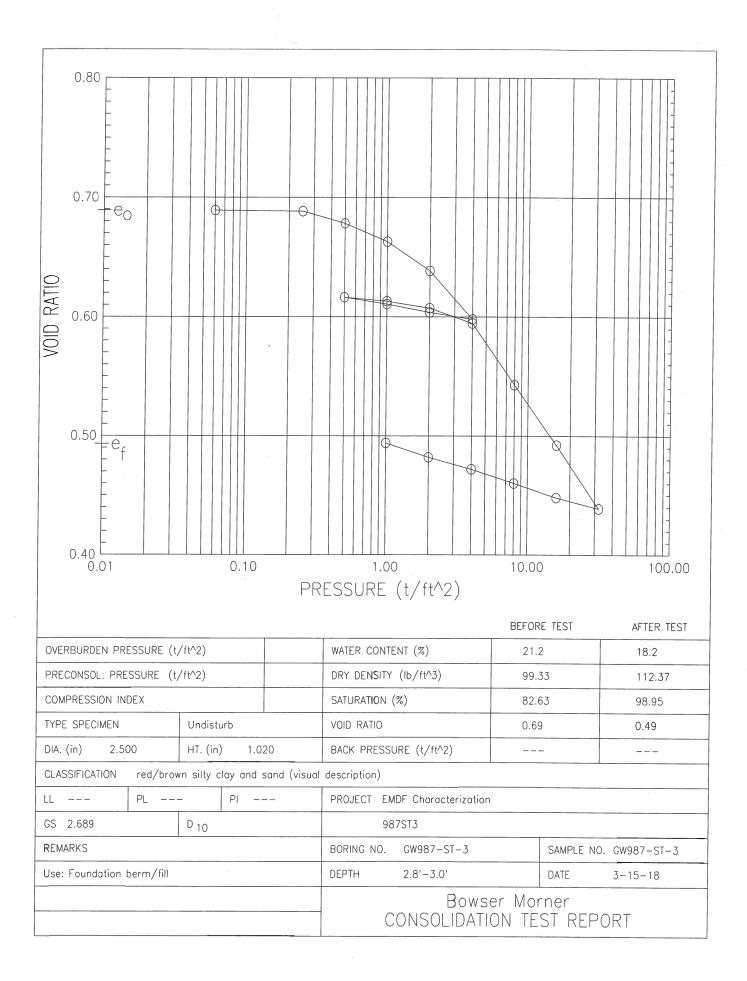
Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

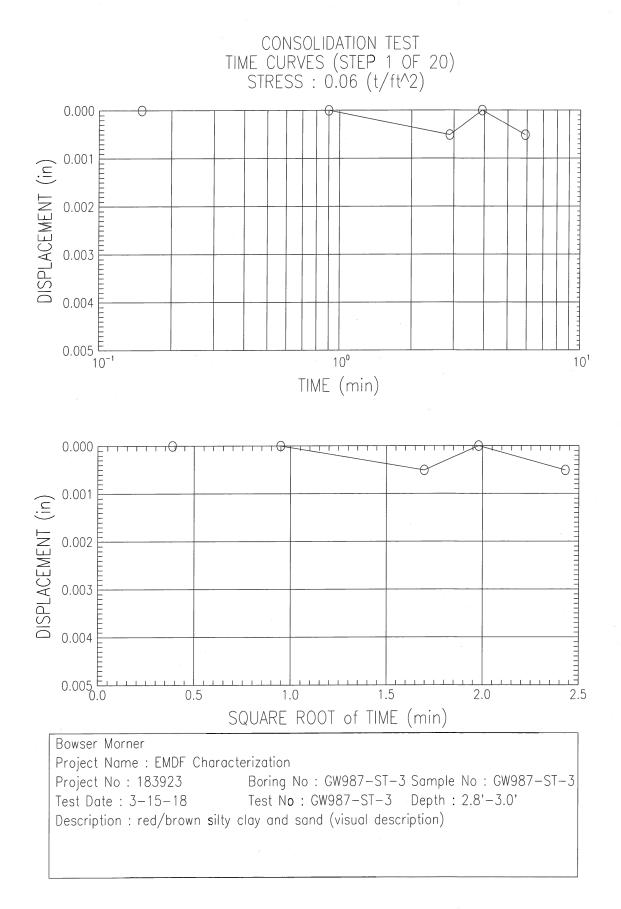
KAF/blc 430211 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-3 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

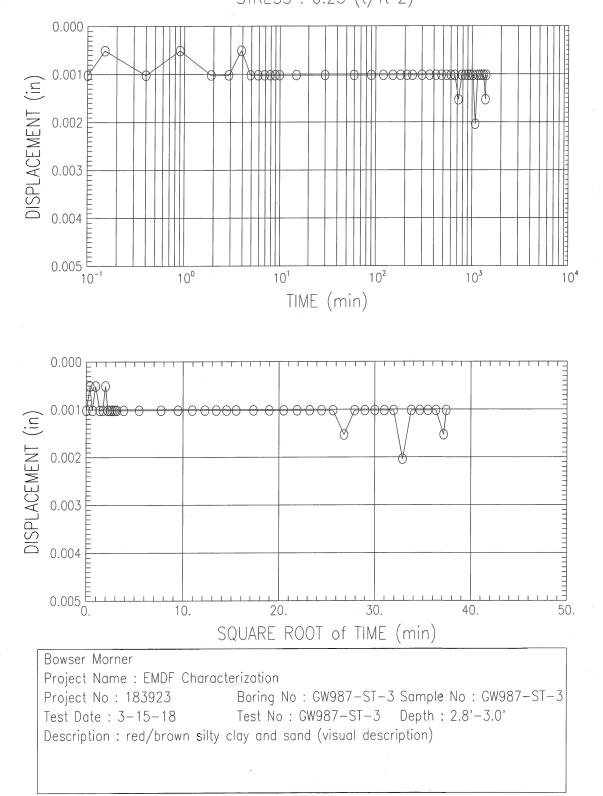
FALLING HEAD PERMEABILITY TEST

ASTM D 5084, Measurement of Hydraulic Conductivity

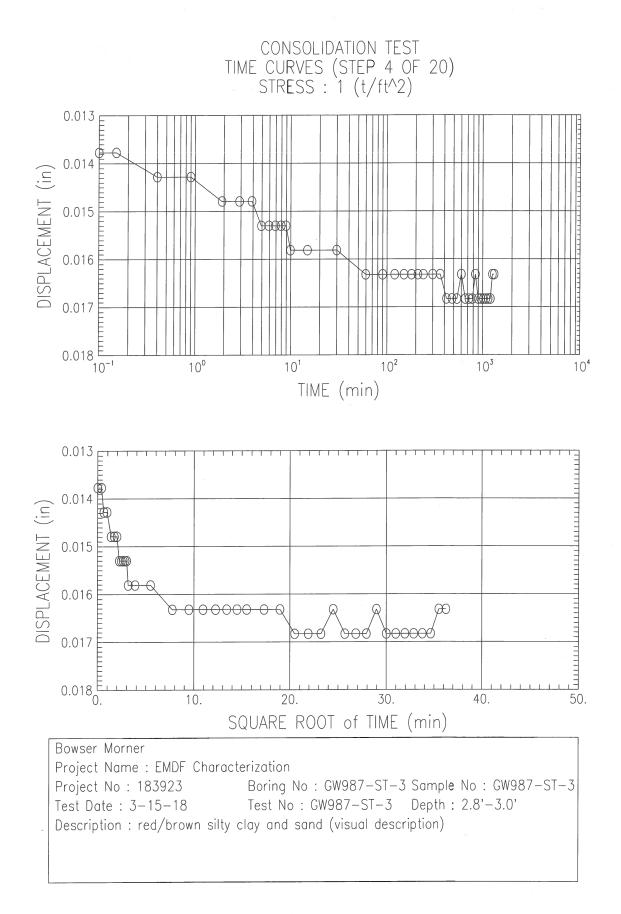

UNDISTURBED

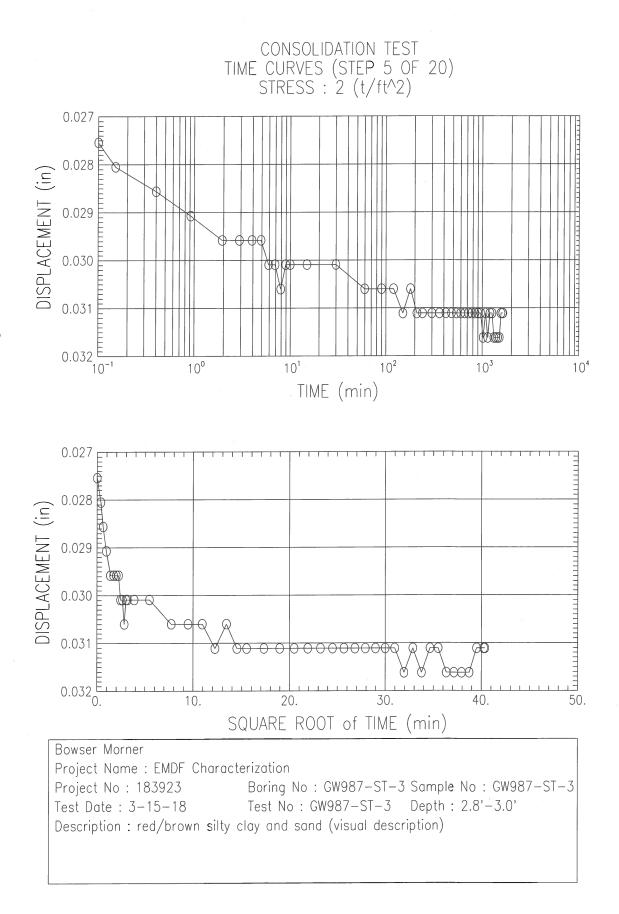

Client:	CTI and Associates, Inc.	
Project:	EMDF Characterization - Project No. 1188070011	
BMI Work Order Number:	183923	
Sample Identification:	GW993 - ST-1, 3.0'-5.0'	
Depth, ft:	3.5'-3.8'	
Visual Description:	brown clay and silt, little gravel	
SPECIMEN DATA: Dimension, inches Height:	2.559	
Diameter: Mass, lbs:	2.82	
Moisture Content,% Initial: Final:	26.5 26.2	
Wet Unit Weight, pcf Initial: Final:	124.2 123.9	
Initial Dry Unit Weight, pcf: Back Pressure Saturation, psi Back Pressure, Exit: Back Pressure, Enter: Lateral Pressure:	98.2 60 63 67	

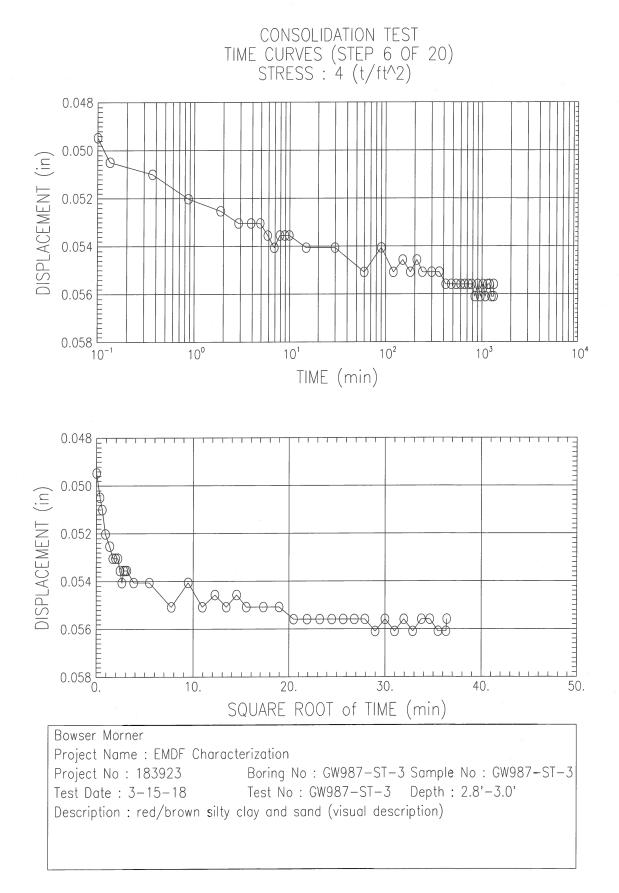
Permeability (k), cm/sec:

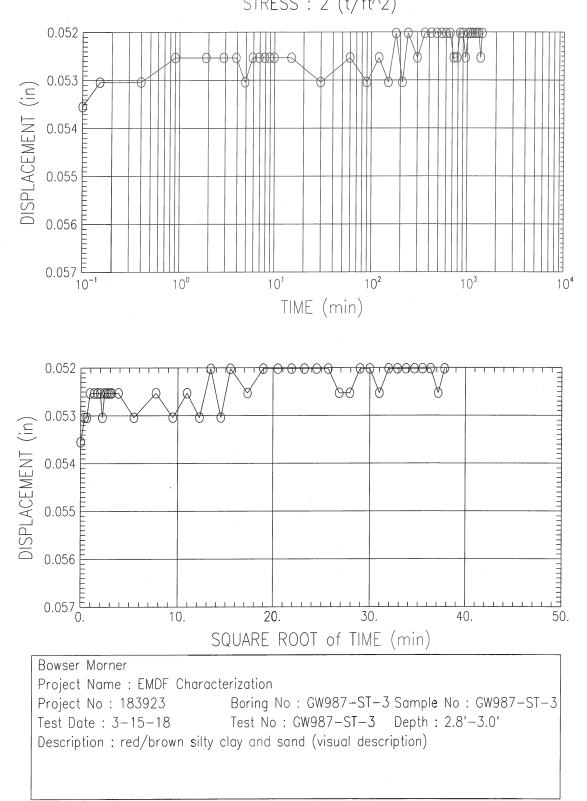

5.5 x 10⁻⁷

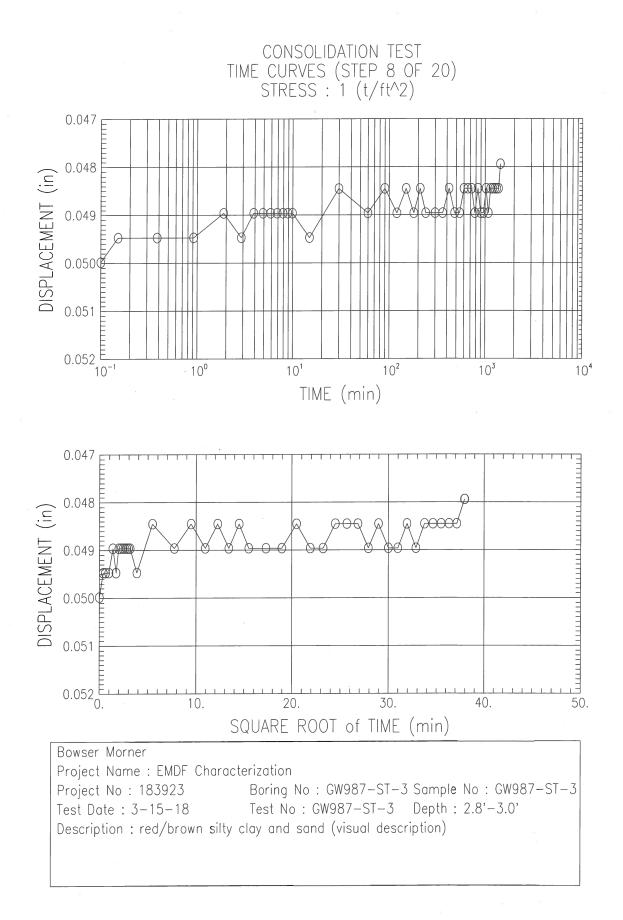
April 17, 2018

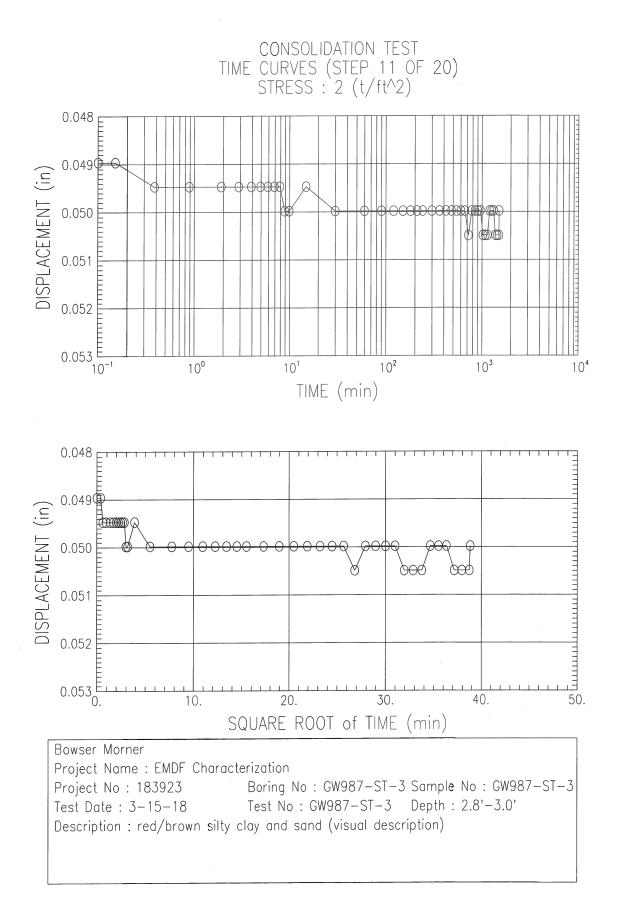


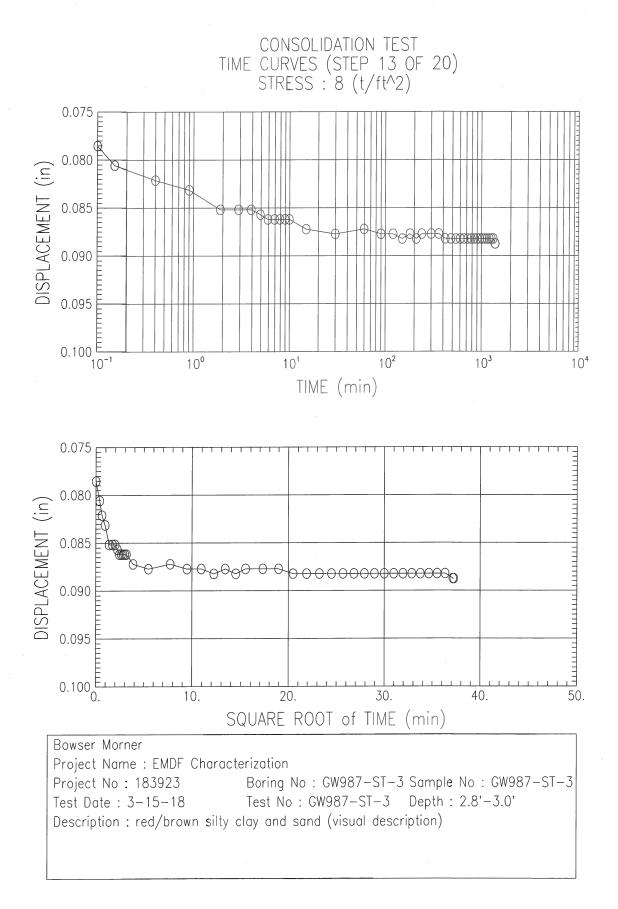


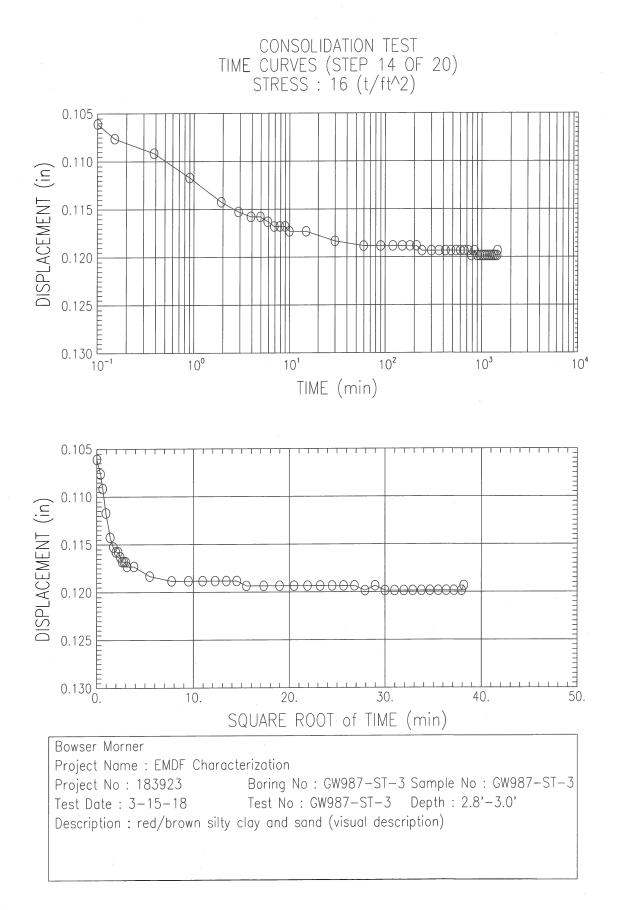

CONSOLIDATION TEST TIME CURVES (STEP 2 OF 20) STRESS : 0.25 (t/ft^2)

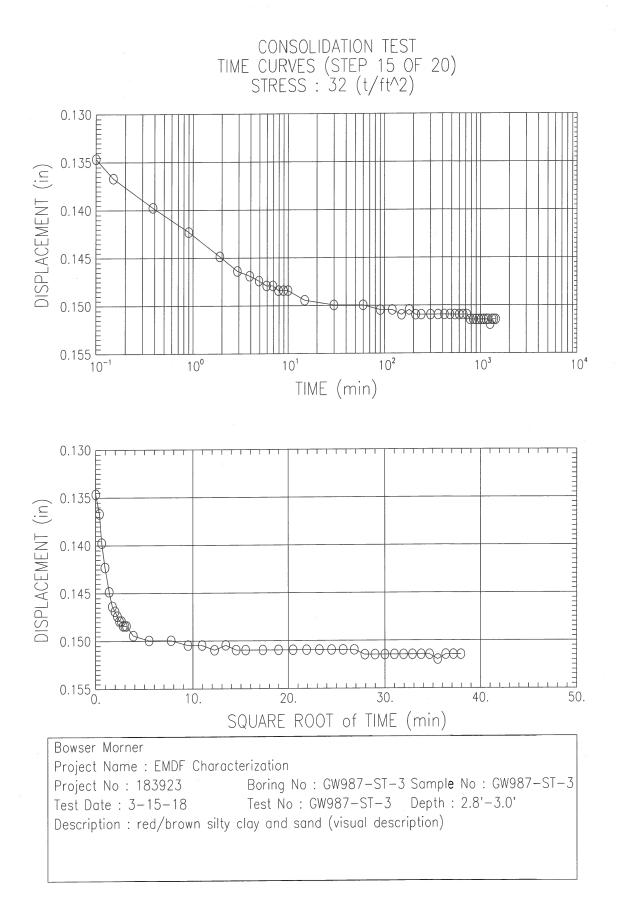

CONSOLIDATION TEST TIME CURVES (STEP 3 OF 20) STRESS : $0.5 (t/ft^2)$ 0.004 0.005 DISPLACEMENT (in) (AB) 0.006 0.007 $\bigcirc \square \square$ 0.008 0.009 E 10³ 10² 10⁻¹ 10⁰ 10¹ 10⁴ TIME (min) 0.004 0.005 DISPLACEMENT (in) 0.006 0.007 e Α 0.008 = 0.009 ^E 30. 40. 20. 10. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No : 183923 Test No : GW987-ST-3 Depth : 2.8'-3.0' Test Date : 3-15-18 Description : red/brown silty clay and sand (visual description)

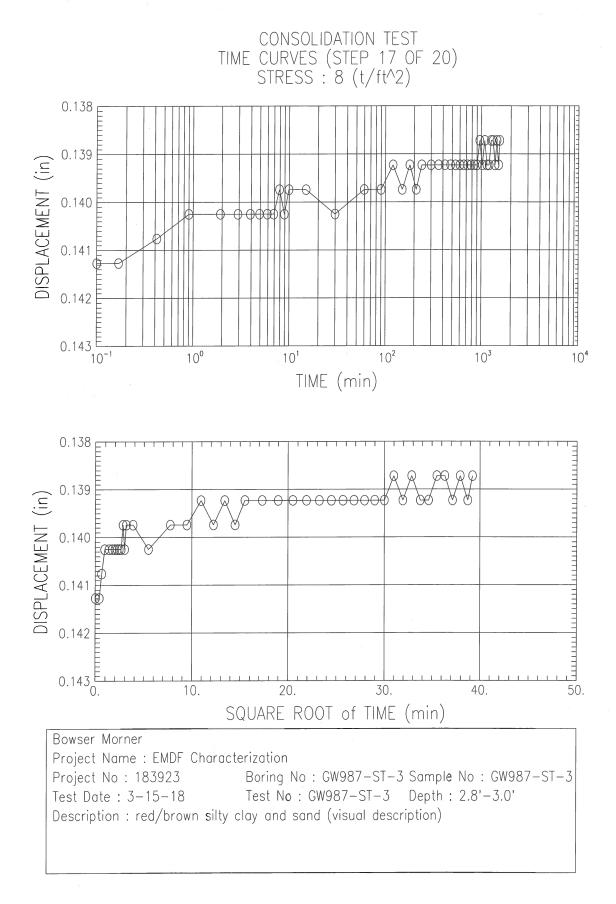


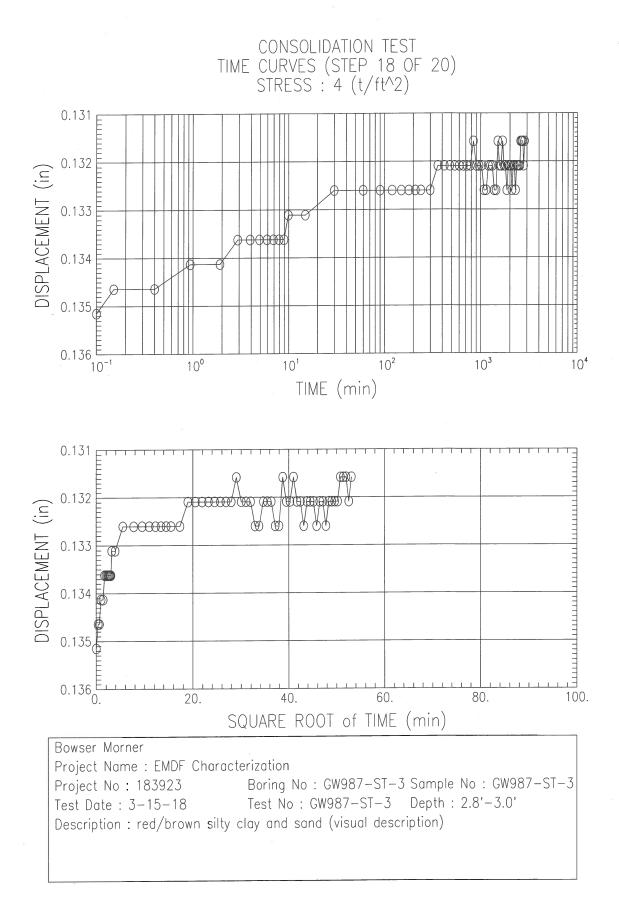

CONSOLIDATION TEST TIME CURVES (STEP 7 OF 20) STRESS : 2 (t/ft^2)

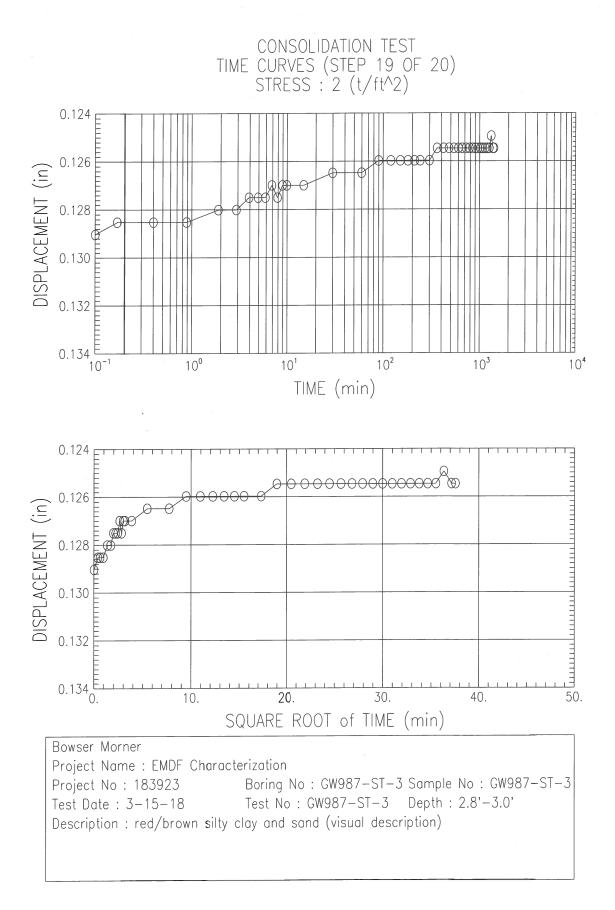



CONSOLIDATION TEST TIME CURVES (STEP 9 OF 20) STRESS : 0.5 (t/ft^2) 0.044 A 0.045 DISPLACEMENT (in) 0.046 0.047 0.048 0.049 E 10² 10^{3} 10° 10¹ 104 10⁻¹ TIME (min) 0.044 1111111 0.045 DISPLACEMENT (in) Æ 0.046 0.047 0.048 0.049 20. 30. 40. 50. 10. 0. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No : 183923 Test Date : 3-15-18 Test No : GW987-ST-3 Depth : 2.8'-3.0' Description : red/brown silty clay and sand (visual description)


CONSOLIDATION TEST TIME CURVES (STEP 10 OF 20) STRESS : 1 (t/ft^2) 0.045 _F 0.046₽ DISPLACEMENT (in) 0.047 0.048 0.049 0.050 E 10² 10³ 10° 10¹ 10⁴ 10-1 TIME (min) 0.045 F 0.046 DISPLACEMENT (in) 0.047 0.048 0.049 E 0.050 20. 30. 40. 10. 50. 0 SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No: 183923 Test No : GW987-ST-3 Depth : 2.8'-3.0' Test Date : 3-15-18 Description : red/brown silty clay and sand (visual description)


CONSOLIDATION TEST TIME CURVES (STEP 12 OF 20) STRESS : $4 (t/ft^2)$ 0.055_Q 0.056 DISPLACEMENT (in) æ 1000 0.057 6 Ю 0000 0.058 0.059 0.060 E 10° 10¹ 10² 10^{3} 10^{4} 10-1 TIME (min) 0.055₀ 0.056 DISPLACEMENT (in) 0.057 Ø 0.058 900 111111 0.059 0.060 E 30. 40. 10. 20. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No : 183923 Test Date : 3-15-18 Test No : GW987-ST-3 Depth : 2.8'-3.0' Description : red/brown silty clay and sand (visual description)





CONSOLIDATION TEST TIME CURVES (STEP 16 OF 20) STRESS : 16 (t/ft^2) 0.145 _F P 0.146 DISPLACEMENT (in) Ж фф (debt 0.147 0.148 0.149 0.150 ^E 10° 10² 10^{3} 10^{1} 10⁴ 10 TIME (min) 0.145 0.146 DISPLACEMENT (in) 0.147 0.148 0.149 -0.150 0 10. 20. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No : 183923 Test Date : 3-15-18 Test No : GW987-ST-3 Depth : 2.8'-3.0' Description : red/brown silty clay and sand (visual description)

CONSOLIDATION TEST TIME CURVES (STEP 20 OF 20) STRESS : $1 (t/ft^2)$ 0.118 G 0.120 DISPLACEMENT (in) 0.122 0.124 0.126 0.128 ^E 10² 10^{3} 10° 10¹ 10⁻¹ 10⁴ TIME (min) 0.118 0.120 DISPLACEMENT (in) 0.122 0.124 0.126 0.128 ^E0 20. 30. 40. 50. 10. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No: 183923 Test No : GW987-ST-3 Depth : 2.8'-3.0' Test Date : 3-15-18 Description : red/brown silty clay and sand (visual description)

12

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

	APPLIED	FINAL	VOID	STRAIN	FITT	ING	COEFFIC	IENT OF CONSOL	τράττον
	PRESSURE	DISPLACEMENT	RATIO	AT END	T50 TIME (1	min)		(in^2/s)	
	(t/ft^2)	(in)		(%)	SQ.RT.	LOG	SQ.RT.	LOG	AVE
1)	0.06	0.001	0.689	0.05	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
2)	0.25	0.001	0.688	0.10	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
3)	0.50	0.007	0.678	0.70	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
4)	1.00	0.016	0.663	1.60	4.1	0.0	2.05E-004	0.00E+000	2.05E-004
5)	2.00	0.031	0.638	3.05	1.0	0.0	7.94E-004	0.00E+000	7.94E-004
6)	4.00	0.056	0.598	5.45	0.9	0.0	8.76E-004	0.00E+000	8.76E-004
7)	2.00	0.052	0.604	5.11	0.0	0.6	0.00E+000	1.35E-003	1.35E-003
8)	1.00	0.048	0.611	4.70	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
9)	0.50	0.044	0.616	4.36	23.5	0.0	3.31E-005	0.00E+000	3.31E-005
10)	1.00	0.047	0.613	4.56	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
11)	2.00	0.050	0.607	4.90	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
12)	4.00	0.058	0.595	5.65	4.6	0.0	1.67E-004	0.00E+000	1.67E-004
13)	8.00	0.089	0.543	8.71	0.8	0.0	9.37E-004	0.00E+000	9.37E-004
14)	16.00	0.119	0.492	11.70	0.9	0.0	7.96E-004	0.00E+000	7.96E-004
15)	32.00	0.152	0.439	14.86	0.8	0.0	8.06E-004	0.00E+000	8.06E-004
16)	16.00	0.146	0.448	14.31	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
17)	8.00	0.139	0.460	13.60	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
18)	4.00	0.132	0.472	12.90	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
19)	2.00	0.126	0.482	12.31	21.4	0.0	3.05E-005	0.00E+000	3.05E-005
20)	1.00	0.118	0.494	11.60	39.4	0.0	1.68E-005	0.00E+000	1.68E-005

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Specific Gravity : 2.69	Liquid Limit : 0	Initial H e ight : 1.02 (in)
Initial Void Ratio : 0.69	Plastic Limit : 0	Sample Diameter : 2.50 (in)
Final Void Ratio : 0.49	Plasticity Index : 0	

	BEFORE CONSOLIDATION		AFTER CONSOLIDATION	
	TRIMMINGS	SPECIMEN + RING	SPECIMEN + RING	TRIMMINGS
CONTAINER NO.		RING	RING	
WT CONTAINER + WET SOIL (gm)	158.23	158.23	154.28	154.28
WT CONTAINER + DRY SOIL (gm)	130.55	130.55	130.55	130.55
WT CONTAINER (gm)	0.00	0.00	0.00	0.00
WT DRY SOIL (gm)	130.55	130.55	130.55	130.55
WATER CONTENT (%)	21.20	21.20	18.18	18.18
VOID RATIO		0.69	0.49	
DEGREE OF SATURATION (%)		82.63	98.95	
DRY DENSITY (lb/ft^3)		99.33	112.37	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefor values may not represent actual values for the specimen.

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 1 of 20 Stress increment from 0.00 (t/ft²) to 0.06 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.15	0.39	0.0000	0.690	0.00
2)	0.90	0.95	0.0000	0.690	0.00
3)	2.88	1.70	0.0005	0.689	0.05
4)	3.92	1.98	0.0000	0.690	0.00
5)	5.90	2.43	0.0005	0.689	0.05

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 2 of 20 Stress increment from 0.06 (t/ft²) to 0.25 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0010	0.688	0.10
2)	0.15	0.39	0.0005	0.689	0.05
3)	0.40	0.63	0.0010	0.688	0.10
4)	0.90	0.95	0.0005	0.689	0.05
5)	1.88	1.37	0.0010	0.688	0.10
6)	2.88	1.70	0.0010	0.688	0.10
7)	3.88	1.97	0.0005	0.689	0.05
8)	4.88	2.21	0.0010	0.688	0.10
9)	5.88	2.43	0.0010	0.688	0.10
10)	6.88	2.62	0.0010	0.688	0.10
11)	7.88	2.81	0.0010	0.688	0.10
12)	8.90	2.98	0.0010	0.688	0.10
13)	9.90	3.15	0.0010	0.688	0.10
14)	14.88	3.86	0.0010	0.688	0.10
15)	29.90	5.47	0.0010	0.688	0.10
16)	59.90	7.74	0.0010	0.688	0.10
17)	89.88	9.48	0.0010	0.688	0.10
18)	119.88	10.95	0.0010	0.688	0.10
19)	149.90	12.24	0.0010	0.688	0.10
20)	179.88	13.41	0.0010	0.688	0.10
21)	209.88	14.49	0.0010	0.688	0.10
22)	239.90	15.49	0.0010	0.688	0.10
23)	299.88	17.32	0.0010	0.688	0.10
24)	359.90	18.97	0.0010	0.688	0.10
25)	419.88	20.49	0.0010	0.688	0.10
26)	479.88	21.91	0.0010	0.688	0.10
27)	539.90	23.24	0.0010	0.688	0.10
28)	599.88	24.49	0.0010	0.688	0.10
29)	659.90	25.69	0.0010	0.688	0.10
30)	719.88	26.83	0.0015	0.687	0.15
31)	779.88	27.93	0.0010	0.688	0.10
32)	839.88	28.98	0.0010	0.688	0.10
33)	899.88	30.00	0.0010	0.688	0.10
34)	959.88	30.98	0.0010	0.688	0.10
35)	1019.88	31.94	0.0010	0.688	0.10

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 2 of 20 Stress increment from 0.06 (t/ft²) to 0.25 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0020	0.687	0.20
37)	1139.88	33.76	0.0010	0.688	0.10
38)	1199.90	34.64	0.0010	0.688	0.10
39)	1259.90	35.50	0.0010	0.688	0.10
40)	1319.88	36.33	0.0010	0.688	0.10
41)	1379.88	37.15	0.0015	0.687	0.15
42)	1400.37	37.42	0.0010	0.688	0.10

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0046	0.682	0.45
2)	0.15	0.39	0.0051	0.682	0.50
3)	0.42	0.65	0.0051	0.682	0.50
4)	0.90	0.95	0.0056	0.681	0.55
5)	1.90	1.38	0.0056	0.681	0.55
6)	2.92	1.71	0.0056	0.681	0.55
7)	3.90	1.97	0.0061	0.680	0.60
8)	4.92	2.22	0.0056	0.681	0.55
9)	5.92	2.43	0.0056	0.681	0.55
10)	6.90	2.63	0.0061	0.680	0.60
11)	7.92	2.81	0.0056	0.681	0.55
12)	8.90	2.98	0.0056	0.681	0.55
13)	9.92	3.15	0.0056	0.681	0.55
14)	14.92	3.86	0.0056	0.681	0.55
15)	29.93	5.47	0.0061	0.680	0.60
16)	59.95	7.74	0.0066	0.679	0.65
17)	89.90	9.48	0.0061	0.680	0.60
18)	119.90	10.95	0.0066	0.679	0.65
19)	149.92	12.24	0.0071	0.678	0.70
20)	179.90	13.41	0.0077	0.677	0.75
21)	209.90	14.49	0.0071	0.678	0.70
22)	239.90	15.49	0.0077	0.677	0.75
23)	299.92	17.32	0.0077	0.677	0.75
24)	359.90	18.97	0.0077	0.677	0.75
25)	419.92	20.49	0.0077	0.677	0.75
26)	479.92	21.91	0.0077	0.677	0.75
27)	539.90	23.24	0.0077	0.677	0.75
28)	599.92	24.49	0.0077	0.677	0.75
29)	659.92	25.69	0.0082	0.676	0.80
30)	719.90	26.83	0.0077	0.677	0.75
31)	779.92	27.93	0.0077	0.677	0.75
32)	839.90	28.98	0.0077	0.677	0.75
33)	899.95	30.00	0.0082	0.676	.0.80
34)	959.90	30.98	0.0077	0.677	0.75
35)	1019.90	31.94	0.0077	0.677	0.75

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0071	0.678	0.70
37)	1139.92	33.76	0.0077	0.677	0.75
38)	1199.90	34.64	0.0082	0.676	0.80
39)	1259.92	35.50	0.0077	0.677	0.75
40)	1293.48	35.96	0.0071	0.678	0.70

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 4 of 20 Stress increment from 0.50 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0138	0.667	1.35
2)	0.15	0.39	0.0138	0.667	1.35
3)	0.40	0.63	0.0143	0.666	1.40
4)	0.90	0.95	0.0143	0.666	1.40
5)	1.90	1.38	0.0148	0.665	1.45
6)	2.90	1.70	0.0148	0.665	1.45
7)	3.90	1.97	0.0148	0.665	1.45
8)	4.92	2.22	0.0153	0.665	1.50
9)	5.92	2.43	0.0153	0.665	1.50
10)	6.92	2.63	0.0153	0.665	1.50
11)	7.93	2.82	0.0153	0.665	1.50
12)	8.90	2.98	0.0153	0.665	1.50
13)	9.90	3.15	0.0158	0.664	1.55
14)	14.90	3.86	0.0158	0.664	1.55
15)	29.90	5.47	0.0158	0.664	1.55
16)	59.90	7.74	0.0163	0.663	1.60
17)	89.92	9.48	0.0163	0.663	1.60
18)	119.92	10.95	0.0163	0.663	1.60
19)	149.92	12.24	0.0163	0.663	1.60
20)	179.92	13.41	0.0163	0.663	1.60
21)	209.90	14.49	0.0163	0.663	1.60
22)	239.92	15.49	0.0163	0.663	1.60
23)	299.90	17.32	0.0163	0.663	1.60
24)	359.92	18.97	0.0163	0.663	1.60
25)	419.90	20.49	0.0168	0.662	1.65
26)	479.90	21.91	0.0168	0.662	1.65
27)	539.90	23.24	0.0168	0.662	1.65
28)	599.90	24.49	0.0163	0.663	1.60
29)	659.92	25.69	0.0168	0.662	1.65
30)	719.90	26.83	0.0168	0.662	1.65
31)	779.93	27.93	0.0168	0.662	1.65
32)	839.92	28.98	0.0163	0.663	1.60
33)	899.93	30.00	0.0168	0.662	1.65
34)	959.88	30.98	0.0168	0.662	1.65
35)	1019.90	31.94	0.0168	0.662	1.65

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 4 of 20 Stress increment from 0.50 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0168	0.662	1.65
37)	1139.90	33.76	0.0168	0.662	1.65
38)	1199.90	34.64	0.0168	0.662	1.65
39)	1259.90	35.50	0.0163	0.663	1.60
40)	1313.87	36.25	0.0163	0.663	1.60

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 5 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(왕)
1)	0.00	0.00	0.0275	0.644	2.70
2)	0.15	0.39	0.0281	0.644	2.75
3)	0.40	0.63	0.0286	0.643	2.80
4)	0.92	0.96	0.0291	0.642	2.85
5)	1.93	1.39	0.0296	0.641	2.90
6)	2.90	1.70	0.0296	0.641	2.90
7)	3.92	1.98	0.0296	0.641	2.90
8)	4.90	2.21	0.0296	0.641	2.90
9)	5.90	2.43	0.0301	0.640	2.95
10)	6.90	2.63	0.0301	0.640	2.95
11)	7.92	2.81	0.0306	0.639	3.00
12)	8.92	2.99	0.0301	0.640	2.95
13)	9.93	3.15	0.0301	0.640	2.95
14)	14.90	3.86	0.0301	0.640	2.95
15)	29.92	5.47	0.0301	0.640	2.95
16)	59.92	7.74	0.0306	0.639	3.00
17)	89.90	9.48	0.0306	0.639	3.00
18)	119.92	10.95	0.0306	0.639	3.00
19)	149.90	12.24	0.0311	0.638	3.05
20)	179.92	13.41	0.0306	0.639	3.00
21)	209.90	14.49	0.0311	0.638	3.05
22)	239.90	15.49	0.0311	0.638	3.05
23)	299.90	17.32	0.0311	0.638	3.05
24)	359.92	18.97	0.0311	0.638	3.05
25)	419.90	20.49	0.0311	0.638	3.05
26)	479.90	21.91	0.0311	0.638	3.05
27)	539.92	23.24	0.0311	0.638	3.05
28)	599.90	24.49	0.0311	0.638	3.05
29)	659.88	25.69	0.0311	0.638	3.05
30)	719.90	26.83	0.0311	0.638	3.05
31)	779.90	27.93	0.0311	0.638	3.05
32)	839.90	28.98	0.0311	0.638	3.05
33)	899.90	30.00	0.0311	0.638	3.05
34)	959.92	30.98	0.0311	0.638	3.05
35)	1019.90	31.94	0.0316	0.638	3.10

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 5 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0311	0.638	3.05
37)	1139.90	33.76	0.0316	0.638	3.10
38)	1199.90	34.64	0.0311	0.638	3.05
39)	1259.90	35.50	0.0311	0.638	3.05
40)	1319.92	36.33	0.0316	0.638	3.10
41)	1379.90	37.15	0.0316	0.638	3.10
42)	1439.90	37.95	0.0316	0.638	3.10
43)	1499.88	38.73	0.0316	0.638	3.10
44)	1559.88	39.50	0.0311	0.638	3.05
45)	1619.90	40.25	0.0311	0.638	3.05
46)	1628.88	40.36	0.0311	0.638	3.05

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 6 of 20

Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²)

Start Date : Start Time :

				NOTD	CUDA TN
	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0495	0.608	4.85
2)	0.13	0.37	0.0505	0.606	4.95
3)	0.37	0.61	0.0510	0.605	5.00
4)	0.87	0.93	0.0520	0.604	5.10
5)	1.87	1.37	0.0525	0.603	5.15
6)	2.87	1.69	0.0530	0.602	5.20
7)	3.87	1.97	0.0530	0.602	5.20
8)	4.87	2.21	0.0530	0.602	5.20
9)	5.87	2.42	0.0536	0.601	5.25
10)	6.88	2.62	0.0541	0.600	5.30
11)	7.88	2.81	0.0536	0.601	5.25
12)	8.88	2.98	0.0536	0.601	5.25
13)	9.87	3.14	0.0536	0.601	5.25
14)	14.87	3.86	0.0541	0.600	5.30
15)	29.87	5.47	0.0541	0.600	5.30
16)	59.90	7.74	0.0551	0.599	5.40
17)	89.88	9.48	0.0541	0.600	5.30
18)	119.87	10.95	0.0551	0.599	5.40
19)	149.87	12.24	0.0546	0.600	5.35
20)	179.87	13.41	0.0551	0.599	5.40
21)	209.92	14.49	0.0546	0.600	5.35
22)	239.87	15.49	0.0551	0.599	5.40
23)	299.88	17.32	0.0551	0.599	5.40
24)	359.87	18.97	0.0551	0.599	5.40
25)	419.87	20.49	0.0556	0.598	5.45
26)	479.87	21.91	0.0556	0.598	5.45
27)	539.87	23.24	0.0556	0.598	5.45
28)	599.87	24.49	0.0556	0.598	5.45
29)	659.87	25.69	0.0556	0.598	5.45
30)	719.88	26.83	0.0556	0.598	5.45
31)	779.87	27.93	0.0556	0.598	5.45
32)	839.87	28.98	0.0561	0.597	5.50
33)	899.87	30.00	0.0556	0.598	5.45
34)	959.87	30.98	0.0561	0.597	5.50
35)	1019.88	31.94	0.0556	0.598	5.45

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 6 of 20 Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
36)	1079.85	32.86	0.0561	0.597	5.50
37)	1139.88	33.76	0.0556	0.598	5.45
38)	1199.87	34.64	0.0556	0.598	5.45
39)	1259.85	35.49	0.0561	0.597	5.50
40)	1319.85	36.33	0.0561	0.597	5.50
41)	1325.73	36.41	0.0556	0.598	5.45

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 7 of 20 Stress increment from 4.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0536	0.601	5.25
2)	0.15	0.39	0.0530	0.602	5.20
3)	0.40	0.63	0.0530	0.602	5.20
4)	0.90	0.95	0.0525	0.603	5.15
5)	1.88	1.37	0.0525	0.603	5.15
6)	2.88	1.70	0.0525	0.603	5.15
7)	3.90	1.97	0.0525	0.603	5.15
8)	4.88	2.21	0.0530	0.602	5.20
9)	5.88	2.43	0.0525	0.603	5.15
10)	6.88	2.62	0.0525	0.603	5.15
11)	7.88	2.81	0.0525	0.603	5.15
12)	8.88	2.98	0.0525	0.603	5.15
13)	9.88	3.14	0.0525	0.603	5.15
14)	14.90	3.86	0.0525	0.603	5.15
15)	29.88	5.47	0.0530	0.602	5.20
16)	59.90	7.74	0.0525	0.603	5.15
17)	89.90	9.48	0.0530	0.602	5.20
18)	119.88	10.95	0.0525	0.603	5.15
19)	149.92	12.24	0.0530	0.602	5.20
20)	179.90	13.41	0.0520	0.604	5.10
21)	209.88	14.49	0.0530	0.602	5.20
22)	239.88	15.49	0.0520	0.604	5.10
23)	299.88	17.32	0.0525	0.603	5.15
24)	359.88	18.97	0.0520	0.604	5.10
25)	419.88	20.49	0.0520	0.604	5.10
26)	479.93	21.91	0.0520	0.604	5.10
27)	539.88	23.24	0.0520	0.604	5.10
28)	599.88	24.49	0.0520	0.604	5.10
29)	659.88	25.69	0.0520	0.604	5.10
30)	719.90	26.83	0.0525	0.603	5.15
31)	779.93	27.93	0.0525	0.603	5.15
32)	839.87	28.98	0.0520	0.604	5.10
33)	899.88	30.00	0.0520	0.604	5.10
34)	959.88	30.98	0.0525	0.603	5.15
35)	1019.88	31.94	0.0520	0.604	5.10

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 7 of 20 Stress increment from 4.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
36)	1079.88	32.86	0.0520	0.604	5.10
37)	1139.88	33.76	0.0520	0.604	5.10
38)	1199.87	34.64	0.0520	0.604	5.10
39)	1259.90	35.50	0.0520	0.604	5.10
40)	1319.90	36.33	0.0520	0.604	5.10
41)	1379.88	37.15	0.0525	0.603	5.15
42)	1429.40	37.81	0.0520	0.604	5.10

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 8 of 20 Stress increment from 2.00 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0500	0.607	4.90
2)	0.15	0.39	0.0495	0.608	4.85
3)	0.38	0.62	0.0495	0.608	4.85
4)	0.92	0.96	0.0495	0.608	4.85
5)	1.88	1.37	0.0490	0.609	4.80
6)	2.88	1.70	0.0495	0.608	4.85
7)	3.88	1.97	0.0490	0.609	4.80
8)	4.88	2.21	0.0490	0.609	4.80
9)	5.88	2.43	0.0490	0.609	4.80
10)	6.88	2.62	0.0490	0.609	4.80
11)	7.90	2.81	0.0490	0.609	4.80
12)	8.88	2.98	0.0490	0.609	4.80
13)	9.90	3.15	0.0490	0.609	4.80
14)	14.88	3.86	0.0495	0.608	4.85
15)	29.92	5.47	0.0485	0.610	4.75
16)	59.90	7.74	0.0490	0.609	4.80
17)	89.90	9.48	0.0485	0.610	4.75
18)	119.90	10.95	0.0490	0.609	4.80
19)	149.90	12.24	0.0485	0.610	4.75
20)	179.90	13.41	0.0490	0.609	4.80
21)	209.88	14.49	0.0485	0.610	4.75
22)	239.90	15.49	0.0490	0.609	4.80
23)	299.88	17.32	0.0490	0.609	4.80
24)	359.88	18.97	0.0490	0.609	4.80
25)	419.88	20.49	0.0485	0.610	4.75
26)	479.90	21.91	0.0490	0.609	4.80
27)	539.88	23.24	0.0490	0.609	4.80
28)	599.90	24.49	0.0485	0.610	4.75
29)	659.90	25.69	0.0485	0.610	4.75
30)	719.90	26.83	0.0485	0.610	4.75
31)	779.90	27.93	0.0490	0.609	4.80
32)	839.90	28.98	0.0485	0.610	4.75
33)	899.88	30.00	0.0490	0.609	4.80
34)	959.88	30.98	0.0490	0.609	4.80
35)	1019.88	31.94	0.0485	0.610	4.75

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 8 of 20 Stress increment from 2.00 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0490	0.609	4.80
37)	1139.90	33.76	0.0485	0.610	4.75
38)	1199.88	34.64	0.0485	0.610	4.75
39)	1259.88	35.49	0.0485	0.610	4.75
40)	1319.88	36.33	0.0485	0.610	4.75
41)	1379.88	37.15	0.0485	0.610	4.75
42)	1439.88	37.95	0.0479	0.611	4.70
43)	1441.43	37.97	0.0479	0.611	4.70

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0464	0.613	4.55
2)	0.15	0.39	0.0459	0.614	4.50
3)	0.40	0.63	0.0459	0.614	4.50
4)	0.90	0.95	0.0464	0.613	4.55
5)	1.92	1.38	0.0459	0.614	4.50
6)	2.92	1.71	0.0459	0.614	4.50
7)	3.90	1.97	0.0454	0.615	4.45
8)	4.92	2.22	0.0454	0.615	4.45
9)	5.92	2.43	0.0454	0.615	4.45
10)	6.90	2.63	0.0454	0.615	4.45
11)	7.90	2.81	0.0454	0.615	4.45
12)	8.90	2.98	0.0459	0.614	4.50
13)	9.90	3.15	0.0454	0.615	4.45
14)	14.93	3.86	0.0459	0.614	4.50
15)	29.92	5.47	0.0449	0.616	4.40
16)	59.90	7.74	0.0449	0.616	4.40
17)	89.90	9.48	0.0449	0.616	4.40
18)	119.92	10.95	0.0444	0.616	4.35
19)	149.92	12.24	0.0449	0.616	4.40
20)	179.88	13.41	0.0449	0.616	4.40
21)	209.90	14.49	0.0449	0.616	4.40
22)	239.90	15.49	0.0444	0.616	4.35
23)	299.90	17.32	0.0449	0.616	4.40
24)	359.90	18.97	0.0444	0.616	4.35
25)	419.88	20.49	0.0444	0.616	4.35
26)	479.88	21.91	0.0444	0.616	4.35
27)	539.92	23.24	0.0444	0.616	4.35
28)	599.90	24.49	0.0444	0.616	4.35
29)	659.90	25.69	0.0444	0.616	4.35
30)	719.90	26.83	0.0444	0.616	4.35
31)	779.93	27.93	0.0444	0.616	4.35
32)	839.92	28.98	0.0444	0.616	4.35
33)	899.92	30.00	0.0444	0.616	4.35
34)	959.90	30.98	0.0444	0.616	4.35
35)	1019.88	31.94	0.0444	0.616	4.35

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0444	0.616	4.35
37)	1139.90	33.76	0.0444	0.616	4.35
38)	1199.90	34.64	0.0444	0.616	4.35
39)	1259.92	35.50	0.0444	0.616	4.35
40)	1319.90	36.33	0.0444	0.616	4.35
41)	1379.92	37.15	0.0444	0.616	4.35
42)	1439.90	37.95	0.0444	0.616	4.35
43)	1479.32	38.46	0.0444	0.616	4.35

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft^2) to 1.00 (t/ft^2)

Start Date : Start Time :

(min) TIME (min) HEIGHT (in) RATIO (%) 1) 0.00 0.0459 0.614 4.50 2) 0.15 0.39 0.0459 0.614 4.50 3) 0.40 0.63 0.0459 0.614 4.50 4) 0.90 0.955 0.0459 0.614 4.50 5) 1.93 1.39 0.0459 0.614 4.50 6) 2.88 1.70 0.0459 0.614 4.50 7) 3.90 1.97 0.0459 0.614 4.50 8) 4.90 2.21 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464		ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
2) 0.15 0.39 0.0459 0.614 4.50 3) 0.40 0.63 0.0459 0.614 4.50 4) 0.90 0.95 0.0459 0.614 4.50 5) 1.93 1.39 0.0459 0.614 4.50 6) 2.88 1.70 0.0459 0.614 4.50 7) 3.90 1.97 0.0459 0.614 4.50 8) 4.90 2.21 0.0459 0.614 4.50 9) 5.88 2.43 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0469 0.612 4.60 17) 89.90 9.48 0.0469 0.612 4.60 20) 179.88 13.41 0.0469 0.612 4.60 21) 209.90 14.49 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91		(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
2) 0.15 0.39 0.0459 0.614 4.50 3) 0.40 0.63 0.0459 0.614 4.50 4) 0.90 0.95 0.0459 0.614 4.50 5) 1.93 1.39 0.0459 0.614 4.50 6) 2.88 1.70 0.0459 0.614 4.50 7) 3.90 1.97 0.0459 0.614 4.50 8) 4.90 2.21 0.0459 0.614 4.50 9) 5.88 2.43 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0469 0.612 4.60 17) 89.90 9.48 0.0469 0.612 4.60 20) 179.88 13.41 0.0469 0.612 4.60 21) 209.90 14.49 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91						
3) 0.40 0.63 0.0459 0.614 4.50 4) 0.90 0.95 0.0459 0.614 4.50 5) 1.93 1.39 0.0459 0.614 4.50 6) 2.88 1.70 0.0459 0.614 4.50 7) 3.90 1.97 0.0459 0.614 4.50 8) 4.90 2.21 0.0459 0.614 4.50 9) 5.88 2.43 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0469 0.612 4.60 17) 89.90 9.48 0.0469 0.612 4.60 20) 17.88 13.41 0.0469 0.612 4.60 21) 209.90 17.32 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 </td <td>1)</td> <td>0.00</td> <td>0.00</td> <td>0.0459</td> <td>0.614</td> <td>4.50</td>	1)	0.00	0.00	0.0459	0.614	4.50
4) 0.90 0.95 0.0459 0.614 4.50 5) 1.93 1.39 0.0459 0.614 4.50 6) 2.88 1.70 0.0459 0.614 4.50 7) 3.90 1.97 0.0459 0.614 4.50 8) 4.90 2.21 0.0459 0.614 4.50 9) 5.88 2.43 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 29) 14.49 0.0469 0.612 4.60 21) 209.90 17.32 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.04	2)	0.15	0.39	0.0459	0.614	4.50
5) 1.93 1.39 0.0459 0.614 4.50 6) 2.88 1.70 0.0459 0.614 4.50 7) 3.90 1.97 0.0459 0.614 4.50 8) 4.90 2.21 0.0459 0.614 4.50 9) 5.88 2.43 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 30) 719.88	3)	0.40	0.63	0.0459	0.614	4.50
6) 2.88 1.70 0.0459 0.614 4.50 7) 3.90 1.97 0.0459 0.614 4.50 8) 4.90 2.21 0.0459 0.614 4.50 9) 5.88 2.43 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 30) 719.88 26.83 0.0464 0.613 4.55 31) 779.90	4)	0.90	0.95	0.0459	0.614	4.50
7) 3.90 1.97 0.0459 0.614 4.50 8) 4.90 2.21 0.0459 0.614 4.50 9) 5.88 2.43 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0464 0.613 4.55 23) 299.90 15.49 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 29) 659.90 <	5)	1.93	1.39	0.0459	0.614	4.50
8) 4.90 2.21 0.0459 0.614 4.50 9) 5.88 2.43 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 17.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0469 0.612 4.60 22) 239.90 15.49 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 28) 599.90 24.49 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 29) 659.9	6)	2.88	1.70	0.0459	0.614	4.50
9) 5.88 2.43 0.0459 0.614 4.50 10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 17.32 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 29) 659.90 27.93 0.0464 0.613 4.55 31) 779.90 27.93 0.0464 0.613 4.55 33)	7)	3.90	1.97	0.0459	0.614	4.50
10) 6.92 2.63 0.0459 0.614 4.50 11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 17.32 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 30) 719.88 26.83 0.0464 0.613 4.55 31) 779.90 27.93 0.0464 0.613 4.55 33) 899.88 30.00 0.0464 0.613 4.55 33)<	8)	4.90	2.21	0.0459	0.614	4.50
11) 7.90 2.81 0.0459 0.614 4.50 12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0469 0.612 4.60 22) 239.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 28) 599.90 25.69 0.0464 0.613 4.55 30) 719.88 26.83 0.0464 0.613 4.55 31) 779.90 28.98 0.0464 0.613 4.55 33) 89.88 30.00 0.0464 0.613 4.55 34) 959.90 28.98 0.0464 0.613 4.55 <td>9)</td> <td>5.88</td> <td>2.43</td> <td>0.0459</td> <td>0.614</td> <td>4.50</td>	9)	5.88	2.43	0.0459	0.614	4.50
12) 8.90 2.98 0.0459 0.614 4.50 13) 9.90 3.15 0.0464 0.613 4.55 14) 14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.612 4.60 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0469 0.612 4.60 22) 239.90 15.49 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 28) 599.90 25.69 0.0464 0.613 4.55 30) 719.88 26.83 0.0464 0.613 4.55 31) 779.90 27.93 0.0464 0.613 4.55 33) 89.88 30.00 0.0464 0.613 4.55 34) 959.90 28.98 0.0464 0.613 4.55 <td>10)</td> <td>6.92</td> <td>2.63</td> <td>0.0459</td> <td>0.614</td> <td>4.50</td>	10)	6.92	2.63	0.0459	0.614	4.50
13) 9.90 3.15 0.0464 0.613 4.55 14)14.88 3.86 0.0459 0.614 4.50 15) 29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0469 0.612 4.60 22) 239.90 15.49 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 28) 599.90 24.49 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 31) 779.90 27.93 0.0464 0.613 4.55 32) 839.90 28.98 0.0464 0.613 4.55 33) 899.88 30.00 0.0464 0.613 4.55 34) 959.90 30.98 0.0464 0.613 4.55 </td <td>11)</td> <td>7.90</td> <td>2.81</td> <td>0.0459</td> <td>0.614</td> <td>4.50</td>	11)	7.90	2.81	0.0459	0.614	4.50
14)14.88 3.86 0.0459 0.614 4.50 15)29.88 5.47 0.0464 0.613 4.55 16) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21)209.90 14.49 0.0469 0.612 4.60 22)239.90 15.49 0.0464 0.613 4.55 23)299.90 17.32 0.0464 0.613 4.55 24)359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 28) 599.90 25.69 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 31) 779.90 27.93 0.0464 0.613 4.55 33) 899.88 30.00 0.0464 0.613 4.55 34) 39.90 28.98 0.0464 0.613 4.55 34) 30.98 30.088 0.0464 0.613 4.55	12)	8.90	2.98	0.0459	0.614	4.50
15)29.885.470.04640.6134.5516) 59.90 7.74 0.0459 0.614 4.50 17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0469 0.612 4.60 22) 239.90 15.49 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 26) 479.88 21.91 0.0459 0.614 4.50 27) 539.90 23.24 0.0464 0.613 4.55 28) 599.90 25.69 0.0464 0.613 4.55 30) 719.88 26.83 0.0464 0.613 4.55 31) 779.90 27.93 0.0464 0.613 4.55 32) 839.90 28.98 0.0464 0.613 4.55 33) 899.88 30.00 0.0464 0.613 4.55 34) 30.98 30.98 0.0464 0.613 4.55	13)	9.90	3.15	0.0464	0.613	4.55
16) 59.90 7.740.04590.6144.5017) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0469 0.612 4.60 22) 239.90 15.49 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 28) 599.90 23.24 0.0464 0.613 4.55 29) 659.90 25.69 0.0464 0.613 4.55 30) 719.88 26.83 0.0464 0.613 4.55 31) 779.90 27.93 0.0464 0.613 4.55 33) 899.88 30.00 0.0464 0.613 4.55 34) 99.90 28.98 0.0464 0.613 4.55 34) 99.90 28.98 0.0464 0.613 4.55 34) 99.90 28.98 0.0464 0.613 4.55	14)	14.88	3.86	0.0459	0.614	4.50
17) 89.90 9.48 0.0469 0.612 4.60 18) 119.90 10.95 0.0464 0.613 4.55 19) 149.88 12.24 0.0469 0.612 4.60 20) 179.88 13.41 0.0459 0.614 4.50 21) 209.90 14.49 0.0469 0.612 4.60 22) 239.90 15.49 0.0464 0.613 4.55 23) 299.90 17.32 0.0464 0.613 4.55 24) 359.93 18.97 0.0464 0.613 4.55 25) 419.90 20.49 0.0464 0.613 4.55 26) 479.88 21.91 0.0464 0.613 4.55 28) 599.90 25.69 0.0464 0.613 4.55 30) 719.88 26.83 0.0464 0.613 4.55 31) 779.90 27.93 0.0464 0.613 4.55 32) 839.90 28.98 0.0464 0.613 4.55 33) 899.88 30.00 0.0464 0.613 4.55	15)	29.88	5.47	0.0464	0.613	4.55
18)119.9010.950.04640.6134.5519)149.8812.240.04690.6124.6020)179.8813.410.04590.6144.5021)209.9014.490.04690.6124.6022)239.9015.490.04640.6134.5523)299.9017.320.04640.6134.5524)359.9318.970.04640.6134.5525)419.9020.490.04640.6134.5526)479.8821.910.04590.6144.5027)539.9023.240.04640.6134.5528)599.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	16)	59.90	7.74	0.0459	0.614	4.50
19)149.8812.240.04690.6124.6020)179.8813.410.04590.6144.5021)209.9014.490.04690.6124.6022)239.9015.490.04640.6134.5523)299.9017.320.04640.6134.5524)359.9318.970.04640.6134.5525)419.9020.490.04640.6134.5526)479.8821.910.04640.6134.5528)599.9023.240.04640.6134.5529)659.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	17)	89.90	9.48	0.0469	0.612	4.60
20)179.8813.410.04590.6144.5021)209.9014.490.04690.6124.6022)239.9015.490.04640.6134.5523)299.9017.320.04640.6134.5524)359.9318.970.04640.6134.5525)419.9020.490.04640.6134.5526)479.8821.910.04590.6144.5027)539.9023.240.04640.6134.5528)599.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	18)	119.90	10.95	0.0464	0.613	4.55
21)209.9014.490.04690.6124.6022)239.9015.490.04640.6134.5523)299.9017.320.04640.6134.5524)359.9318.970.04640.6134.5525)419.9020.490.04640.6134.5526)479.8821.910.04590.6144.5027)539.9023.240.04640.6134.5528)599.9024.490.04640.6134.5529)659.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	19)	149.88	12.24	0.0469	0.612	4.60
22)239.9015.490.04640.6134.5523)299.9017.320.04640.6134.5524)359.9318.970.04640.6134.5525)419.9020.490.04640.6134.5526)479.8821.910.04590.6144.5027)539.9023.240.04640.6134.5528)599.9024.490.04640.6134.5529)659.9025.690.04640.6134.5531)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)55.9030.980.04640.6134.55	20)	179.88	13.41	0.0459	0.614	4.50
23)299.9017.320.04640.6134.5524)359.9318.970.04640.6134.5525)419.9020.490.04640.6134.5526)479.8821.910.04590.6144.5027)539.9023.240.04640.6134.5528)599.9024.490.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)55.9030.980.04640.6134.55	21)	209.90	14.49	0.0469	0.612	4.60
24)359.9318.970.04640.6134.5525)419.9020.490.04640.6134.5526)479.8821.910.04590.6144.5027)539.9023.240.04640.6134.5528)599.9024.490.04640.6134.5529)659.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)55.9030.980.04640.6134.55	22)	239.90	15.49	0.0464	0.613	4.55
25)419.9020.490.04640.6134.5526)479.8821.910.04590.6144.5027)539.9023.240.04640.6134.5528)599.9024.490.04640.6134.5529)659.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	23)	299.90	17.32	0.0464	0.613	4.55
26)479.8821.910.04590.6144.5027)539.9023.240.04640.6134.5528)599.9024.490.04640.6134.5529)659.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	24)	359.93	18.97	0.0464	0.613	4.55
27)539.9023.240.04640.6134.5528)599.9024.490.04640.6134.5529)659.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	25)	419.90	20.49	0.0464	0.613	4.55
28)599.9024.490.04640.6134.5529)659.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	26)	479.88	21.91	0.0459	0.614	4.50
29)659.9025.690.04640.6134.5530)719.8826.830.04640.6134.5531)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	27)	539.90	23.24	0.0464	0.613	4.55
30) 719.88 26.83 0.0464 0.613 4.55 31) 779.90 27.93 0.0464 0.613 4.55 32) 839.90 28.98 0.0464 0.613 4.55 33) 899.88 30.00 0.0464 0.613 4.55 34) 959.90 30.98 0.0464 0.613 4.55	28)	599.90	24.49	0.0464	0.613	4.55
31)779.9027.930.04640.6134.5532)839.9028.980.04640.6134.5533)899.8830.000.04640.6134.5534)959.9030.980.04640.6134.55	29)	659.90	25.69	0.0464	0.613	4.55
32) 839.90 28.98 0.0464 0.613 4.55 33) 899.88 30.00 0.0464 0.613 4.55 34) 959.90 30.98 0.0464 0.613 4.55	30)	719.88	26.83	0.0464	0.613	4.55
33) 899.88 30.00 0.0464 0.613 4.55 34) 959.90 30.98 0.0464 0.613 4.55	31)	779.90	27.93	0.0464	0.613	4.55
34) 959.90 30.98 0.0464 0.613 4.55	32)	839.90	28.98	0.0464	0.613	4.55
	33)	899.88	30.00	0.0464	0.613	4.55
35) 1019.90 31.94 0.0464 0.613 4.55	34)	959.90	30.98	0.0464	0.613	4.55
	35)	1019.90	31.94	0.0464	0.613	4.55

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0464	0.613	4.55
37)	1139.88	33.76	0.0464	0.613	4.55
38)	1199.88	34.64	0.0464	0.613	4.55
39)	1259.90	35.50	0.0464	0.613	4.55
40)	1319.88	36.33	0.0464	0.613	4.55
41)	1322.27	36.36	0.0464	0.613	4.55

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0490	0.609	4.80
2)	0.15	0.39	0.0490	0.609	4.80
3)	0.38	0.62	0.0495	0.608	4.85
4)	0.88	0.94	0.0495	0.608	4.85
5)	1.90	1.38	0.0495	0.608	4.85
6)	2.88	1.70	0.0495	0.608	4.85
7)	3.90	1.97	0.0495	0.608	4.85
8)	4.90	2.21	0.0495	0.608	4.85
9)	5.90	2.43	0.0495	0.608	4.85
10)	6.88	2.62	0.0495	0.608	4.85
11)	7.88	2.81	0.0495	0.608	4.85
12)	8.88	2.98	0.0500	0.607	4.90
13)	9.88	3.14	0.0500	0.607	4.90
14)	14.88	3.86	0.0495	0.608	4.85
15)	29.88	5.47	0.0500	0.607	4.90
16)	59.90	7.74	0.0500	0.607	4.90
17)	89.90	9.48	0.0500	0.607	4.90
18)	119.88	10.95	0.0500	0.607	4.90
19)	149.88	12.24	0.0500	0.607	4.90
20)	179.90	13.41	0.0500	0.607	4.90
21)	209.88	14.49	0.0500	0.607	4.90
22)	239.88	15.49	0.0500	0.607	4.90
23)	299.88	17.32	0.0500	0.607	4.90
24)	359.90	18.97	0.0500	0.607	4.90
25)	419.88	20.49	0.0500	0.607	4.90
26)	479.90	21.91	0.0500	0.607	4.90
27)	539.88	23.24	0.0500	0.607	4.90
28)	599.88	24.49	0.0500	0.607	4.90
29)	659.88	25.69	0.0500	0.607	4.90
30)	719.88	26.83	0.0505	0.606	4.95
31)	779.90	27.93	0.0500	0.607	4.90
32)	839.88	28.98	0.0500	0.607	4.90
33)	899.88	30.00	0.0500	0.607	4.90
34)	959.90	30.98	0.0500	0.607	4.90
35)	1019.88	31.94	0.0505	0.606	4.95

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0505	0.606	4.95
37)	1139.88	33.76	0.0505	0.606	4.95
38)	1199.88	34.64	0.0500	0.607	4.90
39)	1259.88	35.49	0.0500	0.607	4.90
40)	1319.88	36.33	0.0500	0.607	4.90
41)	1379.88	37.15	0.0505	0.606	4.95
42)	1439.88	37.95	0.0505	0.606	4.95
43)	1499.88	38.73	0.0505	0.606	4.95
44)	1507.35	38.82	0.0500	0.607	4.90

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0551	0.599	5.40
2)	0.15	0.39	0.0556	0.598	5.45
3)	0.40	0.63	0.0556	0.598	5.45
4)	0.93	0.97	0.0556	0.598	5.45
5)	1.92	1.38	0.0561	0.597	5.50
6)	2.90	1.70	0.0561	0.597	5.50
7)	3.92	1.98	0.0561	0.597	5.50
8)	4.92	2.22	0.0566	0.596	5.55
9)	5.92	2.43	0.0561	0.597	5.50
10)	6.92	2.63	0.0566	0.596	5.55
11)	7.92	2.81	0.0566	0.596	5.55
12)	8.92	2.99	0.0566	0.596	5.55
13)	9.92	3.15	0.0566	0.596	5.55
14)	14.92	3.86	0.0566	0.596	5.55
15)	29.92	5.47	0.0571	0.595	5.60
16)	59.92	7.74	0.0571	0.595	5.60
17)	89.93	9.48	0.0571	0.595	5.60
18)	119.92	10.95	0.0576	0.595	5.65
19)	149.92	12.24	0.0571	0.595	5.60
20)	179.93	13.41	0.0576	0.595	5.65
21)	209.93	14.49	0.0571	0.595	5.60
22)	239.95	15.49	0.0576	0.595	5.65
23)	299.92	17.32	0.0576	0.595	5.65
24)	359.92	18.97	0.0576	0.595	5.65
25)	419.92	20.49	0.0576	0.595	5.65
26)	479.92	21.91	0.0581	0.594	5.70
27)	539.92	23.24	0.0581	0.594	5.70
28)	599.90	24.49	0.0581	0.594	5.70
29)	659.93	25.69	0.0576	0.595	5.65
30)	719.92	26.83	0.0576	0.595	5.65
31)	779.93	27.93	0.0581	0.594	5.70
32)	839.92	28.98	0.0581	0.594	5.70
33)	899.92	30.00	0.0581	0.594	5.70
34)	959.92	30.98	0.0581	0.594	5.70
35)	1019.93	31.94	0.0581	0.594	5.70

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.93	32.86	0.0581	0.594	5.70
37)	1139.90	33.76	0.0581	0.594	5.70
38)	1199.90	34.64	0.0581	0.594	5.70
39)	1259.93	35.50	0.0581	0.594	5.70
40)	1319.90	36.33	0.0581	0.594	5.70
41)	1379.93	37.15	0.0581	0.594	5.70
42)	1439.90	37.95	0.0581	0.594	5.70
43)	1499.92	38.73	0.0576	0.595	5.65
44)	1504.80	38.79	0.0576	0.595	5.65

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 13 of 20 Stress increment from 4.00 (t/ft²) to 8.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0785	0.560	7.70
2)	0.15	0.39	0.0806	0.556	7.90
3)	0.40	0.63	0.0821	0.554	8.05
4)	0.90	0.95	0.0831	0.552	8.15
5)	1.88	1.37	0.0852	0.549	8.35
6)	2.90	1.70	0.0852	0.549	8.35
7)	3.90	1.97	0.0852	0.549	8.35
8)	4.90	2.21	0.0857	0.548	8.40
9)	5.90	2.43	0.0862	0.547	8.45
10)	6.93	2.63	0.0862	0.547	8.45
11)	7.88	2.81	0.0862	0.547	8.45
12)	8.93	2.99	0.0862	0.547	8.45
13)	9.92	3.15	0.0862	0.547	8.45
14)	14.88	3.86	0.0872	0.546	8.55
15)	29.88	5.47	0.0877	0.545	8.60
16)	59.93	7.74	0.0872	0.546	8.55
17)	89.90	9.48	0.0877	0.545	8.60
18)	119.88	10.95	0.0877	0.545	8.60
19)	149.90	12.24	0.0882	0.544	8.65
20)	179.90	13.41	0.0877	0.545	8.60
21)	209.90	14.49	0.0882	0.544	8.65
22)	239.90	15.49	0.0877	0.545	8.60
23)	299.92	17.32	0.0877	0.545	8.60
24)	359.88	18.97	0.0877	0.545	8.60
25)	419.90	20.49	0.0882	0.544	8.65
26)	479.88	21.91	0.0882	0.544	8.65
27)	539.88	23.24	0.0882	0.544	8.65
28)	599.95	24.49	0.0882	0.544	8.65
29)	659.90	25.69	0.0882	0.544	8.65
30)	719.88	26.83	0.0882	0.544	8.65
31)	779.90	27.93	0.0882	0.544	8.65
32)	839.90	28.98	0.0882	0.544	8.65
33)	899.90	30.00	0.0882	0.544	8.65
34)	959.88	30.98	0.0882	0.544	8.65
35)	1019.92	31.94	0.0882	0.544	8.65

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 13 of 20 Stress increment from 4.00 (t/ft²) to 8.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0882	0.544	8.65
37)	1139.90	33.76	0.0882	0.544	8.65
38)	1199.88	34.64	0.0882	0.544	8.65
39)	1259.88	35.49	0.0882	0.544	8.65
40)	1319.90	36.33	0.0882	0.544	8.65
41)	1379.90	37.15	0.0887	0.543	8.70
42)	1387.95	37.26	0.0887	0.543	8.70

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 14 of 20 Stress increment from 8.00 (t/ft^2) to 16.00 (t/ft^2) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1061	0.514	10.40
2)	0.15	0.39	0.1076	0.512	10.55
3)	0.38	0.62	0.1091	0.509	10.70
4)	0.90	0.95	0.1117	0.505	10.95
5)	1.92	1.38	0.1142	0.501	11.20
6)	2.90	1.70	0.1153	0.499	11.30
7)	3.90	1.97	0.1158	0.498	11.35
8)	4.92	2.22	0.1158	0.498	11.35
9)	5.88	2.43	0.1163	0.497	11.40
10)	6.88	2.62	0.1168	0.496	11.45
11)	7.90	2.81	0.1168	0.496	11.45
12)	8.93	2.99	0.1168	0.496	11.45
13)	9.90	3.15	0.1173	0.496	11.50
14)	14.88	3.86	0.1173	0.496	11.50
15)	29.90	5.47	0.1183	0.494	11.60
16)	59.90	7.74	0.1188	0.493	11.65
17)	89.88	9.48	0.1188	0.493	11.65
18)	119.88	10.95	0.1188	0.493	11.65
19)	149.88	12.24	0.1188	0.493	11.65
20)	179.88	13.41	0.1188	0.493	11.65
21)	209.90	14.49	0.1188	0.493	11.65
22)	239.90	15.49	0.1193	0.492	11.70
23)	299.90	17.32	0.1193	0.492	11.70
24)	359.88	18.97	0.1193	0.492	11.70
25)	419.90	20.49	0.1193	0.492	11.70
26)	479.88	21.91	0.1193	0.492	11.70
27)	539.88	23.24	0.1193	0.492	11.70
28)	599.90	24.49	0.1193	0.492	11.70
29)	659.90	25.69	0.1193	0.492	11.70
30)	719.90	26.83	0.1193	0.492	11.70
31)	779.90	27.93	0.1199	0.491	11.75
32)	839.88	28.98	0.1193	0.492	11.70
33)	899.88	30.00	0.1199	0.491	11.75
34)	959.90	30.98	0.1199	0.491	11.75
35)	1019.90	31.94	0.1199	0.491	11.75

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 14 of 20 Stress increment from 8.00 (t/ft²) to 16.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.1199	0.491	11.75
37)	1139.90	33.76	0.1199	0.491	11.75
38)	1199.90	34.64	0.1199	0.491	11.75
39)	1259.88	35.49	0.1199	0.491	11.75
40)	1319.90	36.33	0.1199	0.491	11.75
41)	1379.88	37.15	0.1199	0.491	11.75
42)	1439.90	37.95	0.1199	0.491	11.75
43)	1456.88	38.17	0.1193	0.492	11.70

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project Ńo.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 15 of 20

Stress increment from 16.00 (t/ft²) to 32.00 (t/ft²)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1346	0.467	13.20
2)	0.15	0.39	0.1367	0.464	13,40
3)	0.38	0.62	0.1397	0.458	13.70
4)	0.90	0.95	0.1423	0.454	13.95
5)	1.90	1.38	0.1448	0.450	14.20
6)	2.90	1.70	0.1464	0.447	14.35
7)	3.90	1.97	0.1469	0.447	14.40
8)	4.90	2.21	0.1474	0.446	14.45
9)	5.92	2.43	0.1479	0.445	14.50
10)	6.90	2.63	0.1479	0.445	14.50
11)	7.92	2.81	0.1484	0.444	14.55
12)	8.92	2.99	0.1484	0.444	14.55
13)	9.93	3.15	0.1484	0.444	14.55
14)	14.90	3.86	0.1494	0.442	14.65
15)	29.90	5.47	0.1499	0.442	14.70
16)	59.92	7.74	0.1499	0.442	14.70
17)	89.92	9.48	0.1505	0.441	14.75
18)	119.92	10.95	0.1505	0.441	14.75
19)	149.90	12.24	0.1510	0.440	14.80
20)	179.90	13.41	0.1505	0.441	14.75
21)	209.90	14.49	0.1510	0.440	14.80
22)	239.90	15.49	0.1510	0.440	14.80
23)	299.92	17.32	0.1510	0.440	14.80
24)	359.92	18.97	0.1510	0.440	14.80
25)	419.90	20.49	0.1510	0.440	14.80
26)	479.90	21.91	0.1510	0.440	14.80
27)	539.88	23.24	0.1510	0.440	14.80
28)	599.88	24.49	0.1510	0.440	14.80
29)	659.90	25.69	0.1510	0.440	14.80
30)	719.92	26.83	0.1510	0.440	14.80
31)	779.90	27.93	0.1515	0.439	14.85
32)	839.88	28.98	0.1515	0.439	14.85
33)	899.90	30.00	0.1515	0.439	14.85
34)	959.90	30.98	0.1515	0.439	14.85
35)	1019.88	31.94	0.1515	0.439	14.85

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 15 of 20 Stress increment from 16.00 (t/ft²) to 32.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.1515	0.439	14.85
37)	1139.90	33.76	0.1515	0.439	14.85
38)	1199.90	34.64	0.1515	0.439	14.85
39)	1259.90	35.50	0.1520	0.438	14.90
40)	1319.90	36.33	0.1515	0.439	14.85
41)	1379.90	37.15	0.1515	0.439	14.85
42)	1438.68	37.93	0.1515	0.439	14.85

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 16 of 20 Stress increment from 32.00 (t/ft²) to 16.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(응)
1)	0.00	0.00	0.1469	0.447	14.40
2)	0.13	0.37	0.1469	0.447	14.40
3)	0.38	0.62	0.1469	0.447	14.40
4)	0.90	0.95	0.1469	0.447	14.40
5)	1.92	1.38	0.1469	0.447	14.40
6)	2.92	1.71	0.1469	0.447	14.40
7)	3.92	1.98	0.1464	0.447	14.35
8)	4.90	2.21	0.1464	0.447	14.35
9)	5.90	2.43	0.1469	0.447	14.40
10)	6.90	2.63	0.1464	0.447	14.35
11)	7.90	2.81	0.1464	0.447	14.35
12)	8.90	2.98	0.1464	0.447	14.35
13)	9.90	3.15	0.1464	0.447	14.35
14)	14.90	3.86	0.1464	0.447	14.35
15)	29.92	5.47	0.1464	0.447	14.35
16)	59.93	7.74	0.1459	0.448	14.30
17)	89.90	9.48	0.1464	0.447	14.35
18)	119.88	10.95	0.1459	0.448	14.30
19)	149.90	12.24	0.1464	0.447	14.35
20)	179.90	13.41	0.1459	0.448	14.30
21)	209.90	14.49	0.1464	0.447	14.35
22)	239.92	15.49	0.1459	0.448	14.30
23)	299.88	17.32	0.1459	0.448	14.30
24)	359.90	18.97	0.1459	0.448	14.30
25)	419.90	20.49	0.1459	0.448	14.30
26)	479.88	21.91	0.1459	0.448	14.30
27)	539.90	23.24	0.1459	0.448	14.30
28)	599.92	24.49	0.1459	0.448	14.30
29)	659.90	25.69	0.1459	0.448	14.30
30)	719.88	26.83	0.1459	0.448	14.30
31)	779.88	27.93	0.1459	0.448	14.30
32)	839.90	28.98	0.1459	0.448	14.30
33)	899.95	30.00	0.1459	0.448	14.30
34)	959.88	30.98	0.1459	0.448	14.30
35)	1019.90	31.94	0.1459	0.448	14.30

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 16 of 20 Stress increment from 32.00 (t/ft²) to 16.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.1459	0.448	14.30
37)	1139.88	33.76	0.1459	0.448	14.30
38)	1199.90	34.64	0.1454	0.449	14.25
39)	1259.88	35.49	0.1459	0.448	14.30
40)	1319.90	36.33	0.1454	0.449	14.25
41)	1379.88	37.15	0.1454	0.449	14.25
42)	1436.52	37.90	0.1459	0.448	14.30

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 17 of 20

Stress increment from 16.00 (t/ft^2) to 8.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SORT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
	(,		indiciti (iii)	Tuti 10	(0)
1)	0.00	0.00	0.1413	0.456	13.85
2)	0.17	0.41	0.1413	0.456	13.85
3)	0.42	0.65	0.1408	0.457	13.80
4)	0.90	0.95	0.1403	0.458	13.75
5)	1.92	1.38	0.1403	0.458	13.75
6)	2.92	1.71	0.1403	0.458	13.75
7)	3.92	1.98	0.1403	0.458	13.75
8)	4.90	2.21	0.1403	0.458	13.75
9)	5.92	2.43	0.1403	0.458	13.75
10)	6.92	2.63	0.1403	0.458	13.75
11)	7.92	2.81	0.1397	0.458	13.70
12)	8.90	2.98	0.1403	0.458	13.75
13)	9.92	3.15	0.1397	0.458	13.70
14)	14.93	3.86	0.1397	0.458	13.70
15)	29.92	5.47	0.1403	0.458	13.75
16)	59.92	7.74	0.1397	0.458	13.70
17)	89.90	9.48	0.1397	0.458	13.70
18)	119.92	10.95	0.1392	0.459	13.65
19)	149.93	12.24	0.1397	0.458	13.70
20)	179.92	13.41	0.1392	0.459	13.65
21)	209.90	14.49	0.1397	0.458	13.70
22)	239.92	15.49	0.1392	0.459	13.65
23)	299.92	17.32	0.1392	0.459	13.65
24)	359.92	18.97	0.1392	0.459	13.65
25)	419.92	20.49	0.1392	0.459	13.65
26)	479.92	21.91	0.1392	0.459	13.65
27)	539.93	23.24	0.1392	0.459	13.65
28)	599.90	24.49	0.1392	0.459	13.65
29)	659.90	25.69	0.1392	0.459	13.65
30)	719.92	26.83	0.1392	0.459	13.65
31)	779.90	27.93	0.1392	0.459	13.65
32)	839.92	28.98	0.1392	0.459	13.65
33)	899.92	30.00	0.1392	0.459	13.65
34)	959.90	30.98	0.1387	0.460	13.60
35)	1019.90	31.94	0.1392	0.459	13.65

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 17 of 20 Stress increment from 16.00 (t/ft²) to 8.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
				ŧ	
36)	1079.90	32.86	0.1387	0.460	13.60
37)	1139.90	33.76	0.1392	0.459	13.65
38)	1199.92	34.64	0.1392	0.459	13.65
39)	1259.90	35.50	0.1387	0.460	13.60
40)	1319.90	36.33	0.1387	0.460	13.60
41)	1379.90	37.15	0.1392	0.459	13.65
42)	1439.92	37.95	0.1387	0.460	13.60
43)	1499.90	38.73	0.1392	0.459	13.65
44)	1538.13	39.22	0.1387	0.460	13.60

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft²) to 4.00 (t/ft²)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1352	0.466	13.25
2)	0.15	0.39	0.1346	0.467	13.20
3)	0.40	0.63	0.1346	0.467	13.20
4)	0.93	0.97	0.1341	0.468	13.15
5)	1.90	1.38	0.1341	0.468	13.15
6)	2.90	1.70	0.1336	0.469	13.10
7)	3.90	1.97	0.1336	0.469	13.10
8)	4.90	2.21	0.1336	0.469	13.10
9)	5.92	2.43	0.1336	0.469	13.10
10)	6.92	2.63	0.1336	0.469	13.10
11)	7.92	2.81	0.1336	0.469	13.10
12)	8.92	2.99	0.1336	0.469	13.10
13)	9.90	3.15	0.1331	0.469	13.05
14)	14.92	3.86	0.1331	0.469	13.05
15)	29.92	5.47	0.1326	0.470	13.00
16)	59.90	7.74	0.1326	0.470	13.00
17)	89.92	9.48	0.1326	0.470	13.00
18)	119.92	10.95	0.1326	0.470	13.00
19)	149.90	12.24	0.1326	0.470	13.00
20)	179.90	13.41	0.1326	0.470	13.00
21)	209.92	14.49	0.1326	0.470	13.00
22)	239.90	15.49	0.1326	0.470	13.00
23)	299.92	17.32	0.1326	0.470	13.00
24)	359.90	18.97	0.1321	0.471	12.95
25)	419.92	20.49	0.1321	0.471	12.95
26)	479.90	21.91	0.1321	0.471	12.95
27)	539.90	23.24	0.1321	0.471	12.95
28)	599.92	24.49	0.1321	0.471	12.95
29)	659.90	25.69	0.1321	0.471	12.95
30)	719.92	26.83	0.1321	0.471	12.95
31)	779.90	27.93	0.1321	0.471	12.95
32)	839.90	28.98	0.1316	0.472	12.90
33)	899.90	30.00	0.1321	0.471	12.95
34)	959.90	30.98	0.1321	0.471	12.95
35)	1019.92	31.94	0.1321	0.471	12.95

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

(min) TIME (min) HEIGHT (in) RATIO (%) 36) 1079.90 32.86 0.1326 0.470 13.00 37) 1139.90 33.76 0.1326 0.471 12.95 39) 1259.90 35.50 0.1321 0.471 12.95 40) 1319.92 36.33 0.1321 0.471 12.95 41) 1379.90 37.15 0.1326 0.470 13.00 42) 1439.90 37.95 0.1326 0.470 13.00 43) 1499.90 38.73 0.1316 0.471 12.95 44) 1559.90 39.50 0.1321 0.471 12.95 45) 1619.92 40.25 0.1321 0.471 12.95 46) 1679.90 41.71 0.1321 0.471 12.95 48) 1799.90 42.43 0.1321 0.471 12.95 51) 1979.90 45.82 0.1321 0.471 12.95 <		ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
371139.90 33.76 0.13260.47013.0038)1199.90 34.64 0.13210.47112.9539)1259.90 35.50 0.13210.47112.9540)1319.92 36.33 0.13210.47112.9541)1379.90 37.15 0.13260.47013.0042)1439.90 37.95 0.13260.47013.0043)1499.90 38.73 0.13160.47212.9044)1559.90 39.50 0.13210.47112.9545)1619.9240.250.13210.47112.9546)1679.9040.990.13160.47212.9047)1739.9041.710.13210.47112.9548)1799.9042.430.13210.47112.9550)1919.9043.820.13210.47112.9551)1979.9044.500.13210.47112.9552)2039.9045.820.13260.47013.0054)2159.9047.120.13210.47112.9555)2219.9047.750.13260.47013.0054)2159.9048.370.13210.47112.9555)2219.9047.150.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.370.13210.47112.9559)2459.9049.60		(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
371139.90 33.76 0.13260.47013.0038)1199.90 34.64 0.13210.47112.9539)1259.90 35.50 0.13210.47112.9540)1319.92 36.33 0.13210.47112.9541)1379.90 37.15 0.13260.47013.0042)1439.90 37.95 0.13260.47013.0043)1499.90 38.73 0.13160.47212.9044)1559.90 39.50 0.13210.47112.9545)1619.9240.250.13210.47112.9546)1679.9040.990.13160.47212.9047)1739.9041.710.13210.47112.9548)1799.9042.430.13210.47112.9550)1919.9043.820.13210.47112.9551)1979.9044.500.13210.47112.9552)2039.9045.820.13260.47013.0054)2159.9047.120.13210.47112.9555)2219.9047.750.13260.47013.0054)2159.9048.370.13210.47112.9555)2219.9047.150.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.370.13210.47112.9559)2459.9049.60						
38) 1199.90 34.64 0.1321 0.471 12.95 39) 1259.90 35.50 0.1321 0.471 12.95 40) 1319.92 36.33 0.1321 0.471 12.95 41) 1379.90 37.15 0.1326 0.470 13.00 42) 1439.90 37.95 0.1326 0.470 13.00 43) 1499.90 38.73 0.1316 0.472 12.90 44) 1559.90 39.50 0.1321 0.471 12.95 45) 1619.92 40.25 0.1321 0.471 12.95 46) 1679.90 40.99 0.1316 0.472 12.90 47) 1739.90 41.71 0.1321 0.471 12.95 48) 1799.90 42.43 0.1321 0.471 12.95 50) 1919.90 43.62 0.1321 0.471 12.95 51) 1979.90 43.62 0.1321 0.471 12.95 52) 2039.90 45.82 0.1321 0.471 12.95 53) 2099.90 45.82 0.1321 0.471 12.95 55) 2219.90 47.75 0.1321 0.471 12.95 56) 2279.90 47.75 0.1321 0.471 12.95 58) 2399.90 48.99 0.1321 0.471 12.95 59) 2459.90 49.60 0.1321 0.471 12.95 59) 2459.90 49.60 0.1321	36)	1079.90	32.86	0.1326	0.470	13.00
39) 1259.90 35.50 0.1321 0.471 12.95 40) 1319.92 36.33 0.1321 0.471 12.95 41) 1379.90 37.15 0.1326 0.470 13.00 42) 1439.90 37.95 0.1326 0.470 13.00 43) 1499.90 38.73 0.1316 0.472 12.90 44) 1559.90 39.50 0.1321 0.4711 12.95 45) 1619.92 40.25 0.1321 0.4711 12.95 46) 1679.90 40.99 0.1316 0.4722 12.90 47) 1739.90 41.71 0.1321 0.4711 12.95 48) 1799.90 42.43 0.1321 0.4711 12.95 49) 1859.90 43.13 0.1326 0.470 13.00 50) 1919.90 43.82 0.1321 0.4711 12.95 51) 1979.90 44.50 0.1321 0.4711 12.95 53) 2099.90 45.82 0.1321 0.4711 12.95 55) 2219.90 47.12 0.1321 0.4711 12.95 56) 2279.90 47.75 0.1321 0.4711 12.95 58) 2399.90 48.37 0.1321 0.4711 12.95 59) 2459.90 49.60 0.1321 0.4711 12.95 59) 2459.90 49.60 0.1321 0.4711 12.95 60) 2519.88 50.20 <td>37)</td> <td>1139.90</td> <td>33.76</td> <td>0.1326</td> <td>0.470</td> <td>13.00</td>	37)	1139.90	33.76	0.1326	0.470	13.00
40) 1319.92 36.33 0.1321 0.471 12.95 41) 1379.90 37.15 0.1326 0.470 13.00 42) 1439.90 37.95 0.1326 0.470 13.00 43) 1499.90 38.73 0.1316 0.472 12.90 44) 1559.90 39.50 0.1321 0.4711 12.95 45) 1619.92 40.25 0.1321 0.4711 12.95 46) 1679.90 40.99 0.1316 0.472 12.90 47) 1739.90 41.71 0.1321 0.4711 12.95 48) 1799.90 42.43 0.1321 0.4711 12.95 49) 1859.90 43.13 0.1326 0.470 13.00 50 1919.90 43.82 0.1321 0.4711 12.95 51 1979.90 44.50 0.1321 0.4711 12.95 53 2099.90 45.82 0.1321 0.4711 12.95 53 2099.90 45.82 0.1321 0.4711 12.95 55 2219.90 47.12 0.1321 0.4711 12.95 56 2279.90 47.75 0.1321 0.4711 12.95 59 2459.90 48.99 0.1321 0.4711 12.95 59 2459.90 49.60 0.1321 0.4711 12.95 60 2519.88 50.20 0.1321 0.4711 12.95 61 <t< td=""><td>38)</td><td>1199.90</td><td>34.64</td><td>0.1321</td><td>0.471</td><td>12.95</td></t<>	38)	1199.90	34.64	0.1321	0.471	12.95
41) 1379.90 37.15 0.1326 0.470 13.00 42) 1439.90 37.95 0.1326 0.470 13.00 43) 1499.90 38.73 0.1316 0.472 12.90 44) 1559.90 39.50 0.1321 0.471 12.95 45) 1619.92 40.25 0.1321 0.471 12.95 46) 1679.90 40.99 0.1316 0.472 12.90 47) 1739.90 41.71 0.1321 0.471 12.95 48) 1799.90 42.43 0.1321 0.471 12.95 49) 1859.90 43.13 0.1326 0.470 13.00 50 1919.90 43.82 0.1321 0.471 12.95 51) 1979.90 44.50 0.1321 0.471 12.95 52) 2039.90 45.17 0.1321 0.471 12.95 53) 2099.90 45.82 0.1326 0.470 13.00 54) 2159.90 47.12 0.1321 0.471 12.95 55) 2219.90 47.75 0.1321 0.471 12.95 58) 2399.90 48.37 0.1321 0.471 12.95 59) 2459.90 49.60 0.1321 0.471 12.95 59) 2459.90 49.60 0.1321 0.471 12.95 60) 2519.88 50.20 0.1321 0.471 12.95 61) 2	39)	1259.90	35.50	0.1321	0.471	12.95
42 1439.90 37.95 0.1326 0.470 13.00 43 1499.90 38.73 0.1316 0.472 12.90 44 1559.90 39.50 0.1321 0.471 12.95 45 1619.92 40.25 0.1321 0.471 12.95 46 1679.90 40.99 0.1316 0.472 12.90 47 1739.90 41.71 0.1321 0.471 12.95 48 1799.90 42.43 0.1321 0.471 12.95 49 1859.90 43.13 0.1326 0.470 13.00 50 1919.90 43.82 0.1321 0.471 12.95 51 1979.90 44.50 0.1321 0.471 12.95 52 2039.90 45.17 0.1321 0.471 12.95 53 2099.90 45.82 0.1321 0.471 12.95 54 2159.90 46.47 0.1321 0.471 12.95 55 2219.90 47.12 0.1321 0.471 12.95 56 2279.90 47.75 0.1321 0.471 12.95 58 2399.90 48.37 0.1321 0.471 12.95 59 2459.90 49.60 0.1321 0.471 12.95 59 2459.90 49.60 0.1321 0.471 12.95 60 2519.88 50.20 0.1316 0.472 12.90 61 2579.90 50	40)	1319.92	36.33	0.1321	0.471	12.95
43)1499.9038.730.13160.47212.9044)1559.9039.500.13210.47112.9545)1619.9240.250.13210.47112.9546)1679.9040.990.13160.47212.9047)1739.9041.710.13210.47112.9548)1799.9042.430.13210.47112.9549)1859.9043.130.13260.47013.0050)1919.9043.820.13210.47112.9551)1979.9044.500.13210.47112.9552)2039.9045.170.13210.47112.9553)2099.9045.820.13210.47112.9555)2219.9047.120.13210.47112.9556)2279.9047.750.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.370.13210.47112.9559)2459.9049.600.13210.47112.9559)2459.9049.600.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13160.47212.9064)2759.9052.530.13210.47112.95	41)	1379.90	37.15	0.1326	0.470	13.00
441559.9039.500.13210.47112.95 45 1619.9240.250.13210.47112.95 46 1679.9040.990.13160.47212.90 47 1739.9041.710.13210.47112.95 48 1799.9042.430.13210.47112.95 49 1859.9043.130.13260.47013.00 50 1919.9043.820.13210.47112.95 51 1979.9044.500.13210.47112.95 52 2039.9045.170.13210.47112.95 53 2099.9045.820.13260.47013.00 54 2159.9046.470.13210.47112.95 55 2219.9047.120.13210.47112.95 56 2279.9047.750.13260.47013.00 57 2339.9048.370.13210.47112.95 58 2399.9049.600.13210.47112.95 59 2459.9049.600.13210.47112.95 59 2459.9050.790.13160.47212.90 61 2579.9050.790.13160.47212.90 62 2639.8851.380.13160.47212.90 63 2699.9051.960.13210.47112.95 64 2759.9052.530.13210.47112.95	42)	1439.90	37.95	0.1326	0.470	13.00
45 1619.92 40.25 0.1321 0.471 12.95 46 1679.90 40.99 0.1316 0.472 12.90 47 1739.90 41.71 0.1321 0.471 12.95 48 1799.90 42.43 0.1321 0.471 12.95 49 1859.90 43.13 0.1326 0.470 13.00 50 1919.90 43.82 0.1321 0.471 12.95 51 1979.90 44.50 0.1321 0.471 12.95 52 2039.90 45.17 0.1321 0.471 12.95 53 2099.90 45.82 0.1326 0.470 13.00 54 2159.90 46.47 0.1321 0.471 12.95 55 2219.90 47.12 0.1321 0.471 12.95 56 2279.90 47.75 0.1326 0.470 13.00 57 2339.90 48.37 0.1321 0.471 12.95 58 2399.90 48.99 0.1321 0.471 12.95 59 2459.90 49.60 0.1321 0.471 12.95 60 2519.88 50.20 0.1321 0.471 12.95 61 2579.90 50.79 0.1316 0.472 12.90 62 2639.88 51.38 0.1316 0.472 12.90 63 2699.90 51.96 0.1321 0.471 12.95 64 2759.90 51	43)	1499.90	38.73	0.1316	0.472	12.90
46) 1679.90 40.99 0.1316 0.472 12.90 47) 1739.90 41.71 0.1321 0.471 12.95 48) 1799.90 42.43 0.1321 0.471 12.95 49) 1859.90 43.13 0.1326 0.470 13.00 50) 1919.90 43.82 0.1321 0.4711 12.95 51) 1979.90 44.50 0.1321 0.4711 12.95 52) 2039.90 45.17 0.1321 0.4711 12.95 53) 2099.90 45.82 0.1326 0.4701 13.00 54) 2159.90 46.47 0.1321 0.4711 12.95 55) 2219.90 47.12 0.1321 0.4711 12.95 56) 2279.90 47.75 0.1326 0.4701 13.00 57) 2339.90 48.37 0.1321 0.4711 12.95 58) 2399.90 48.99 0.1321 0.4711 12.95 59) 2459.90 49.60 0.1321 0.4711 12.95 60) 2519.88 50.20 0.1316 0.4722 12.90 62) 2639.88 51.38 0.1316 0.472 12.90 63) 2699.90 51.96 0.1321 0.4711 12.95 64) 2759.90 52.53 0.1321 0.4711 12.95 64) 2759.90 51.96 0.1316 0.472 12.90 6	44)	1559.90	39.50	0.1321	0.471	12.95
47)1739.9041.710.13210.47112.9548)1799.9042.430.13210.47112.9549)1859.9043.130.13260.47013.0050)1919.9043.820.13210.47112.9551)1979.9044.500.13210.47112.9552)2039.9045.170.13210.47112.9553)2099.9045.820.13260.47013.0054)2159.9046.470.13210.47112.9555)2219.9047.120.13210.47112.9556)2279.9047.750.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13210.47112.9564)2759.9052.530.13210.47112.95	45)	1619.92	40.25	0.1321	0.471	12.95
48 1799.90 42.43 0.1321 0.471 12.95 49 1859.90 43.13 0.1326 0.470 13.00 50 1919.90 43.82 0.1321 0.471 12.95 51 1979.90 44.50 0.1321 0.471 12.95 52 2039.90 45.17 0.1321 0.471 12.95 53 2099.90 45.82 0.1326 0.470 13.00 54 2159.90 46.47 0.1321 0.471 12.95 55 2219.90 47.12 0.1321 0.471 12.95 56 2279.90 47.75 0.1326 0.470 13.00 57 2339.90 48.37 0.1321 0.471 12.95 58 2399.90 48.99 0.1321 0.471 12.95 59 2459.90 49.60 0.1321 0.471 12.95 60 2519.88 50.20 0.1321 0.471 12.95 61 2579.90 50.79 0.1316 0.472 12.90 62 2639.88 51.38 0.1316 0.472 12.90 63 2699.90 51.96 0.1321 0.471 12.95 64 2759.90 52.53 0.1321 0.471 12.95	46)	1679.90	40.99	0.1316	0.472	12.90
49)1859.9043.130.13260.47013.0050)1919.9043.820.13210.47112.9551)1979.9044.500.13210.47112.9552)2039.9045.170.13210.47112.9553)2099.9045.820.13260.47013.0054)2159.9046.470.13210.47112.9555)2219.9047.120.13210.47112.9556)2279.9047.750.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.990.13210.47112.9559)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13210.47112.9564)2759.9052.530.13210.47112.95	47)	1739.90	41.71	0.1321	0.471	12.95
50)1919.9043.820.13210.47112.9551)1979.9044.500.13210.47112.9552)2039.9045.170.13210.47112.9553)2099.9045.820.13260.47013.0054)2159.9046.470.13210.47112.9555)2219.9047.120.13210.47112.9556)2279.9047.750.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.990.13210.47112.9559)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13210.47112.9564)2759.9052.530.13210.47112.95	48)	1799.90	42.43	0.1321	0.471	12.95
51)1979.9044.500.13210.47112.9552)2039.9045.170.13210.47112.9553)2099.9045.820.13260.47013.0054)2159.9046.470.13210.47112.9555)2219.9047.120.13210.47112.9556)2279.9047.750.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.990.13210.47112.9559)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13210.47112.9564)2759.9052.530.13210.47112.95	49)	1859.90	43.13	0.1326	0.470	13.00
52)2039.9045.170.13210.47112.9553)2099.9045.820.13260.47013.0054)2159.9046.470.13210.47112.9555)2219.9047.120.13210.47112.9556)2279.9047.750.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.990.13210.47112.9559)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13210.47112.9564)2759.9052.530.13210.47112.95	50)	1919.90	43.82	0.1321	0.471	12.95
53)2099.9045.820.13260.47013.0054)2159.9046.470.13210.47112.9555)2219.9047.120.13210.47112.9556)2279.9047.750.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.990.13210.47112.9559)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13210.47112.9564)2759.9052.530.13210.47112.95	51)	1979.90	44.50	0.1321	0.471	12.95
54)2159.9046.470.13210.47112.9555)2219.9047.120.13210.47112.9556)2279.9047.750.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.990.13210.47112.9559)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13210.47112.9564)2759.9052.530.13210.47112.95	52)	2039.90	45.17	0.1321	0.471	12.95
55)2219.9047.120.13210.47112.9556)2279.9047.750.13260.47013.0057)2339.9048.370.13210.47112.9558)2399.9048.990.13210.47112.9559)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13210.47112.9564)2759.9052.530.13210.47112.95	53)	2099.90	45.82	0.1326	0.470	13.00
56) 2279.90 47.75 0.1326 0.470 13.00 57) 2339.90 48.37 0.1321 0.471 12.95 58) 2399.90 48.99 0.1321 0.471 12.95 59) 2459.90 49.60 0.1321 0.471 12.95 60) 2519.88 50.20 0.1321 0.471 12.95 61) 2579.90 50.79 0.1316 0.472 12.90 62) 2639.88 51.38 0.1316 0.472 12.90 63) 2699.90 51.96 0.1321 0.471 12.95 64) 2759.90 52.53 0.1321 0.471 12.95	54)	2159.90	46.47	0.1321	0.471	12.95
57)2339.9048.370.13210.47112.9558)2399.9048.990.13210.47112.9559)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13160.47212.9064)2759.9052.530.13210.47112.95	55)	2219.90	47.12	0.1321	0.471	12.95
58)2399.9048.990.13210.47112.9559)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13160.47212.9064)2759.9052.530.13210.47112.95	56)	2279.90	47.75	0.1326	0.470	13.00
59)2459.9049.600.13210.47112.9560)2519.8850.200.13210.47112.9561)2579.9050.790.13160.47212.9062)2639.8851.380.13160.47212.9063)2699.9051.960.13160.47212.9064)2759.9052.530.13210.47112.95	57)	2339.90	48.37	0.1321	0.471	12.95
60) 2519.88 50.20 0.1321 0.471 12.95 61) 2579.90 50.79 0.1316 0.472 12.90 62) 2639.88 51.38 0.1316 0.472 12.90 63) 2699.90 51.96 0.1316 0.472 12.90 64) 2759.90 52.53 0.1321 0.471 12.95	58)	2399.90	48.99	0.1321	0.471	12.95
61) 2579.90 50.79 0.1316 0.472 12.90 62) 2639.88 51.38 0.1316 0.472 12.90 63) 2699.90 51.96 0.1316 0.472 12.90 64) 2759.90 52.53 0.1321 0.471 12.95	59)	2459.90	49.60	0.1321	0.471	12.95
62) 2639.88 51.38 0.1316 0.472 12.90 63) 2699.90 51.96 0.1316 0.472 12.90 64) 2759.90 52.53 0.1321 0.471 12.95	60)	2519.88	50.20	0.1321	0.471	12.95
63) 2699.90 51.96 0.1316 0.472 12.90 64) 2759.90 52.53 0.1321 0.471 12.95	61)	2579.90	50.79	0.1316	0.472	12.90
64) 2759.90 52.53 0.1321 0.471 12.95	62)	2639.88	51.38	0.1316	0.472	12.90
	63)	2699.90	51.96	0.1316	0.472	12.90
65) 2818.38 53.09 0.1316 0.472 12.90	64)	2759.90	52.53	0.1321	0.471	12.95
	65)	2818.38	53.09	0.1316	0.472	12.90

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 19 of 20 Stress increment from 4.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SORT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1290	0.476	12.65
2)	0.17	0.41	0.1285	0.477	12.60
3)	0.40	0.63	0.1285	0.477	12.60
4)	0.88	0.94	0.1285	0.477	12.60
5)	1.88	1.37	0.1280	0.478	12.55
6)	2.90	1.70	0.1280	0.478	12.55
7)	3.92	1.98	0.1275	0.479	12.50
8)	4.90	2.21	0.1275	0.479	12.50
9)	5.88	2.43	0.1275	0.479	12.50
10)	6.88	2.62	0.1270	0.480	12.45
11)	7.90	2.81	0.1275	0.479	12.50
12)	8.90	2.98	0.1270	0.480	12.45
13)	9.90	3.15	0.1270	0.480	12.45
14)	14.90	3.86	0.1270	0.480	12.45
15)	29.88	5.47	0.1265	0.480	12.40
16)	59.90	7.74	0.1265	0.480	12.40
17)	89.90	9.48	0.1260	0.481	12.35
18)	119.90	10.95	0.1260	0.481	12.35
19)	149.93	12.24	0.1260	0.481	12.35
20)	179.88	13.41	0.1260	0.481	12.35
21)	209.90	14.49	0.1260	0.481	12.35
22)	239.92	15.49	0.1260	0.481	12.35
23)	299.90	17.32	0.1260	0.481	12.35
24)	359.88	18.97	0.1255	0.482	12.30
25)	419.90	20.49	0.1255	0.482	12.30
26)	479.88	21.91	0.1255	0.482	12.30
27)	539.95	23.24	0.1255	0.482	12.30
28)	599.88	24.49	0.1255	0.482	12.30
29)	659.90	25.69	0.1255	0.482	12.30
30)	719.88	26.83	0.1255	0.482	12.30
31)	779.90	27.93	0.1255	0.482	12.30
32)	839.88	28.98	0.1255	0.482	12.30
33)	899.90	30.00	0.1255	0.482	12.30
34)	959.88	30.98	0.1255	0.482	12.30
35)	1019.90	31.94	0.1255	0.482	12.30

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 19 of 20 Stress increment from 4.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
36) 1079.90	32.86	0.1255	0.482	12.30
37) 1139.92	33.76	0.1255	0.482	12.30
38)) 1199.88	34.64	0.1255	0.482	12.30
39)) 1259.90	35.50	0.1255	0.482	12.30
40)) 1319.88	36.33	0.1250	0.483	12.25
41)	1379.90	37.15	0.1255	0.482	12.30
42)) 1410.45	37.56	0.1255	0.482	12.30

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring No.: GW987-ST-3	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1234	0.486	12.10
2)	0.17	0.41	0.1229	0.486	12.05
3)	0.42	0.65	0.1229	0.486	12.05
4)	0.92	0.96	0.1224	0.487	12.00
5)	1.90	1.38	0.1224	0.487	12.00
6)	2.92	1.71	0.1224	0.487	12.00
7)	3.92	1.98	0.1219	0.488	11.95
8)	4.92	2.22	0.1219	0.488	11.95
9)	5.90	2.43	0.1214	0.489	11.90
10)	6.90	2.63	0.1214	0.489	11.90
11)	7.92	2.81	0.1214	0.489	11.90
12)	8.92	2.99	0.1219	0.488	11.95
13)	9.92	3.15	0.1214	0.489	11.90
14)	14.92	3.86	0.1214	0.489	11.90
15)	29.92	5.47	0.1209	0.490	11.85
16)	59.92	7.74	0.1204	0.491	11.80
17)	89.93	9.48	0.1204	0.491	11.80
18)	119.90	10.95	0.1199	0.491	11.75
19)	149.90	12.24	0.1204	0.491	11.80
20)	179.90	13.41	0.1193	0.492	11.70
21)	209.93	14.49	0.1199	0.491	11.75
22)	239.95	15.49	0.1199	0.491	11.75
23)	299.93	17.32	0.1199	0.491	11.75
24)	359.92	18.97	0.1199	0.491	11.75
25)	419.92	20.49	0.1199	0.491	11.75
26)	479.92	21.91	0.1193	0.492	11.70
27)	539.92	23.24	0.1193	0.492	11.70
28)	599.92	24.49	0.1193	0.492	11.70
29)	659.92	25.69	0.1193	0.492	11.70
30)	719.90	26.83	0.1193	0.492	11.70
31)	779.95	27.93	0.1193	0.492	11.70
32)	839.90	28.98	0.1193	0.492	11.70
33)	899.92	30.00	0.1193	0.492	11.70
34)	959.90	30.98	0.1193	0.492	11.70
35)	1019.93	31.94	0.1193	0.492	11.70

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW987-ST-3, 2.0'-4.0'	Project No.: 183923
Boring Nc.: GW987-ST-3 .	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW987-ST-3	Test Date : 3-15-18	Depth : 2.8'-3.0'
Test No. : GW987-ST-3	Sample Type: Undisturb	

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.92	32.86	0.1193	0.492	11.70
37)	1139.92	33.76	0.1193	0.492	11.70
38)	1199.92	34.64	0.1193	0.492	11.70
39)	1259.92	35.50	0.1193	0.492	11.70
40)	1319.90	36.33	0.1193	0.492	11.70
41)	1379.93	37.15	0.1193	0.492	11.70
42)	1417.50	37.65	0.1183	0.494	11.60

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377

Report Date: April 17, 2018 Job No.: 183923 430213 Report No.: No. of Pages: 2

Laboratory Analysis of One Shelby Tube Sample **Report On:** Project: EMDF Characterization - Project No. 1188070011 Sample ID: GW979 - ST-1, 3.0'-5.0' - Sample Date: 2/21/18

On March 5, 2018, one Shelby tube sample was submitted for determination of atterberg limits from the above referenced project. Testing was performed as specified by the client and in accordance with the following procedures:

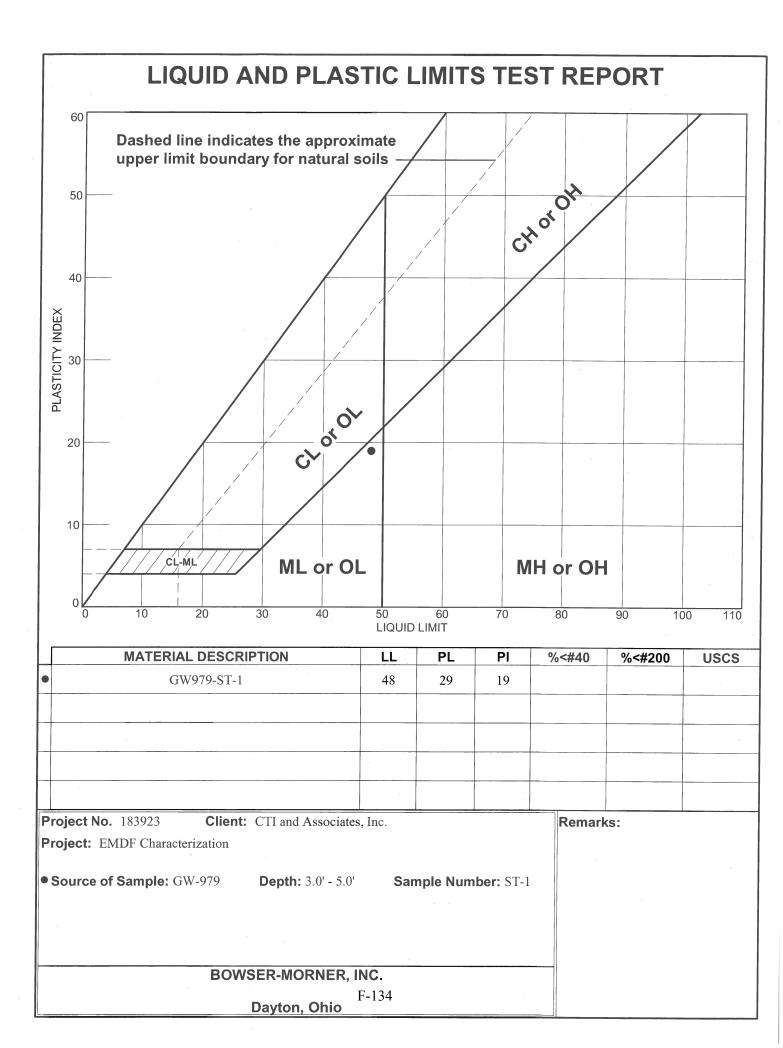
> ASTM D 1140, "Determining the Amount of Material Finer than 75-µm (No. 200) Sieve in Soils by Washing".

ASTM D 4318, "Liquid Limit, Plastic Limit, and Plasticity Index of Soils".

Results are presented in the following table and detailed on the attached data sheet.

Test Parameter	Results
Liquid Limit:	48
Plastic Limit:	29
Plasticity Index:	19
Percent Finer than No. 200 Sieve:	73.3

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.


Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430213 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-133 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for review.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To:CTI & Associates, Inc.Report Date:May 3, 2018Attn: Michael PartenioJob No.:18392328001 Cabot Drive, Ste. 250Report No.:430246Novi, MI 48377No. of Pages:2

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW993 – ST-1, 3.0'-5.0' – Sample Date: 2/22/18

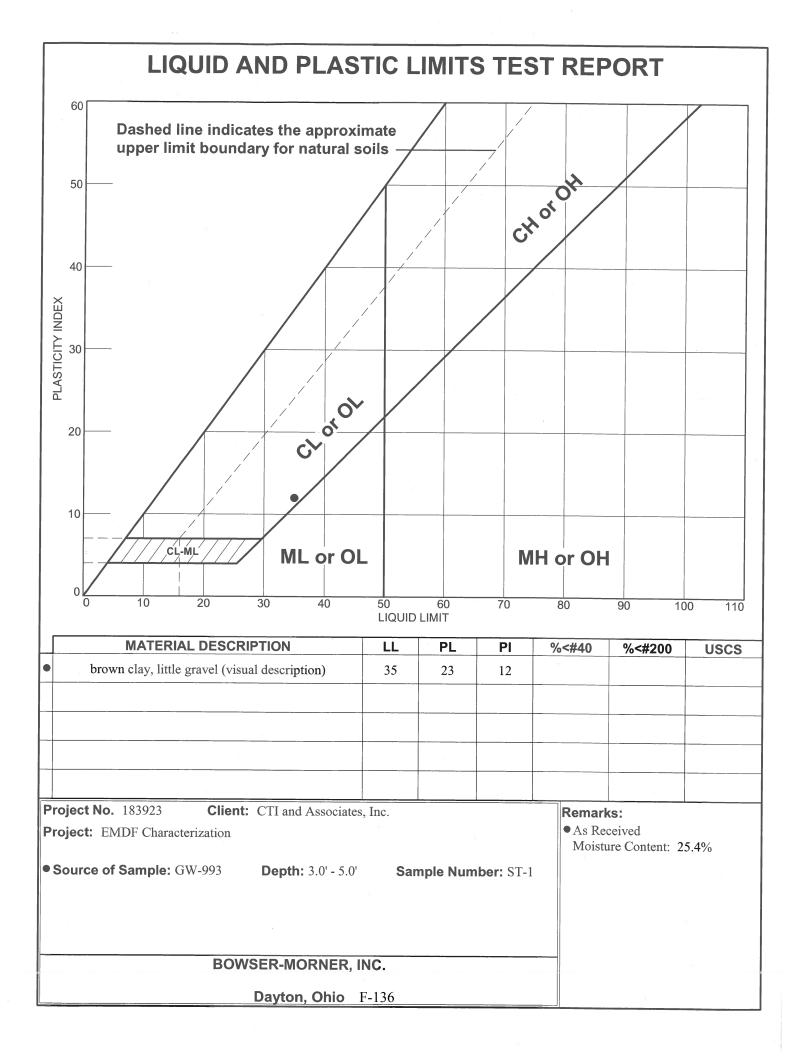
On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the ASTM D 4318, "Liquid Limit, Plastic Limit, and Plasticity Index of Soils".

Results are presented in the following table and detailed on the attached data sheet.

Test Parameter	Results
Liquid Limit:	35
Plastic Limit:	23
Plasticity Index:	12

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,


BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430246 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-135

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for review.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377 Report Date:May 22, 2018Job No.:183923Report No.:430273No. of Pages:2

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW979 – ST-2, 7.5'-8.75' – Sample Date: 2/21/18 Depth of Test Specimen: 8.2'-8.5'

On March 5, 2018, one Shelby tube sample was submitted for laboratory determination of permeability. Testing was performed as specified by the client and in accordance with ASTM D 5084, "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter".

Results are presented in the following table.

Test Parameter	Results
Average Permeability, cm/sec:	1.7 x 10 ⁻⁷

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430273 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-137

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

FALLING HEAD PERMEABILITY TEST

ASTM D 5084, Measurement of Hydraulic Conductivity

UNDISTURBED

Client:	CTI and Associates, Inc.				
Project:	EMDF Characterization				
BMI Work Order Number:	183923				
Sample Identification:	GW979 ST-2, 7.5' - 8.75'				
Depth, ft:	8.2' - 8.5'				
Visual Description:	brown silty clay				

SPECIMEN DATA:

Dimension, inches Height: Diameter:	2.99 2.883
Mass, lbs:	1.428
Moisture Content,%	
Initial:	21.8
Final:	24.4
Wet Unit Weight, pcf Initial: Final:	126.4 129.1
Initial Dry Unit Weight, pcf:	103.8
Back Pressure Saturation, psi Back Pressure, Exit: Back Pressure, Enter: Lateral Pressure:	60 63 67

Permeability (k), cm/sec:

1.7 x 10⁻⁷

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377
 Report Date:
 May 7, 2018

 Job No.:
 183923

 Report No.:
 430253

 No. of Pages:
 4

Report On:Laboratory Analysis of One Shelby Tube SampleProject:EMDF Characterization – Project No. 1188070011Sample ID:GW989-ST-4, 14.5'-16.5' – Sample Date: 2/27/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the following procedures:

ASTM D 2216, "Laboratory Determination of Water (Moisture) Content of Soil and Rock".

ASTM D 6913, "Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis".

Results are summarized in Table I and detailed on the attached data sheets.

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

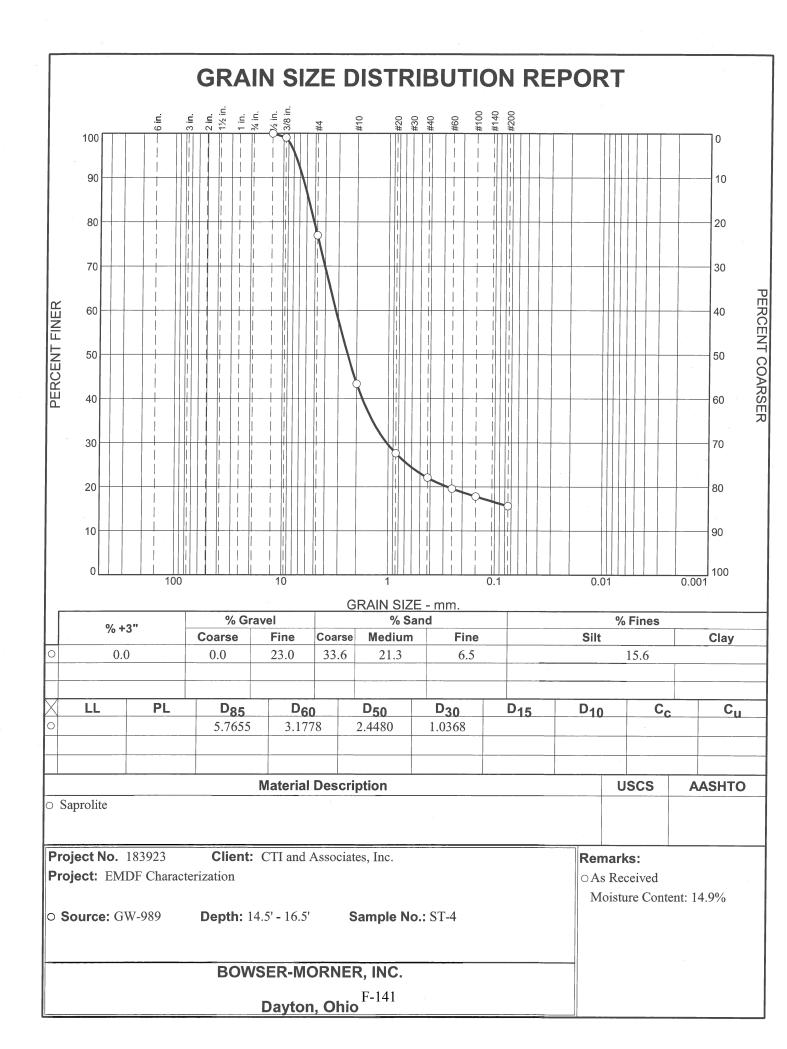
BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430253 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com Report To: Project: Sample No.: CTI & Associates, Inc. EMDF Characterization GW989-ST-4, 14.5'-16.6'
 BMI Job No.:
 183923

 BMI Report No.:
 430253

 Date Sampled:
 02/27/18


Sample ID: GW989-ST-4, 14.5'-16.6' Description: Saprolite

Sieve Size	Percent Passing
1/2"	100.0
3/8"	99.1
No. 4	77.0
No. 10	43.4
No. 20	27.6
No. 40	22.1
No. 60	19.6
No. 100	17.8
No. 200	15.6
Gravel, %:	23.0
Sand, %:	61.4
Fines, %:	15.6
As Received Moisture Content, %:	14.9

TABLE ISummary of Results

Page 2

GRAIN SIZE DISTRIBUTION TEST DATA

Sample Number: ST-4

Client: CTI and Associates, Inc. **Project:** EMDF Characterization

Project Number: 183923

Location: GW-989

Depth: 14.5' - 16.5'

Material Description: Saprolite

Testing Remarks: As Received

Moisture Content: 14.9%

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
932.90	228.22	0.00	0.50	0.00	100.0	0.0	
			0.375	6.60	99.1	0.9	
			#4	162.34	77.0	23.0	
			#10	398.89	43.4	56.6	· · · · · · · · · · · · · · · · · · ·
			#20	510.01	27.6	72.4	
			#40	549.08	22.1	77.9	
			#60	566.57	19.6	80.4	
			#100	579.07	17.8	82.2	
			#200	594.40	15.6	84.4	
			Frac	tional Compor	ents		

Cobbles		Gravel			Sand Fines					
CODDIES	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	23.0	23.0	33.6	21.3	6.5	61.4			15.6

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
_			0.2765	1.0368	1.7678	2.4480	3.1778	5.1031	5.7655	6.5876	7.7351

Fineness
Modulus
3.81

5/7/2018

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To:	CTI & Associates, Inc.	Report Date:	April 11, 2018
	Attn: Michael Partenio	Job No.:	183923
	28001 Cabot Drive, Ste. 250	Report No.:	430201
	Novi, MI 48377	No. of Pages:	1

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW987 – ST-3, 2.0'-4.0' – Sample Date: 2/21/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the following procedures:

ASTM D 854, "Specific Gravity of Soils Solids by Water Pycnometer".

ASTM D 2216, "Laboratory Determination of Water (Moisture) Content of Soil and Rock".

ASTM D 7263, "Laboratory Determination of Density (Unit Weight) of Soil Specimens - Method B".

Results are summarized in the following table.

Test Parameter	Results
Depth of Test Specimen:	2.0'-2.5'
As Received Moisture Content, %:	20.7
Apparent Specific Gravity:	2.69
Wet Unit Weight, pcf:	128.5
Dry Unit Weight, pcf:	106.4
Void Ratio:	0.5764
Porosity, %:	36.6
Degree of Saturation, %:	96.5
Volume of Water, %:	35.3
Volume of Solids, %:	63.4
Air Filled Voids, %:	3.5
Water Filled Voids, %:	96.5

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430201 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-143

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

BOWSER-MORNER, INC.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377
 Report Date:
 May 22, 2018

 Job No.:
 183923

 Report No.:
 430274

 No. of Pages:
 2

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW989 – ST-2, 6.5'-8.5' – Sample Date: 2/27/18 Depth of Test Specimen: 7.3'-7.6'

On March 5, 2018, one Shelby tube sample was submitted for laboratory determination of permeability. Testing was performed as specified by the client and in accordance with ASTM D 5084, "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter".

Results are presented in the following table.

Test Parameter	Results
Average Permeability, cm/sec:	6.6 x 10 ⁻⁸

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

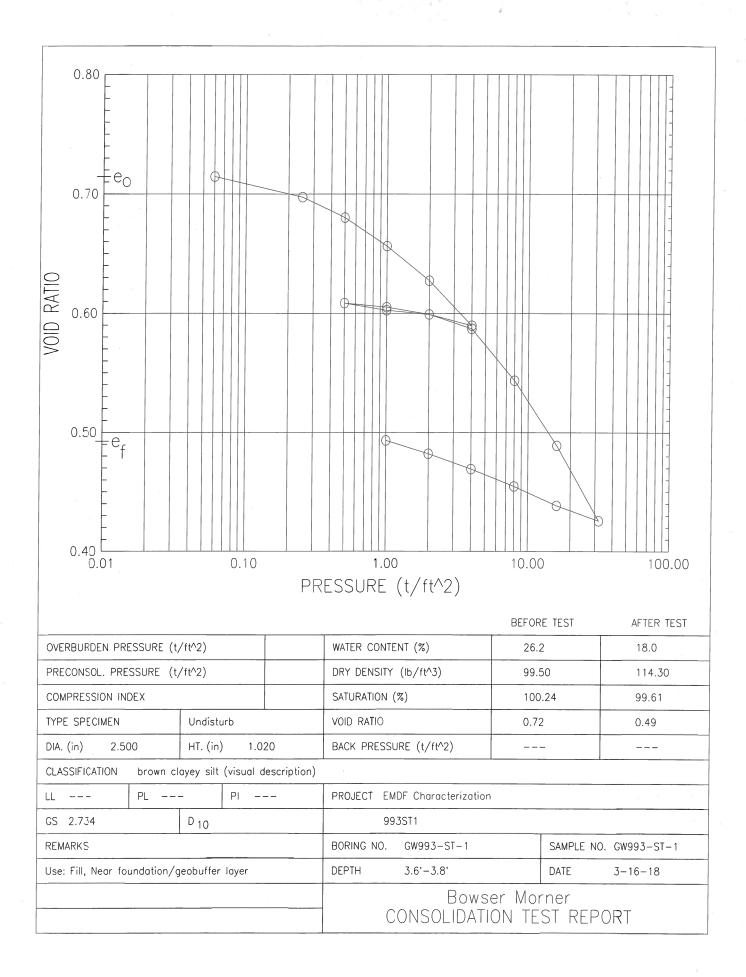
KAF/blc 430274 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-144

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

FALLING HEAD PERMEABILITY TEST ASTM D 5084, Measurement of Hydraulic Conductivity

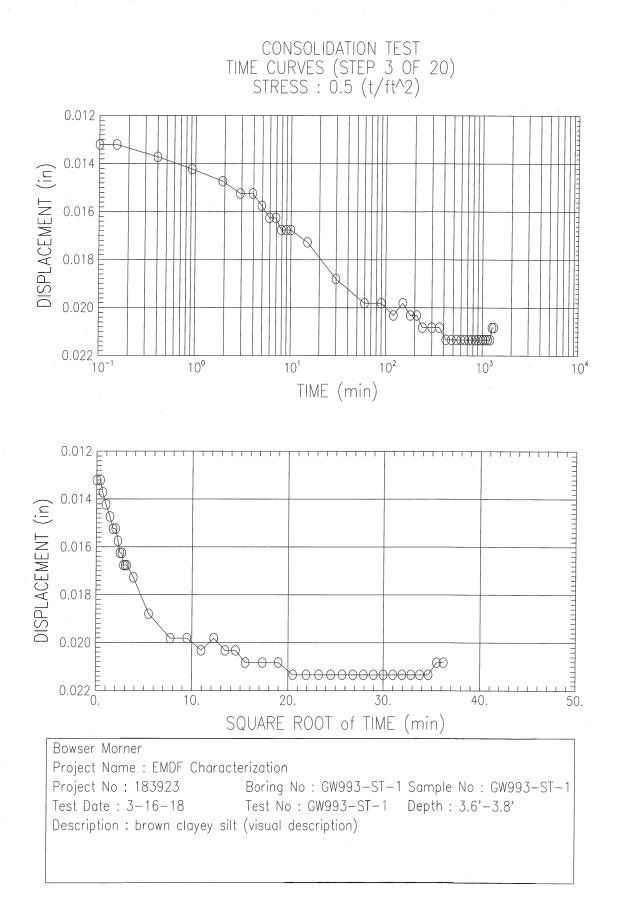
UNDISTURBED


Client: CTI and Associ	
Project:	EMDF Characterization
BMI Work Order Number:	183923
Sample Identification:	GW989 ST-2, 6.5' - 8.5'
Depth, ft:	7.3' - 7.6'
Visual Description:	brown silty clay

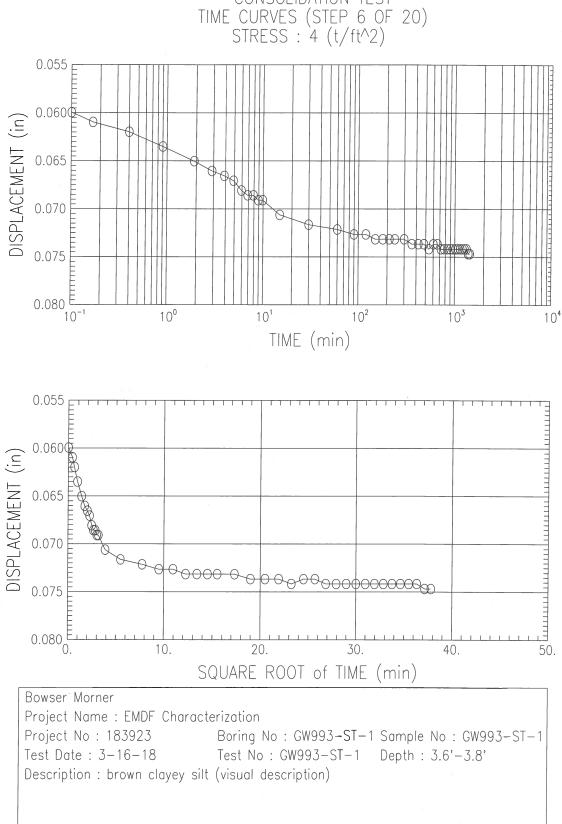
SPECIMEN DATA:

Dimension, inches Height: Diameter:	3.008 2.86
Mass, lbs:	1.355
Moisture Content,% Initial: Final:	28.0 30.0
Wet Unit Weight, pcf Initial: Final:	121.2 123.1
Initial Dry Unit Weight, pcf:	94.7
Back Pressure Saturation, psi Back Pressure, Exit: Back Pressure, Enter: Lateral Pressure:	60 63 67

Permeability (k), cm/sec:

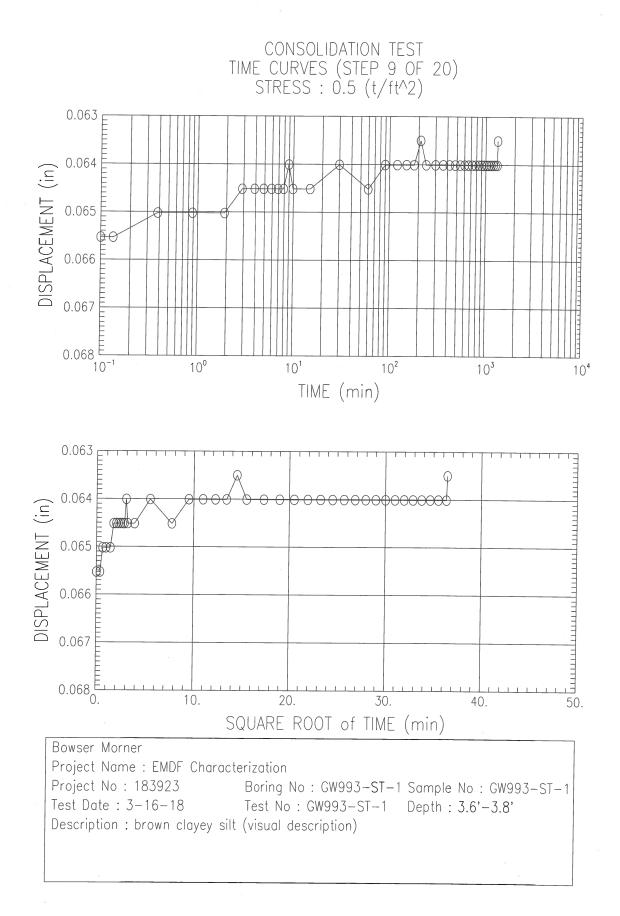

6.6 x 10⁻⁸

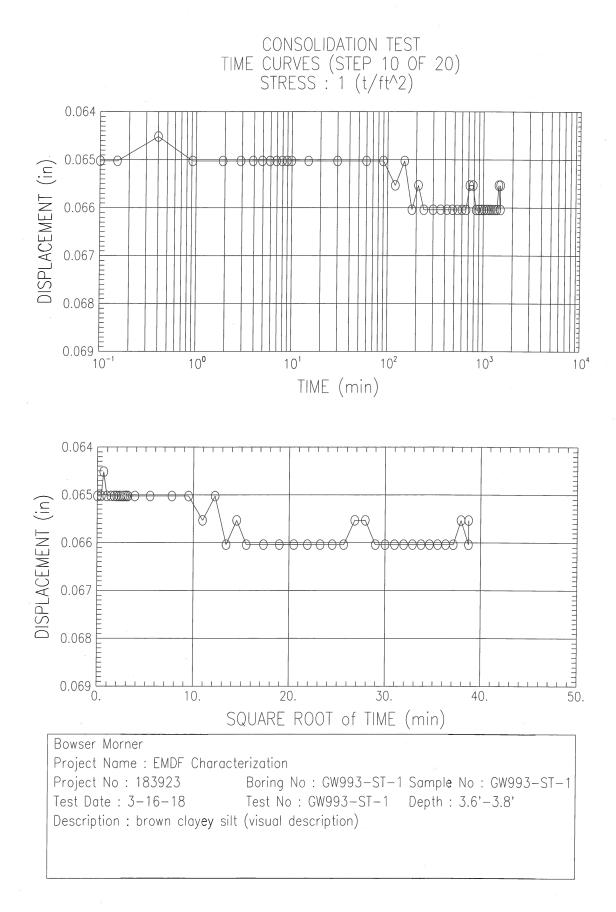
TIME CURVES (STEP 2 OF 20) STRESS : 0.25 (t/ft^2) 0.00200 0.004 DISPLACEMENT (in) 0.006 0.008 ß 69463 0.010 γm 0.012 ^L 10-1 10⁰ 10¹ 10² 10³ 104 TIME (min) 0.002 0.004 DISPLACEMENT (in) 0.006 0.008 6 0.010 111111 $- \cap \cap$ 0.012 ^E 0. 10. 20. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW993-ST-1 Sample No : GW993-ST-1 Test Date : 3-16-18 Test No : GW993-ST-1 Depth : 3.6'-3.8' Description : brown clayey silt (visual description)

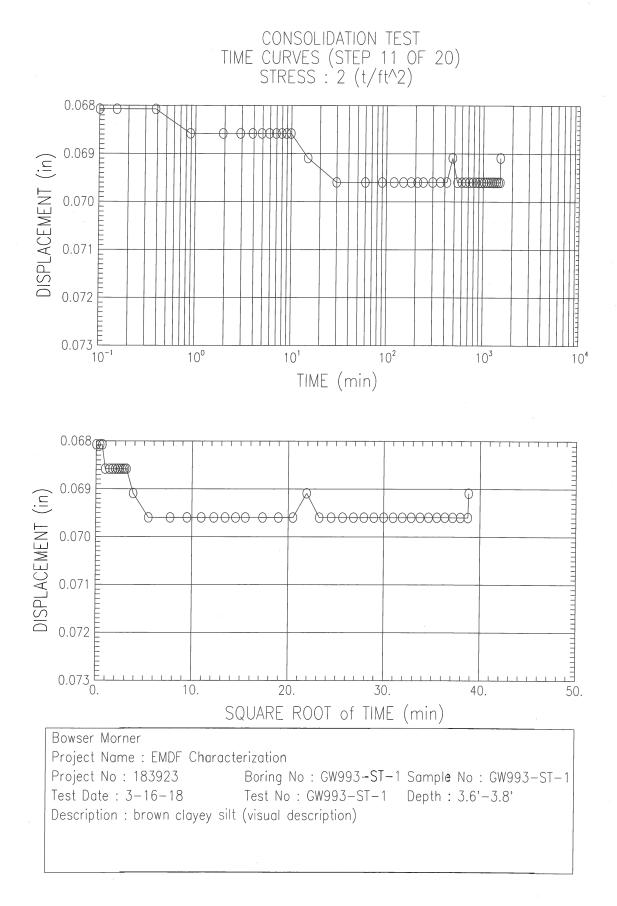

CONSOLIDATION TEST

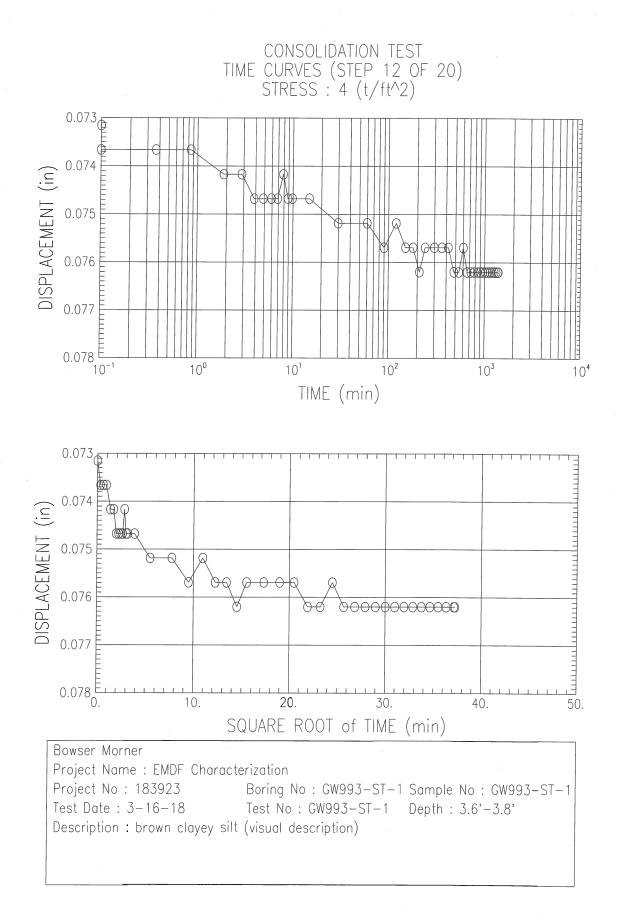
CONSOLIDATION TEST TIME CURVES (STEP 4 OF 20) STRESS : $1 (t/ft^2)$ 0.025_@ 0.030 DISPLACEMENT (in) ¥78666 0.035 0.040 0.045 0.050 10⁻¹ 10⁰ 10¹ 10^{2} 10^{3} 10⁴ TIME (min) 0.025₀ 0.030 DISPLACEMENT (in) 0.035 0.040 0.045 _____ 0.050 ^E 0. 20. 10. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No: GW993-ST-1 Sample No: GW993-ST-1 Test Date : 3-16-18 Test No : GW993-ST-1 Depth : 3.6'-3.8' Description : brown clayey silt (visual description)

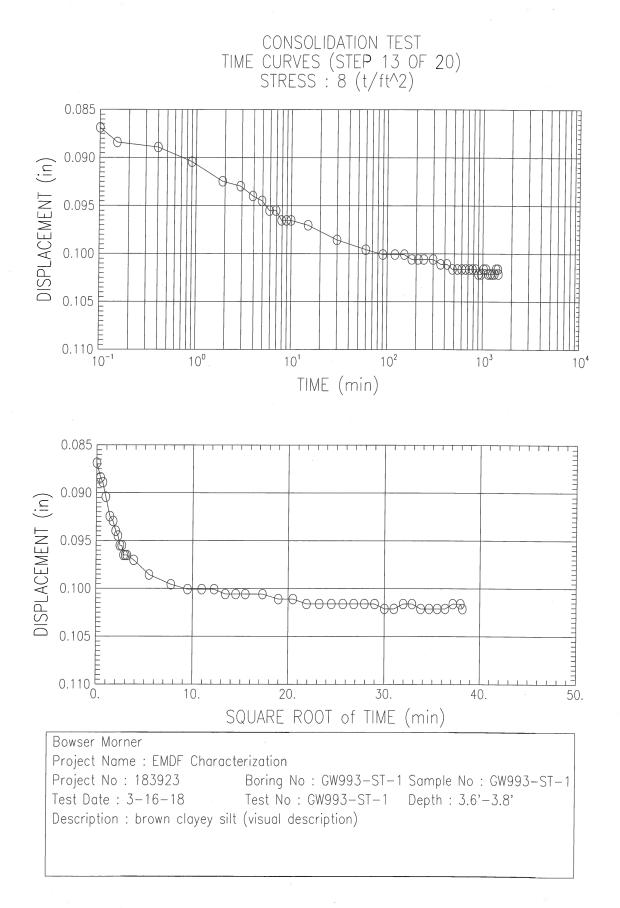
TIME CURVES (STEP 5 OF 20) STRESS : $2(t/ft^2)$ 0.040@ 0 0.045 DISPLACEMENT (in) 0.050 xmax 0.055 0.060 0.065 10⁻¹ 10⁰ 10¹ 10^{2} 10^{3} 10⁴ TIME (min) 0.040@ 0.045 DISPLACEMENT (in) 0.050 00000 0.055 0.060 0.065 ^E0 20. 10. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW993-ST-1 Sample No : GW993-ST-1 Test No : GW993-ST-1 Depth : 3.6'-3.8' Test Date : 3-16-18 Description : brown clayey silt (visual description)

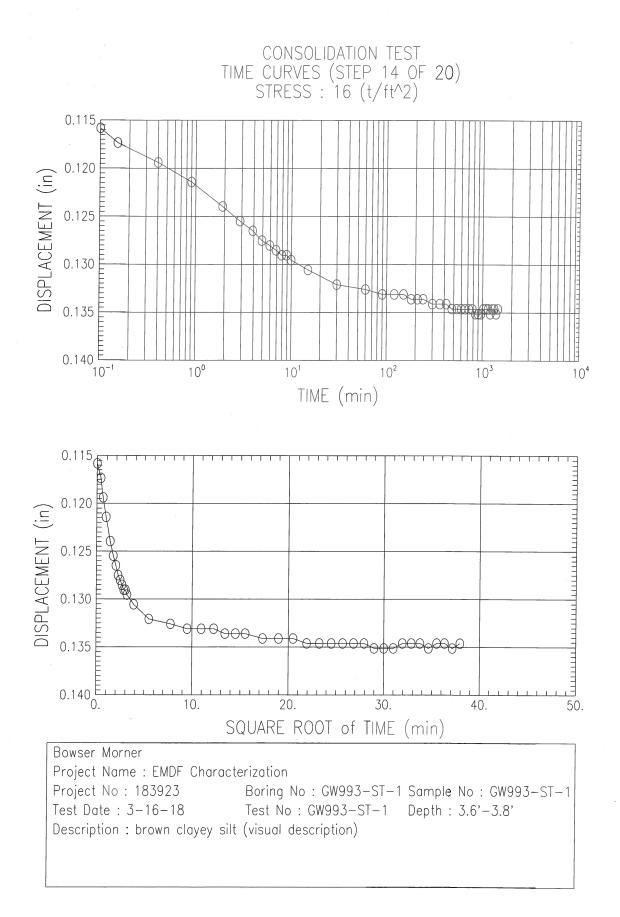

CONSOLIDATION TEST

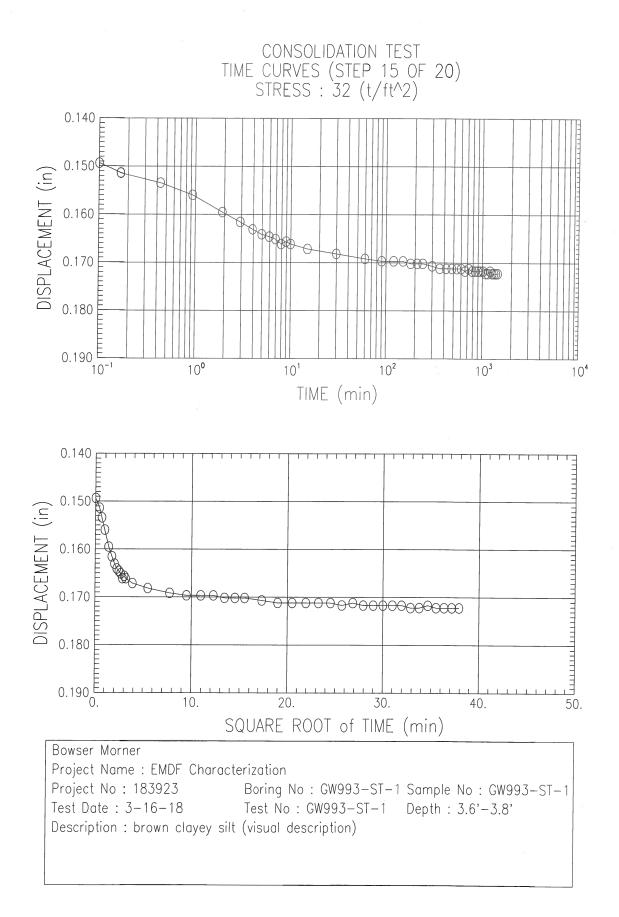


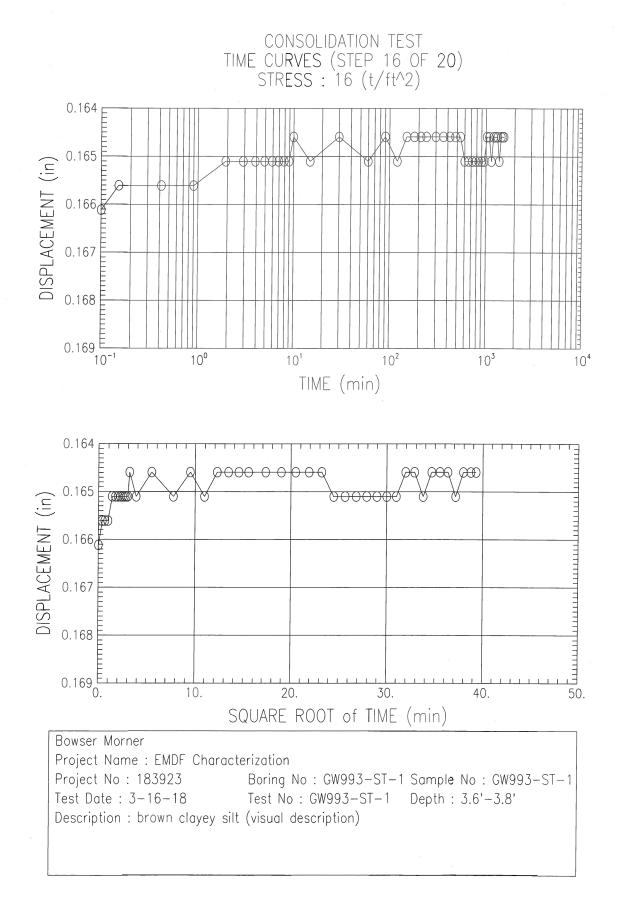

CONSOLIDATION TEST

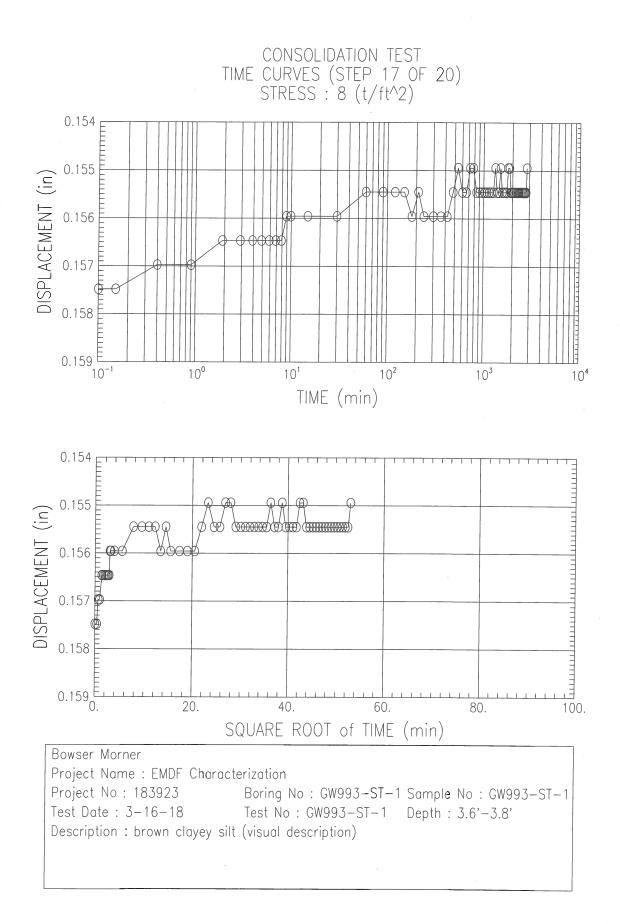

CONSOLIDATION TEST TIME CURVES (STEP 7 OF 20) STRESS : $2(t/ft^2)$ 0.069 0.070 DISPLACEMENT (in) 0.071 A AAAA ΦÐ \sim 0.072 0.073 0.074 E_____ 10⁻¹ 10° 10² 10¹ 10^{3} 10⁴ TIME (min) 0.069 0.070 DISPLACEMENT (in) 000 0.071 0.072 0.073 0.074 ^L Ţ 20. 10. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No: 183923 Boring No : GW993-ST-1 Sample No : GW993-ST-1 Test Date : 3-16-18 Test No : GW993-ST-1 Depth : 3.6'-3.8' Description : brown clayey silt (visual description)

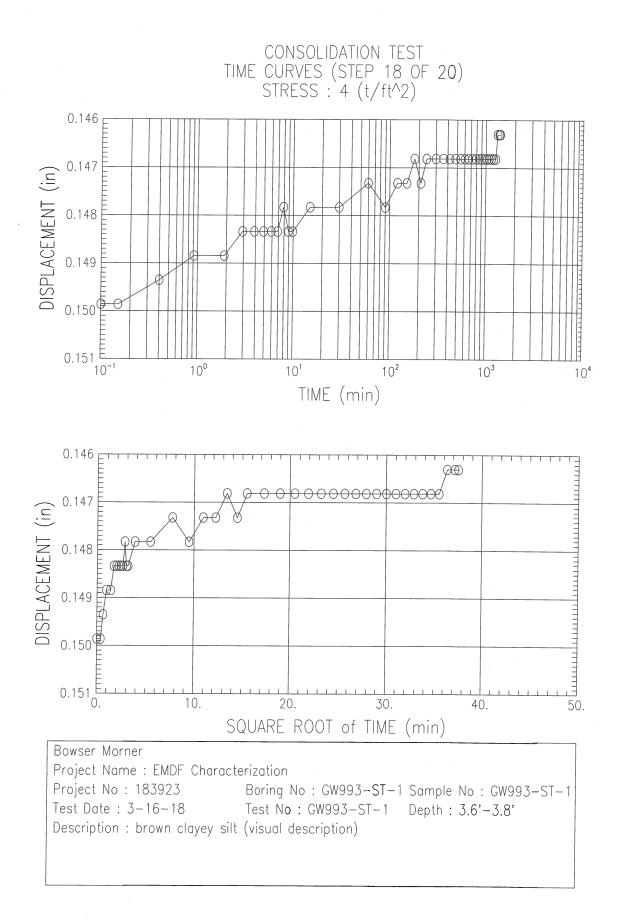

CONSOLIDATION TEST TIME CURVES (STEP 8 OF 20) STRESS : $1 (t/ft^2)$ 0.067 ØØØØØØ 0.068 DISPLACEMENT (in) 0.069 0.070 0.071 0.072 <u>–</u> 10⁻¹ 10⁰ 10² 10^{3} 10¹ 104 TIME (min) 0.067 E 0000 $\mathcal{D} \mathcal{O} \mathcal{O}$ QE 0.068 DISPLACEMENT (in) 0.069 0.070 0.071 0.072 ^E 20. 30. 10. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW993-ST-1 Sample No : GW993-ST-1 Test Date : 3-16-18 Test No : GW993-ST-1 Depth : 3.6'-3.8' Description : brown clayey silt (visual description)

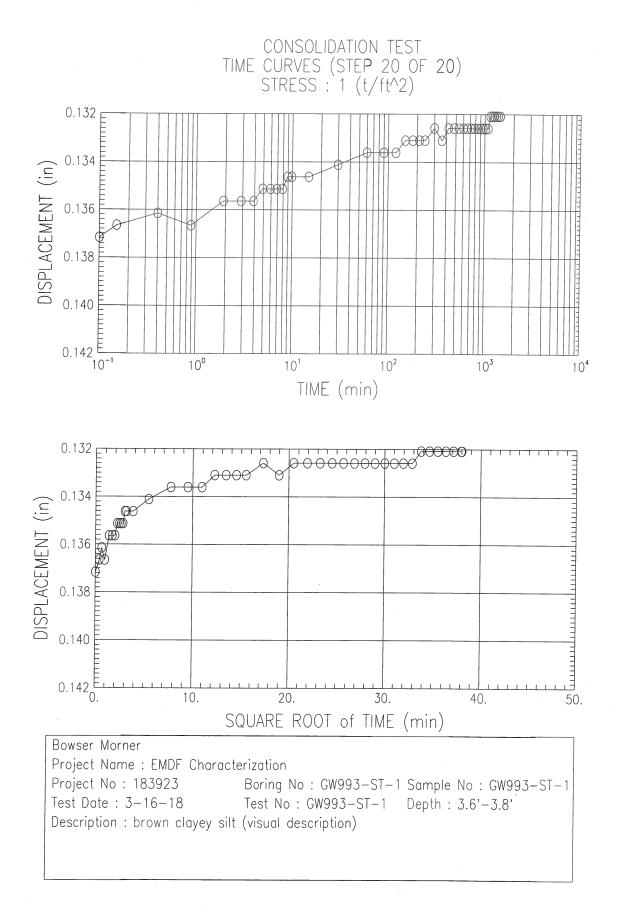












CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

	APPLIED	FINAL	VOID	STRAIN	FITT	FING	COEFFIC	IENT OF CONSOL	IDATION
	PRESSURE	DISPLACEMENT	RATIO	AT END	T50 TIME	(min)		(in^2/s)	
	(t/ft^2)	(in)		(%)	SQ.RT.	LOG	SQ.RT.	LOG	AVE
1)	0.06	0.001	0.715	0.05	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
2)	0.25	0.011	0.697	1.05	12.3	0.0	6.87E-005	0.00E+000	6.87E-005
3)	0.50	0.021	0.680	2.05	14.5	0.0	5.71E-005	0.00E+000	5.71E-005
4)	1.00	0.035	0.656	3.44	6.3	0.0	1.29E-004	0.00E+000	1.29E-004
5)	2.00	0.052	0.627	5.13	3.3	3.2	2.38E-004	2.47E-004	2.43E-004
6)	4.00	0.075	0.590	7.33	3.3	0.0	2.26E-004	0.00E+000	2.26E-004
7)	2.00	0.069	0.599	6.78	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
8)	1.00	0.067	0.603	6.58	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
9)	0.50	0.064	0.609	6.23	8.4	0.0	8.87E-005	0.00E+000	8.87E-005
10)	1.00	0.066	0.605	6.43	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
11)	2.00	0.069	0.599	6.78	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
12)	4.00	0.076	0.587	7.48	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
13)	8.00	0.102	0.544	10.02	7.1	3.0	9.99E-005	2.40E-004	1.70E-004
14)	16.00	0.135	0.489	13.20	1.8	0.0	3.71E-004	0.00E+000	3.71E-004
15)	32.00	0.172	0.426	16.89	1.9	2.1	3.24E-004	3.00E-004	3.12E-004
16)	16.00	0.165	0.439	16.14	9.2	0.0	6.47E-005	0.00E+000	6.47E-005
17)	8.00	0.155	0.455	15.20	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
18)	4.00	0.146	0.469	14.35	7.6	0.0	8.18E-005	0.00E+000	8.18E-005
19)	2.00	0.139	0.482	13.60	10.7	0.0	5.89E-005	0.00E+000	5.89E-005
20)	1.00	0.132	0.493	12.95	39.7	0.0	1.62E-005	0.00E+000	1.62E-005

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Specific Gravity : 2.73	Liquid Limit : 0	Initial Height : 1.02 (in)
Initial Void Ratio : 0.72	Plastic Limit : 0	Sample Diameter : 2.50 (in)
Final Void Ratio : 0.49	Plasticity Index : 0	

	BEFORE CONSOLIDATION		AFTER CONSOI	IDATION
	TRIMMINGS SPECIMEN + RING		SPECIMEN + RING	TRIMMINGS
CONTAINER NO.		RING	RING	
WT CONTAINER + WET SOIL (gm)	165.07	165.07	154.27	154.27
WT CONTAINER + DRY SOIL (gm)	130.77	130.77	130.77	130.77
WT CONTAINER (gm)	0.00	0.00	0.00	0.00
WT DRY SOIL (gm)	130.77	130.77	130.77	130.77
WATER CONTENT (%)	26.23	26.23	17.97	17.97
VOID RATIO		0.72	0.49	
DEGREE OF SATURATION (%)		100.24	99.61	
DRY DENSITY (1b/ft^3)		99.50	114.30	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefor values may not represent actual values for the specimen.

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 1 of 20 Stress increment from 0.00 (t/ft²) to 0.06 (t/ft²) Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
1)	0.17	0.41	0.0000	0.715	0.00
2)	0.90	0.95	0.0000	0.715	0.00
3)	2.90	1.70	0.0005	0.715	0.05
4)	3.93	1.98	0.0005	0.715	0.05
5)	5.33	2.31	0.0005	0.715	0.05

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 2 of 20

Stress increment from 0.06 (t/ft^2) to 0.25 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0020	0.712	0.20
2)	0.13	0.37	0.0020	0.712	0.20
3)	0.38	0.62	0.0025	0.711	0.25
4)	0.88	0.94	0.0030	0.710	0.30
5)	1.87	1.37	0.0030	0.710	0.30
6)	2.87	1.69	0.0036	0.709	0.35
7)	3.87	1.97	0.0041	0.709	0.40
8)	4.88	2.21	0.0041	0.709	0.40
9)	5.88	2.43	0.0046	0.708	0.45
10)	6.87	2.62	0.0046	0.708	0.45
11)	7.90	2.81	0.0051	0.707	0.50
12)	8.88	2.98	0.0051	0.707	0.50
13)	9.90	3.15	0.0056	0.706	0.55
14)	14.88	3.86	0.0061	0.705	0.60
15)	29.88	5.47	0.0076	0.703	0.75
16)	59.88	7.74	0.0091	0.700	0.90
-17)	89.92	9.48	0.0097	0.699	0.95
18)	119.88	10.95	0.0097	0.699	0.95
19)	149.90	12.24	0.0102	0.698	1.00
20)	179.88	13.41	0.0102	0.698	1.00
21)	209.87	14.49	0.0102	0.698	1.00
22)	239.87	15.49	0.0102	0.698	1.00
23)	299.88	17.32	0.0102	0.698	1.00
24)	359.88	18.97	0.0107	0.697	1.05
25)	419.88	20.49	0.0107	0.697	1.05
26)	479.87	21.91	0.0107	0.697	1.05
27)	539.87	23.24	0.0107	0.697	1.05
28)	599.88	24.49	0.0107	0.697	1.05
29)	659.90	25.69	0.0107	0.697	1.05
30)	719.88	26.83	0.0112	0.697	1.10
31)	779.87	27.93	0.0112	0.697	1.10
32)	839.88	28.98	0.0112	0.697	1.10
33)	899.87	30.00	0.0107	0.697	1.05
34)	959.88	30.98	0.0112	0.697	1.10
35)	1019.88	31.94	0.0112	0.697	1.10

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 2 of 20 Stress increment from 0.06 (t/ft²) to 0.25 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0107	0.697	1.05
37)	1139.88	33.76	0.0107	0.697	1.05
38)	1199.90	34.64	0.0112	0.697	1.10
39)	1259.88	35.49	0.0112	0.697	1.10
40)	1303.47	36.10	0.0107	0.697	1.05

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(응)
1)	0.00	0.00	0.0132	0.693	1.29
2)	0.15	0.39	0.0132	0.693	1.29
3)	0.40	0.63	0.0137	0.692	1.34
4)	0.92	0.96	0.0142	0.691	1.39
5)	1.90	1.38	0.0147	0.691	1.44
6)	2.90	1.70	0.0152	0.690	1.49
7)	3.92	1.98	0.0152	0.690	1.49
8)	4.92	2.22	0.0157	0.689	1.54
9)	5.93	2.44	0.0163	0.688	1.59
10)	6.93	2.63	0.0163	0.688	1.59
11)	7.90	2.81	0.0168	0.687	1.64
12)	8.92	2.99	0.0168	0.687	1.64
13)	9.93	3.15	0.0168	0.687	1.64
14)	14.90	3.86	0.0173	0.686	1.69
15)	29.90	5.47	0.0188	0.684	1.84
16)	59.92	7.74	0.0198	0.682	1.94
17)	89.92	9.48	0.0198	0.682	1.94
18)	119.93	10.95	0.0203	0.681	1.99
19)	149.93	12.24	0.0198	0.682	1.94
20)	179.92	13.41	0.0203	0.681	1.99
21)	209.92	14.49	0.0203	0.681	1.99
22)	239.92	15.49	0.0208	0.680	2.04
23)	299.92	17.32	0.0208	0.680	2.04
24)	359.90	18.97	0.0208	0.680	2.04
25)	419.92	20.49	0.0213	0.680	2.09
26)	479.90	21.91	0.0213	0.680	2.09
27)	539.90	23.24	0.0213	0.680	2.09
28)	599.92	24.49	0.0213	0.680	2.09
29)	659.92	25.69	0.0213	0.680	2.09
30)	719.92	26.83	0.0213	0.680	2.09
31)	779.92	27.93	0.0213	0.680	2.09
32)	839.90	28.98	0.0213	0.680	2.09
33)	899.92	30.00	0.0213	0.680	2.09
34)	959.92	30.98	0.0213	0.680	2.09
35)	1019.95	31.94	0.0213	0.680	2.09

F-172

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.92	32.86	0.0213	0.680	2.09
37)	1139.90	33.76	0.0213	0.680	2.09
38)	1199.90	34.64	0.0213	0.680	2.09
39)	1259.92	35.50	0.0208	0.680	2.04
40)	1309.85	36.19	0.0208	0.680	2.04

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 4 of 20

Stress increment from 0.50 (t/ft^2) to 1.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0254	0.673	2.49
2)	0.15	0.39	0.0259	0.672	2.54
3)	0.40	0.63	0.0264	0.671	2.59
4)	0.90	0.95	0.0269	0.670	2.64
5)	1.92	1.38	0.0284	0.668	2.79
6)	2.92	1.71	0.0290	0.667	2.84
7)	3.90	1.97	0.0295	0.666	2.89
8)	4.92	2.22	0.0305	0.664	2.99
9)	5.92	2.43	0.0305	0.664	2.99
10)	6.92	2.63	0.0310	0.663	3.04
11)	7.92	2.81	0.0310	0.663	3.04
12)	8.92	2.99	0.0310	0.663	3.04
13)	9.92	3.15	0.0310	0.663	3.04
14)	14.90	3.86	0.0320	0.662	3.14
15)	29.92	5.47	0.0335	0.659	3.29
16)	59.93	7.74	0.0340	0.658	3.34
17),	89.92	9.48	0.0345	0.657	3.39
18)	119.90	10.95	0.0340	0.658	3.34
19)	149.92	12.24	0.0345	0.657	3.39
20)	179.92	13.41	0.0345	0.657	3.39
21)	209.92	14.49	0.0351	0.656	3.44
22)	239.92	15.49	0.0345	0.657	3.39
23)	299.92	17.32	0.0345	0.657	3.39
24)	359.93	18.97	0.0345	0.657	3.39
25)	419.90	20.49	0.0351	0.656	3.44
26)	479.92	21.91	0.0351	0.656	3.44
27)	539.90	23.24	0.0351	0.656	3.44
28)	599.92	24.49	0.0351	0.656	3.44
29)	659.92	25.69	0.0351	0.656	3.44
30)	719.92	26.83	0.0351	0.656	3.44
31)	779.95	27.93	0.0351	0.656	3.44
32)	839.92	28.98	0.0356	0.656	3.49
33)	899.92	30.00	0.0356	0.656	3.49
34)	959.93	30.98	0.0356	0.656	3.49
35)	1019.92	31.94	0.0351	0.656	3.44

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 4 of 20 Stress increment from 0.50 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0356	0.656	3.49
37)	1139.92	33.76	0.0356	0.656	3.49
38)	1199.92	34.64	0.0356	0.656	3.49
39)	1259.92	35.50	0.0356	0.656	3.49
40)	1319.90	36.33	0.0356	0.656	3.49
41)	1379.90	37.15	0.0356	0.656	3.49
42)	1439.92	37.95	0.0351	0.656	3.44
43)	1499.90	38.73	0.0356	0.656	3.49
44)	1559.90	39.50	0.0356	0.656	3.49
45)	1619.90	40.25	0.0351	0.656	3.44
46)	1626.50	40.33	0.0351	0.656	3.44

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 5 of 20

Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)		
	((((1)))	IIME (ULII)	HEIGHI (III)	RATIO	(%) -
1)	0.00	0.00	0.0401	0.648	3.93
2)	0.15	0.39	0.0411	0.646	4.03
3)	0.40	0.63	0.0417	0.645	4.08
4)	0.90	0.95	0.0427	0.644	4.18
5)	1.90	1.38	0.0437	0.642	4.28
6)	2.92	1.71	0.0447	0.640	4.38
7)	3.90	1.97	0.0452	0.639	4.43
8)	4.90	2.21	0.0457	0.638	4.48
9)	5.92	2.43	0.0462	0.638	4.53
10)	6.90	2.63	0.0467	0.637	4.58
11)	7.90	2.81	0.0467	0.637	4.58
12)	8.90	2.98	0.0467	0.637	4.58
13)	9.90	3.15	0.0472	0.636	4.63
14)	14.90	3.86	0.0488	0.633	4.78
15)	29.90	5.47	0.0493	0.633	4.83
16)	59.90	7.74	0.0503	0.631	4.93
17)	89.92	9.48	0.0503	0.631	4.93
18)	119.90	10.95	0.0508	0.630	4.98
19)	149.90	12.24	0.0508	0.630	4.98
20)	179.93	13.41	0.0513	0.629	5.03
21)	209.90	14.49	0.0508	0.630	4.98
22)	239.90	15.49	0.0513	0.629	5.03
23)	299.90	17.32	0.0518	0.628	5.08
24)	359.90	18.97	0.0518	0.628	5.08
25)	419.93	20.49	0.0518	0.628	5.08
26)	479.93	21.91	0.0518	0.628	5.08
27)	539.90	23.24	0.0518	0.628	5.08
28)	599.90	24.49	0.0523	0.627	5.13
29)	659.90	25.69	0.0523	0.627	5.13
30)	719.92	26.83	0.0523	0.627	5.13
31)	779.90	27.93	0.0523	0.627	5.13
32)	839.88	28.98	0.0523	0.627	5.13
33)	899.90	30.00	0.0523	0.627	5.13
34)	959.90	30.98	0.0528	0.627	5.18
35)	1019.90	31.94	0.0523	0.627	5.13

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993- S T-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 5 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0528	0.627	5.18
37)	1139.90	33.76	0.0528	0.627	5.18
38)	1199.90	34.64	0.0528	0.627	5.18
39)	1259.88	35.49	0.0528	0.627	5.18
40)	1319.92	36.33	0.0528	0.627	5.18
41)	1327.82	36.44	0.0523	0.627	5.13

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 6 of 20

Stress increment from 2.00 (t/ft^2) to 4.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0599	0.615	5.88
2)	0.17	0.41	0.0610	0.613	5.98
3)	0.40	0.63	0.0620	0.611	6.08
4)	0.90	0.95	0.0635	0.609	6.23
5)	1.90	1.38	0.0650	0.606	6.37
6)	2.90	1.70	0.0660	0.604	6.47
7)	3.90	1.97	0.0665	0.603	6.52
8)	4.90	2.21	0.0671	0.603	6.57
9)	5.93	2.44	0.0681	0.601	6.67
10)	6.90	2.63	0.0686	0.600	6.72
11)	7.90	2.81	0.0686	0.600	6.72
12)	8.90	2.98	0.0691	0.599	6.77
13)	9.90	3.15	0.0691	0.599	6.77
14)	14.90	3.86	0.0706	0.597	6.92
15)	29.90	5.47	0.0716	0.595	7.02
16)	59.90	7.74	0.0721	0.594	7.07
17)	89.92	9.48	0.0726	0.593	7.12
18)	119.90	10.95	0.0726	0.593	7.12
19)	149.92	12.24	0.0732	0.592	7.17
20)	179.93	13.41	0.0732	0.592	7.17
21)	209.90	14.49	0.0732	0.592	7.17
22)	239.90	15.49	0.0732	0.592	7.17
23)	299.92	17.32	0.0732	0.592	7.17
24)	359.90	18.97	0.0737	0.592	7.22
25)	419.92	20.49	0.0737	0.592	7.22
26)	479.93	21.91	0.0737	0.592	7.22
27)	539.90	23.24	0.0742	0.591	7.27
28)	599.90	24.49	0.0737	0.592	7.22
29)	659.90	25.69	0.0737	0.592	7.22
30)	719.92	26.83	0.0742	0.591	7.27
31)	779.90	27.93	0.0742	0.591	7.27
32)	839.92	28.98	0.0742	0.591	7.27
33)	899.90	30.00	0.0742	0.591	7.27
34)	959.90	30.98	0.0742	0.591	7.27
35)	1019.90	31.94	0.0742	0.591	7.27

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 6 of 20 Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0742	0.591	7.27
37)	1139.90	33.76	0.0742	0.591	7.27
38)	1199.90	34.64	0.0742	0.591	7.27
39)	1259.88	35.49	0.0742	0.591	7.27
40)	1319.92	36.33	0.0742	0.591	7.27
41)	1379.90	37.15	0.0747	0.590	7.32
42)	1428.78	37.80	0.0747	0.590	7.32

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 7 of 20

Stress increment from 4.00 (t/ft²) to 2.00 (t/ft²)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0716	0.595	7.02
2)	0.13	0.37	0.0716	0.595	7.02
3)	0.38	0.62	0.0716	0.595	7.02
4)	0.90	0.95	0.0721	0.594	7.07
5)	1.88	1.37	0.0711	0.596	6.97
6)	2.88	1.70	0.0711	0.596	6.97
7)	3.88	1.97	0.0711	0.596	6.97
8)	4.88	2.21	0.0711	0.596	6.97
9)	5.88	2.43	0.0711	0.596	6.97
10)	6.88	2.62	0.0711	0.596	6.97
11)	7.90	2.81	0.0711	0.596	6.97
12)	8.88	2.98	0.0706	0.597	6.92
13)	9.90	3.15	0.0711	0.596	6.97
14)	14.90	3.86	0.0716	0.595	7.02
15)	29.90	5.47	0.0716	0.595	7.02
16)	59.88	7.74	0.0711	0.596	6.97
17)	89.90	9.48	0.0711	0.596	6.97
18)	119.90	10.95	0.0711	0.596	6.97
19)	149.88	12.24	0.0711	0.596	6.97
20)	179.88	13.41	0.0706	0.597	6.92
21)	209.88	14.49	0.0711	0.596	6.97
22)	239.88	15.49	0.0706	0.597	6.92
23)	299.88	17.32	0.0706	0.597	6.92
24)	359.87	18.97	0.0706	0.597	6.92
25)	419.88	20.49	0.0706	0.597	6.92
26)	479.90	21.91	0.0711	0.596	6.97
27)	539.90	23.24	0.0706	0.597	6.92
28)	599.88	24.49	0.0706	0.597	6.92
29)	659.87	25.69	0.0706	0.597	6.92
30)	719.90	26.83	0.0706	0.597	6.92
31)	779.88	27.93	0.0711	0.596	6.97
32)	839.88	28.98	0.0706	0.597	6.92
33)	899.88	30.00	0.0706	0.597	6.92
34)	959.90	30.98	0.0706	0.597	6.92
35)	1019.88	31.94	0.0706	0.597	6.92

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 7 of 20

Stress increment from 4.00 (t/ft^2) to 2.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
36)	1079.90	32.86	0.0706	0.597	6.92
37)	1139.88	33.76	0.0706	0.597	6.92
38)	1199.88	34.64	0.0706	0.597	6.92
39)	1259.90	35.50	0.0706	0.597	6.92
40)	1319.88	36.33	0.0706	0.597	6.92
41)	1379.87	37.15	0.0706	0.597	6.92
42)	1439.88	37.95	0.0706	0.597	6.92
43)	1441.68	37.97	0.0691	0.599	6.77

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 8 of 20

Stress increment from 2.00 (t/ft^2) to 1.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0681	0.601	6.67
2)	0.15	0.39	0.0686	0.600	6.72
3)	0.40	0.63	0.0686	0.600	6.72
4)	0.90	0.95	0.0681	0.601	6.67
5)	1.90	1.38	0.0681	0.601	6.67
6)	2.90	1.70	0.0681	0.601	6.67
7)	3.90	1.97	0.0676	0.602	6.62
8)	4.90	2.21	0.0676	0.602	6.62
9)	5.90	2.43	0.0676	0.602	6.62
10)	6.92	2.63	0.0676	0.602	6.62
11)	7.92	2.81	0.0676	0.602	6.62
12)	8.92	2.99	0.0676	0.602	6.62
13)	9.88	3.14	0.0676	0.602	6.62
14)	14.92	3.86	0.0671	0.603	6.57
15)	29.90	5.47	0.0681	0.601	6.67
16)	59.90	7.74	0.0681	0.601	6.67
17)	89.90	9.48	0.0676	0.602	6.62
18)	119.92	10.95	0.0676	0.602	6.62
19)	149.90	12.24	0.0676	0.602	6.62
20)	179.92	13.41	0.0676	0.602	6.62
21)	209.92	14.49	0.0676	0.602	6.62
22)	239.93	15.49	0.0676	0.602	6.62
23)	299.92	17.32	0.0676	0.602	6.62
24)	359.92	18.97	0.0671	0.603	6.57
25)	419.88	20.49	0.0676	0.602	6.62
26)	479.90	21.91	0.0671	0.603	6.57
27)	539.92	23.24	0.0676	0.602	6.62
28)	599.90	24.49	0.0676	0.602	6.62
29)	659.92	25.69	0.0676	0.602	6.62
30)	719.90	26.83	0.0671	0.603	6.57
31)	779.92	27.93	0.0676	0.602	6.62
32)	839.90	28.98	0.0676	0.602	6.62
33)	899.90	30.00	0.0676	0.602	6.62
34)	959.88	30.98	0.0676	0.602	6.62
35)	1019.88	31.94	0.0676	0.602	6.62

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 8 of 20 Stress increment from 2.00 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0676	0.602	6.62
37)	1139.92	33.76	0.0676	0.602	6.62
38)	1199.92	34.64	0.0671	0.603	6.57
39)	1259.88	35.49	0.0676	0.602	6.62
40)	1319.90	36.33	0.0676	0.602	6.62
41)	1379.88	37.15	0.0671	0.603	6.57
42)	1439.88	37.95	0.0676	0.602	6.62
43)	1479.53	38.46	0.0671	0.603	6.57

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993- S T-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 9 of 20

Stress increment from 1.00 (t/ft²) to 0.50 (t/ft²)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0655	0.605	6.42
2)	0.13	0.37	0.0655	0.605	6.42
3)	0.38	0.62	0.0650	0.606	6.37
4)	0.88	0.94	0.0650	0.606	6.37
5)	1.90	1.38	0.0650	0.606	6.37
6)	2.90	1.70	0.0645	0.607	6.33
7)	3.90	1.97	0.0645	0.607	6.33
8)	4.88	2.21	0.0645	0.607	6.33
9)	5.90	2.43	0.0645	0.607	6.33
10)	6.90	2.63	0.0645	0.607	6.33
11)	7.90	2.81	0.0645	0.607	6.33
12)	8.92	2.99	0.0640	0.608	6.28
13)	9.88	3.14	0.0645	0.607	6.33
14)	14.90	3.86	0.0645	0.607	6.33
15)	29.88	5.47	0.0640	0.608	6.28
16)	59.90	7.74	0.0645	0.607	6.33
17)	89.88	9.48	0.0640	0.608	6.28
18)	119.90	10.95	0.0640	0.608	6.28
19)	149.93	12.24	0.0640	0.608	6.28
20)	179.88	13.41	0.0640	0.608	6.28
21)	209.88	14.49	0.0635	0.609	6.23
22)	239.88	15.49	0.0640	0.608	6.28
23)	299.90	17.32	0.0640	0.608	6.28
24)	359.90	18.97	0.0640	0.608	6.28
25)	419.92	20.49	0.0640	0.608	6.28
26)	479.88	21.91	0.0640	0.608	6.28
27)	539.88	23.24	0.0640	0.608	6.28
28)	599.92	24.49	0.0640	0.608	6.28
29)	659.90	25.69	0.0640	0.608	6.28
30)	719.90	26.83	0.0640	0.608	6.28
31)	779.92	27.93	0.0640	0.608	6.28
32)	839.88	28.98	0.0640	0.608	6.28
33)	899.88	30.00	0.0640	0.608	6.28
34)	959.90	30.98	0.0640	0.608	6.28
35)	1019.92	31.94	0.0640	0.608	6.28

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0640	0.608	6.28
37)	1139.88	33.76	0.0640	0.608	6.28
38)	1199.93	34.64	0.0640	0.608	6.28
39)	1259.88	35.49	0.0640	0.608	6.28
40)	1319.88	36.33	0.0640	0.608	6.28
41)	1327.25	36.43	0.0635	0.609	6.23

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft^2) to 1.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0650	0.606	6.37
2)	0.15	0.39	0.0650	0.606	6.37
3)	0.40	0.63	0.0645	0.607	6.33
4)	0.92	0.96	0.0650	0.606	6.37
5)	1.90	1.38	0.0650	0.606	6.37
6)	2.90	1.70	0.0650	0.606	6.37
7)	3.90	1.97	0.0650	0.606	6.37
8)	4.90	2.21	0.0650	0.606	6.37
9)	5.90	2.43	0.0650	0.606	6.37
10)	6.90	2.63	0.0650	0.606	6.37
11)	7.92	2.81	0.0650	0.606	6.37
12)	8.90	2.98	0.0650	0.606	6.37
13)	9.90	3.15	0.0650	0.606	6.37
14)	14.92	3.86	0.0650	0.606	6.37
15)	29.90	5.47	0.0650	0.606	6.37
16)	59.90	7.74	0.0650	0.606	6.37
17)	89.90	9.48	0.0650	0.606	6.37
18)	119.92	10.95	0.0655	0.605	6.42
19)	149.90	12.24	0.0650	0.606	6.37
20)	179.90	13.41	0.0660	0.604	6.47
21)	209.90	14.49	0.0655	0.605	6.42
22)	239.90	15.49	0.0660	0.604	6.47
23)	299.90	17.32	0.0660	0.604	6.47
24)	359.90	18.97	0.0660	0.604	6.47
25)	419.92	20.49	0.0660	0.604	6.47
26)	479.90	21.91	0.0660	0.604	6.47
27)	539.90	23.24	0.0660	0.604	6.47
28)	599.90	24.49	0.0660	0.604	6.47
29)	659.90	25.69	0.0660	0.604	6.47
30)	719.90	26.83	0.0655	0.605	6.42
31)	779.90	27.93	0.0655	0.605	6.42
32)	839.90	28.98	0.0660	0.604	6.47
33)	899.88	30.00	0.0660	0.604	6.47
34)	959.90	30.98	0.0660	0.604	6.47
35)	1019.90	31.94	0.0660	0.604	6.47

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	. (왕)
36)	1079.88	32.86	0.0660	0.604	6.47
37)	1139.90	33.76	0.0660	0.604	6.47
38)	1199.90	34.64	0.0660	0.604	6.47
39)	1259.90	35.50	0.0660	0.604	6.47
40)	1319.90	36.33	0.0660	0.604	6.47
41)	1379.90	37.15	0.0660	0.604	6.47
42)	1439.90	37.95	0.0655	0.605	6.42
43)	1499.88	38.73	0.0660	0.604	6.47
44)	1500.63	38.74	0.0655	0.605	6.42

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993- ST -1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0681	0.601	6.67
2)	0.15	0.39	0.0681	0.601	6.67
3)	0.38	0.62	0.0681	0.601	6.67
4)	0.88	0.94	0.0686	0.600	6.72
5)	1.92	1.38	0.0686	0.600	6.72
6)	2.90	1.70	0.0686	0.600	6.72
7)	3.88	1.97	0.0686	0.600	6.72
8)	4.90	2.21	0.0686	0.600	6.72
9)	5.88	2.43	0.0686	0.600	6.72
10)	6.92	2.63	0.0686	0.600	6.72
11)	7.92	2.81	0.0686	0.600	6.72
12)	8.90	2.98	0.0686	0.600	6.72
13)	9.88	3.14	0.0686	0.600	6.72
14)	14.88	3.86	0.0691	0.599	6.77
15)	29.88	5.47	0.0696	0.598	6.82
16)	59.90	7.74	0.0696	0.598	6.82
17)	89.90	9.48	0.0696	0.598	6.82
18)	119.90	10.95	0.0696	0.598	6.82
19)	149.88	12.24	0.0696	0.598	6.82
20)	179.92	13.41	0.0696	0.598	6.82
21)	209.92	14.49	0.0696	0.598	6.82
22)	239.93	15.49	0.0696	0.598	6.82
23)	299.90	17.32	0.0696	0.598	6.82
24)	359.90	18.97	0.0696	0.598	6.82
25)	419.90	20.49	0.0696	0.598	6.82
26)	479.88	21.91	0.0691	0.599	6.77
27)	539.92	23.24	0.0696	0.598	6.82
28)	599.90	24.49	0.0696	0.598	6.82
29)	659.90	25.69	0.0696	0.598	6.82
30)	719.88	26.83	0.0696	0.598	6.82
31)	779.88	27.93	0.0696	0.598	6.82
32)	839.90	28.98	0.0696	0.598	6.82
33)	899.88	30.00	0.0696	0.598	6.82
34)	959.90	30.98	0.0696	0.598	6.82
35)	1019.88	31.94	0.0696	0.598	6.82

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0696	0.598	6.82
37)	1139.90	33.76	0.0696	0.598	6.82
38)	1199.88	34.64	0.0696	0.598	6.82
39)	1259.88	35.49	0.0696	0.598	6.82
40)	1319.88	36.33	0.0696	0.598	6.82
41)	1379.88	37.15	0.0696	0.598	6.82
42)	1439.90	37.95	0.0696	0.598	6.82
43)	1499.88	38.73	0.0696	0.598	6.82
44)	1505.98	38.81	0.0691	0.599	6.77

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 12 of 20

Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0732	0.592	7.17
2)	0.10	0.32	0.0737	0.592	7.22
3)	0.37	0.61	0.0737	0.592	7.22
4)	0.85	0.92	0.0737	0.592	7.22
5)	1.87	1.37	0.0742	0.591	7.27
6)	2.87	1.69	0.0742	0.591	7.27
7)	3.87	1.97	0.0747	0.590	7.32
8)	4.87	2.21	0.0747	0.590	7.32
9)	5.92	2.43	0.0747	0.590	7.32
10)	6.88	2.62	0.0747	0.590	7.32
11)	7.87	2.80	0.0742	0.591	7.27
12)	8.85	2.97	0.0747	0.590	7.32
13)	9.87	3.14	0.0747	0.590	7.32
14)	14.87	3.86	0.0747	0.590	7.32
15)	29.87	5.47	0.0752	0.589	7.37
16)	59.87	7.74	0.0752	0.589	7.37
17)	89.85	9.48	0.0757	0.588	7.42
18)	119.87	10.95	0.0752	0.589	7.37
19)	149.85	12.24	0.0757	0.588	7.42
20)	179.88	13.41	0.0757	0.588	7.42
21)	209.87	14.49	0.0762	0.587	7.47
22)	239.87	15.49	0.0757	0.588	7.42
23)	299.90	17.32	0.0757	0.588	7.42
24)	359.87	18.97	0.0757	0.588	7.42
25)	419.87	20.49	0.0757	0.588	7.42
26)	479.85	21.91	0.0762	0.587	7.47
27)	539.88	23.24	0.0762	0.587	7.47
28)	599.87	24.49	0.0757	0.588	7.42
29)	659.87	25.69	0.0762	0.587	7.47
30)	719.90	26.83	0.0762	0.587	7.47
31)	779.87	27.93	0.0762	0.587	7.47
32)	839.90	28.98	0.0762	0.587	7.47
33)	899.85	30.00	0.0762	0.587	7.47
34)	959.88	30.98	0.0762	0.587	7.47
35)	1019.85	31.94	0.0762	0.587	7.47

F-190

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 13 of 20

Stress increment from 4.00 (t/ft^2) to 8.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
- 1					
1)	0.00	0.00	0.0869	0.569	8.52
2)	0.15	0.39	0.0884	0.567	8.67
3)	0.40	0.63	0.0889	0.566	8.72
4)	0.90	0.95	0.0904	0.563	8.87
5)	1.88	1.37	0.0925	0.560	9.06
6)	2.90	1.70	0.0930	0.559	9.11
7)	3.92	1.98	0.0940	0.557	9.21
8)	4.92	2.22	0.0945	0.556	9.26
9)	5.90	2.43	0.0955	0.555	9.36
10)	6.90	2.63	0.0955	0.555	9.36
11)	7.90	2.81	0.0965	0.553	9.46
12)	8.90	2.98	0.0965	0.553	9.46
13)	9.92	3.15	0.0965	0.553	9.46
14)	14.92	3.86	0.0970	0.552	9.51
15)	29.90	5.47	0.0986	0.550	9.66
16)	59.92	7.74	0.0996	0.548	9.76
17)	89.92	9.48	0.1001	0.547	9.81
18)	119.88	10.95	0.1001	0.547	9.81
19)	149.90	12.24	0.1001	0.547	9.81
20)	179.92	13.41	0.1006	0.546	9.86
21)	209.90	14.49	0.1006	0.546	9.86
22)	239.90	15.49	0.1006	0.546	9.86
23)	299.90	17.32	0.1006	0.546	9.86
24)	359.92	18.97	0.1011	0.545	9.91
25)	419.90	20.49	0.1011	0.545	9.91
26)	479.88	21.91	0.1016	0.545	9.96
27)	539.88	23.24	0.1016	0.545	9.96
28)	599.90	24.49	0.1016	0.545	9.96
29)	659.90	25.69	0.1016	0.545	9.96
30)	719.90	26.83	0.1016	0.545	9.96
31)	779.88	27.93	0.1016	0.545	9.96
32)	839.90	28.98	0.1016	0.545	9.96
33)	899.88	30.00	0.1021	0.544	10.01
34)	959.92	30.98	0.1021	0.544	10.01
35)	1019.95	31.94	0.1016	0.545	9.96

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 13 of 20 Stress increment from 4.00 (t/ft²) to 8.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
36)	1079.92	32.86	0.1016	0.545	9.96
37)	1139.88	33.76	0.1021	0.544	10.01
38)	1199.90	34.64	0.1021	0.544	10.01
39)	1259.90	35.50	0.1021	0.544	10.01
40)	1319.93	36.33	0.1021	0.544	10.01
41)	1379.90	37.15	0.1016	0.545	9.96
42)	1439.88	37.95	0.1016	0.545	9.96
43)	1456.38	38.16	0.1021	0.544	10.01

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 14 of 20 Stress increment from 8.00 (t/ft²) to 16.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1158	0.521	11.36
2)	0.15	0.39	0.1173	0.518	11.50
3)	0.40	0.63	0.1194	0.515	11.70
4)	0.90	0.95	0.1214	0.511	11.90
5)	1.90	1.38	0.1240	0.507	12.15
6)	2.88	1.70	0.1255	0.504	12.30
7)	3.92	1.98	0.1265	0.503	12.40
8)	4.90	2.21	0.1275	0.501	12.50
9)	5.92	2.43	0.1280	0.500	12.55
10)	6.88	2.62	0.1285	0.499	12.60
11)	7.88	2.81	0.1290	0.498	12.65
12)	8.88	2.98	0.1290	0.498	12.65
13)	9.90	3.15	0.1295	0.498	12.70
14)	14.88	3.86	0.1306	0.496	12.80
15)	29.92	5.47	0.1321	0.493	12.95
16)	59.88	7.74	0.1326	0.492	13.00
17)	89.88	9.48	0.1331	0.492	13.05
18)	119.90	10.95	0.1331	0.492	13.05
19)	149.88	12.24	0.1331	0.492	13.05
20)	179.90	13.41	0.1336	0.491	13.10
21)	209.88	14.49	0.1336	0.491	13.10
22)	239.92	15.49	0.1336	0.491	13.10
23)	299.88	17.32	0.1341	0.490	13.15
24)	359.90	18.97	0.1341	0.490	13.15
25)	419.88	20.49	0.1341	0.490	13.15
26)	479.88	21.91	0.1346	0.489	13.20
27)	539.90	23.24	0.1346	0.489	13.20
28)	599.90	24.49	0.1346	0.489	13.20
29)	659.90	25.69	0.1346	0.489	13.20
30)	719.90	26.83	0.1346	0.489	13.20
31)	779.90	27.93	0.1346	0.489	13.20
32)	839.90	28.98	0.1351	0.488	13.25
33)	899.88	30.00	0.1351	0.488	13.25
34)	959.90	30.98	0.1351	0.488	13.25
35)	1019.88	31.94	0.1346	0.489	13.20

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 14 of 20 Stress increment from 8.00 (t/ft²) to 16.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.1346	0.489	13.20
37)	1139.90	33.76	0.1346	0.489	13.20
38)	1199.88	34.64	0.1351	0.488	13.25
39)	1259.88	35.49	0.1346	0.489	13.20
40)	1319.90	36.33	0.1346	0.489	13.20
41)	1379.88	37.15	0.1351	0.488	13.25
42)	1439.70	37.94	0.1346	0.489	13.20

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(응)
36)	1079.88	32.86	0.0762	0.587	7.47
37)	1139.87	33.76	0.0762	0.587	7.47
38)	1199.87	34.64	0.0762	0.587	7.47
39)	1259.85	35.49	0.0762	0.587	7.47
40)	1319.85	36.33	0.0762	0.587	7.47
41)	1379.87	37.15	0.0762	0.587	7.47
42)	1387.98	37.26	0.0762	0.587	7.47

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 15 of 20

Stress increment from 16.00 (t/ft²) to 32.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1494	0.464	14.64
2)	0.17	0.41	0.1514	0.461	14.84
3)	0.43	0.66	0.1534	0.457	15.04
4)	0.93	0.97	0.1560	0.453	15.29
5)	1.90	1.38	0.1595	0.447	15.64
6)	2.92	1.71	0.1615	0.444	15.84
7)	3.93	1.98	0.1631	0.441	15.99
8)	4.93	2.22	0.1641	0.439	16.09
9)	5.93	2.44	0.1646	0.439	16.14
10)	6.90	2.63	0.1651	0.438	16.19
11)	7.92	2.81	0.1661	0.436	16.29
12)	8.92	2.99	0.1656	0.437	16.24
13)	9.92	3.15	0.1661	0.436	16.29
14)	14.92	3.86	0.1671	0.434	16.39
15)	29.92	5.47	0.1681	0.433	16.49
16)	59.90	7.74	0.1692	0.431	16.58
17)	89.92	9.48	0.1697	0.430	16.63
18)	119.90	10.95	0.1697	0.430	16.63
19)	149.92	12.24	0.1697	0.430	16.63
20)	179.92	13.41	0.1702	0.429	16.68
21)	209.93	14.49	0.1702	0.429	16.68
22)	239.90	15.49	0.1702	0.429	16.68
23)	299.92	17.32	0.1707	0.428	16.73
24)	359.90	18.97	0.1712	0.427	16.78
25)	419.90	20.49	0.1712	0.427	16.78
26)	479.92	21.91	0.1712	0.427	16.78
27)	539.92	23.24	0.1712	0.427	16.78
28)	599.90	24.49	0.1712	0.427	16.78
29)	659.90	25.69	0.1717	0.427	16.83
30)	719.92	26.83	0.1712	0.427	16.78
31)	779.92	27.93	0.1717	0.427	16.83
32)	839.90	28.98	0.1717	0.427	16.83
33)	899.93	30.00	0.1717	0.427	16.83
34)	959.93	30.98	0.1717	0.427	16.83
35)	1019.92	31.94	0.1717	0.427	16.83
			E 106		

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 15 of 20 Stress increment from 16.00 (t/ft²) to 32.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.1722	0.426	16.88
37)	1139.93	33.76	0.1722	0.426	16.88
38)	1199.90	34.64	0.1717	0.427	16.83
39)	1259.90	35.50	0.1722	0.426	16.88
40)	1319.90	36.33	0.1722	0.426	16.88
41)	1379.90	37.15	0.1722	0.426	16.88
42)	1436.83	37.91	0.1722	0.426	16.88

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 16 of 20

Stress increment from 32.00 (t/ft²) to 16.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1661	0.436	16.29
2)	0.15	0.39	0.1656	0.437	16.24
3)	0.42	0.65	0.1656	0.437	16.24
4)	0.90	0.95	0.1656	0.437	16.24
5)	1.92	1.38	0.1651	0.438	16.19
6)	2.92	1.71	0.1651	0.438	16.19
7)	3.90	1.97	0.1651	0.438	16.19
8)	4.92	2.22	0.1651	0.438	16.19
9)	5.92	2.43	0.1651	0.438	16.19
10)	6.92	2.63	0.1651	0.438	16.19
11)	7.92	2.81	0.1651	0.438	16.19
12)	8.92	2.99	0.1651	0.438	16.19
13)	9.95	3.15	0.1646	0.439	16.14
14)	14.90	3.86	0.1651	0.438	16.19
15)	29.93	5.47	0.1646	0.439	16.14
16)	59.92	7.74	0.1651	0.438	16.19
17)	89.92	9.48	0.1646	0.439	16.14
18)	119.93	10.95	0.1651	0.438	16.19
19)	149.90	12.24	0.1646	0.439	16.14
20)	179.90	13.41	0.1646	0.439	16.14
21)	209.90	14.49	0.1646	0.439	16.14
22)	239.90	15.49	0.1646	0.439	16.14
23)	299.92	17.32	0.1646	0.439	16.14
24)	359.90	18.97	0.1646	0.439	16.14
25)	419.93	20.49	0.1646	0.439	16.14
26)	479.92	21.91	0.1646	0.439	16.14
27)	539.92	23.24	0.1646	0.439	16.14
28)	599.90	24.49	0.1651	0.438	16.19
29)	659.93	25.69	0.1651	0.438	16.19
30)	719.92	26.83	0.1651	0.438	16.19
31)	779.90	27.93	0.1651	0.438	16.19
32)	839.90	28.98	0.1651	0.438	16.19
33)	899.88	30.00	0.1651	0.438	16.19
34)	959.92	30.98	0.1651	0.438	16.19
35)	1019.90	31.94	0.1646	0.439	16.14

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 16 of 20 Stress increment from 32.00 (t/ft^2) to 16.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.1646	0.439	16.14
37)	1139.90	33.76	0.1651	0.438	16.19
38)	1199.95	34.64	0.1646	0.439	16.14
39)	1259.93	35.50	0.1646	0.439	16.14
40)	1319.93	36.33	0.1646	0.439	16.14
41)	1379.90	37.15	0.1651	0.438	16.19
42)	1439.90	37.95	0.1646	0.439	16.14
43)	1499.95	38.73	0.1646	0.439	16.14
44)	1542.83	39.28	0.1646	0.439	16.14

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 17 of 20

Stress increment from 16.00 (t/ft²) to 8.00 (t/ft²)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	~ TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1575	0.451	15.44
2)	0.15	0.39	0.1575	0.451	15.44
3)	0.40	0.63	0.1570	0.451	15.39
4)	0.90	0.95	0.1570	0.451	15.39
5)	1.90	1.38	0.1565	0.452	15.34
6)	2.92	1.71	0.1565	0.452	15.34
7)	3.92	1.98	0.1565	0.452	15.34
8)	4.90	2.21	0.1565	0.452	15.34
9)	5.90	2.43	0.1565	0.452	15.34
10)	6.90	2.63	0.1565	0.452	15.34
11)	7.90	2.81	0.1565	0.452	15.34
12)	8.90	2.98	0.1560	0.453	15.29
13)	9.92	3.15	0.1560	0.453	15.29
14)	14.90	3.86	0.1560	0.453	15.29
15)	29.90	5.47	0.1560	0.453	15.29
16)	59.92	7.74	0.1554	0.454	15.24
17)	89.90	9.48	0.1554	0.454	15.24
18)	119.90	10.95	0.1554	0.454	15.24
19)	149.92	12.24	0.1554	0.454	15.24
20)	179.90	13.41	0.1560	0.453	15.29
21)	209.90	14.49	0.1554	0.454	15.24
22)	239.92	15.49	0.1560	0.453	15.29
23)	299.90	17.32	0.1560	0.453	15.29
24)	359.92	18.97	0.1560	0.453	15.29
25)	419.90	20.49	0.1560	0.453	15.29
26)	479.90	21.91	0.1554	0.454	15.24
27)	539.90	23.24	0.1549	0.455	15.19
28)	599.90	24.49	0.1554	0.454	15.24
29)	659.92	25.69	0.1554	0.454	15.24
30)	719.90	26.83	0.1549	0.455	15.19
31)	779.90	27.93	0.1549	0.455	15.19
32)	839.90	28.98	0.1554	0.454	15.24
33)	899.90	30.00	0.1554	0.454	15.24
34)	959.92	30.98	0.1554	0.454	15.24
35)	1019.90	31.94	0.1554	0.454	15.24

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 17 of 20

Stress increment from 16.00 (t/ft^2) to 8.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(응)
36)	1079.90	32.86	0.1554	0.454	15.24
37)	1139.90	33.76	0.1554	0.454	15.24
38)	1199.90	34.64	0.1554	0.454	15.24
39)	1259.90	35.50	0.1554	0.454	15.24
40)	1319.90	36.33	0.1549	0.455	15.19
41)	1379.90	37.15	0.1554	0.454	15.24
42)	1439.90	37.95	0.1554	0.454	15.24
43)	1499.90	38.73	0.1549	0.455	15.19
44)	1559.88	39.50	0.1554	0.454	15.24
45)	1619.90	40.25	0.1554	0.454	15.24
46)	1679.90	40.99	0.1554	0.454	15.24
47)	1739.90	41.71	0.1554	0.454	15.24
48)	1799.90	42.43	0.1549	0.455	15.19
49)	1859.88	43.13	0.1549	0.455	15.19
50)	1919.90	43.82	0.1554	0.454	15.24
51)	1979.90	44.50	0.1554	0.454	15.24
52)	2039.90	45.17	0.1554	0.454	15.24
53)	2099.90	45.82	0.1554	0.454	15.24
54)	2159.88	46.47	0.1554	0.454	15.24
55)	2219.90	47.12	0.1554	0.454	15.24
56)	2279.88	47.75	0.1554	0.454	15.24
57)	2339.90	48.37	0.1554	0.454	15.24
58)	2399.90	48.99	0.1554	0.454	15.24
59)	2459.88	49.60	0.1554	0.454	15.24
60)	2519.90	50.20	0.1554	0.454	15.24
61)	2579.88	50.79	0.1554	0.454	15.24
62)	2639.90	51.38	0.1554	0.454	15.24
63)	2699.90	51.96	0.1554	0.454	15.24
64)	2759.88	52.53	0.1554	0.454	15.24
65)	2813.40	53.04	0.1549	0.455	15.19

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993- S T-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1499	0.463	14.69
2)	0.15	0.39	0.1499	0.463	14.69
3)	0.40	0.63	0.1494	0.464	14.64
4)	0.92	0.96	0.1488	0.465	14.59
5)	1.90	1.38	0.1488	0.465	14.59
6)	2.93	1.71	0.1483	0.466	14.54
7)	3.90	1.97	0.1483	0.466	14.54
8)	4.90	2.21	0.1483	0.466	14.54
9)	5.92	2.43	0.1483	0.466	14.54
10)	6.90	2.63	0.1483	0.466	14.54
11)	7.90	2.81	0.1478	0.467	14.49
12)	8.90	2.98	0.1483	0.466	14.54
13)	9.90	3.15	0.1483	0.466	14.54
14)	14.90	3.86	0.1478	0.467	14.49
15)	29.92	5.47	0.1478	0.467	14.49
16)	59.92	7.74	0.1473	0.468	14.44
17)	89.92	9.48	0.1478	0.467	14.49
18)	119.90	10.95	0.1473	0.468	14.44
19)	149.92	12.24	0.1473	0.468	14.44
20)	179.90	13.41	0.1468	0.468	14.39
21)	209.90	14.49	0.1473	0.468	14.44
22)	239.90	15.49	0.1468	0.468	14.39
23)	299.93	17.32	0.1468	0.468	14.39
24)	359.93	18.97	0.1468	0.468	14.39
25)	419.90	20.49	0.1468	0.468	14.39
26)	479.92	21.91	0.1468	0.468	14.39
27)	539.90	23.24	0.1468	0.468	14.39
28)	599.95	24.49	0.1468	0.468	14.39
29)	659.90	25.69	0.1468	0.468	14.39
30)	719.92	26.83	0.1468	0.468	14.39
31)	779.90	27.93	0.1468	0.468	14.39
32)	839.90	28.98	0.1468	0.468	14.39
33)	899.90	30.00	0.1468	0.468	14.39
34)	959.90	30.98	0.1468	0.468	14.39
35)	1019.88	31.94	0.1468	0.468	14.39

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.1468	0.468	14.39
37)	1139.90	33.76	0.1468	0.468	14.39
38)	1199.90	34.64	0.1468	0.468	14.39
39)	1259.90	35.50	0.1468	0.468	14.39
40)	1319.90	36.33	0.1463	0.469	14.34
41)	1379.88	37.15	0.1463	0.469	14.34
42)	1407.02	37.51	0.1463	0.469	14.34

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 19 of 20

Stress increment from 4.00 (t/ft^2) to 2.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1427	0.475	13.99
2)	0.18	0.43	0.1422	0.476	13.95
3)	0.42	0.65	0.1422	0.476	13.95
4)	0.92	0.96	0.1422	0.476	13.95
5)	1.92	1.38	0.1417	0.477	13.90
6)	2.92	1.71	0.1417	0.477	13.90
7)	3.90	1.97	0.1412	0.478	13.85
8)	4.93	2.22	0.1412	0.478	13.85
9)	5.90	2.43	0.1412	0.478	13.85
10)	6.93	2.63	0.1412	0.478	13.85
11)	7.93	2.82	0.1407	0.479	13.80
12)	8.90	2.98	0.1407	0.479	13.80
13)	9.92	3.15	0.1407	0.479	13.80
14)	14.92	3.86	0.1402	0.480	13.75
15)	29.90	5.47	0.1402	0.480	13.75
16)	59.90	7.74	0.1397	0.480	13.70
17)	89.92	9.48	0.1397	0.480	13.70
18)	119.92	10.95	0.1397	0.480	13.70
19)	149.90	12.24	0.1397	0.480	13.70
20)	179.90	13.41	0.1397	0.480	13.70
21)	209.93	14.49	0.1392	0.481	13.65
22)	239.92	15.49	0.1392	0.481	13.65
23)	299.90	17.32	0.1392	0.481	13.65
24)	359.90	18.97	0.1387	0.482	13.60
25)	419.90	20.49	0.1392	0.481	13.65
26)	479.92	21.91	0.1387	0.482	13.60
27)	539.92	23.24	0.1387	0.482	13.60
28)	599.93	24.49	0.1392	0.481	13.65
29)	659.95	25.69	0.1387	0.482	13.60
30)	719.92	26.83	0.1392	0.481	13.65
31)	779.92	27.93	0.1392	0.481	13.65
32)	839.92	28.98	0.1387	0.482	13.60
33)	899.92	30.00	0.1392	0.481	13.65
34)	959.90	30.98	0.1387	0.482	13.60
35)	1019.90	31.94	0.1387	0.482	13.60

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 19 of 20 Stress increment from 4.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.92	32.86	0.1387	0.482	13.60
37)	1139.93	33.76	0.1392	0.481	13.65
38)	1199.93	34.64	0.1387	0.482	13.60
39)	1259.90	35.50	0.1392	0.481	13.65
40)	1319.90	36.33	0.1387	0.482	13.60
41)	1379.90	37.15	0.1387	0.482	13.60
42)	1421.33	37.70	0.1387	0.482	13.60

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993- S T-1, 3.0'-5.0'	Project No.: 183923
Boring No.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	100 y

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 20 of 20

,

Stress increment from 2.00 $(t/ft^2)~$ to 1.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1372	0.485	13.45
2)	0.15	0.39	0.1367	0.486	13.40
3)	0.40	0.63	0.1361	0.486	13.35
4)	0.88	0.94	0.1367	0.486	13.40
5)	1.90	1.38	0.1356	0.487	13.30
6)	2.90	1.70	0.1356	0.487	13.30
7)	3.90	1.97	0.1356	0.487	13.30
8)	4.90	2.21	0.1351	0.488	13.25
9)	5.92	2.43	0.1351	0.488	13.25
10)	6.88	2.62	0.1351	0.488	13.25
11)	7.90	2.81	0.1351	0.488	13.25
12)	8.92	2.99	0.1346	0.489	13.20
13)	9.88	3.14	0.1346	0.489	13.20
14)	14.88	3.86	0.1346	0.489	13.20
15)	29.92	5.47	0.1341	0.490	13.15
16)	59.90	7.74	0.1336	0.491	13.10
17) -	89.88	9.48	0.1336	0.491	13.10
18)	119.88	10.95	0.1336	0.491	13.10
19)	149.92	12.24	0.1331	0.492	13.05
20)	179.88	13.41	0.1331	0.492	13.05
21)	209.90	14.49	0.1331	0.492	13.05
22)	239.90	15.49	0.1331	0.492	13.05
23)	299.90	17.32	0.1326	0.492	13.00
24)	359.93	18.97	0.1331	0.492	13.05
25)	419.88	20.49	0.1326	0.492	13.00
26)	479.90	21.91	0.1326	0.492	13.00
27)	539.88	23.24	0.1326	0.492	13.00
28)	599.88	24.49	0.1326	0.492	13.00
29)	659.92	25.69	0.1326	0.492	13.00
30)	719.88	26.83	0.1326	0.492	13.00
31)	779.88	27.93	0.1326	0.492	13.00
32)	839.92	28.98	0.1326	0.492	13.00
33)	899.88	30.00	0.1326	0.492	13.00
34)	959.88	30.98	0.1326	0.492	13.00
35)	1019.88	31.94	0.1326	0.492	13.00

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW993-ST-1, 3.0'-5.0'	Project No.: 183923
Boring Nc.: GW993-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW993-ST-1	Test Date : 3-16-18	Depth : 3.6'-3.8'
Test No. : GW993-ST-1	Sample Type: Undisturb	

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.1326	0.492	13.00
37)	1139.92	33.76	0.1321	0.493	12.95
38)	1199.90	34.64	0.1321	0.493	12.95
39)	1259.88	35.49	0.1321	0.493	12.95
40)	1319.88	36.33	0.1321	0.493	12.95
41)	1379.88	37.15	0.1321	0.493	12.95
42)	1439.88	37.95	0.1321	0.493	12.95
43)	1444.40	38.01	0.1321	0.493	12.95

BOWSER-MORNER, INC.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report Date: May 3, 2018 CTI & Associates, Inc. **Report To:** Job No.: 183923 Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 **Report No.:** 430248 No. of Pages: 3 Novi, MI 48377

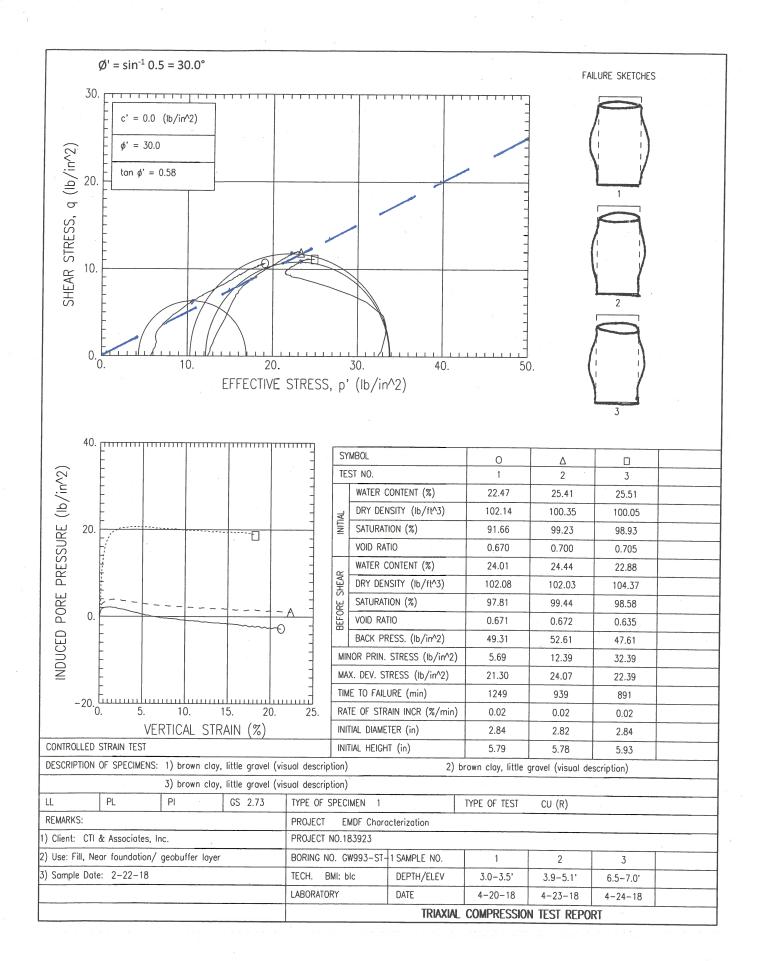
Laboratory Analysis of One Shelby Tube Sample **Report On:** Project: EMDF Characterization - Project No. 1188070011 Sample ID: GW993 - ST-1, 3.0'-5.0' - Sample Date: 2/22/18

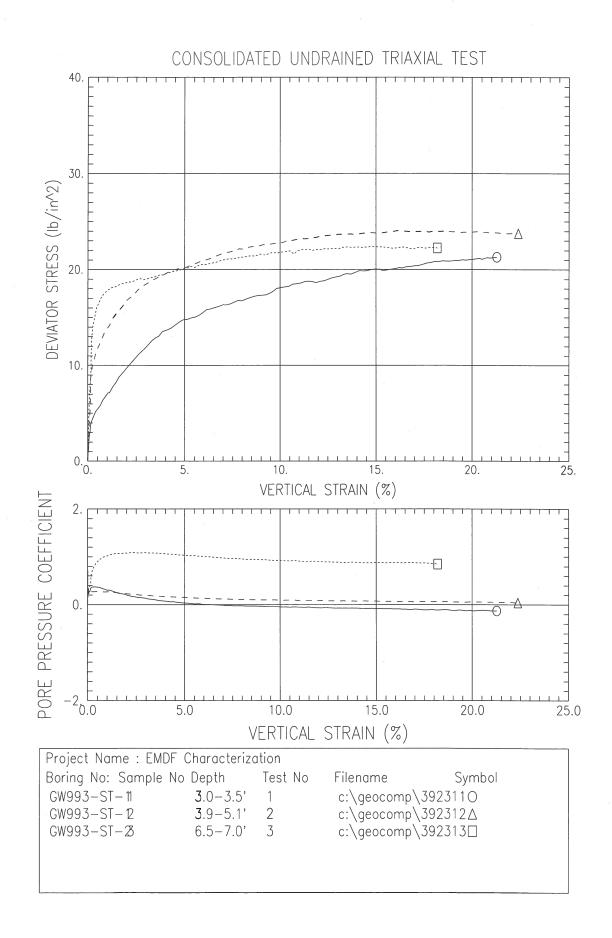
On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with ASTM D 4767, "Consolidated-Undrained Triaxial Compression Test on Cohesive Soils".

Results are summarized below and detailed on the attached data sheets.

Test Parameter	Test No.1	Test No. 2	Test No. 3
Dry Density, pcf:	102.14	100.35	100.05
Moisture Content, %:	22.47	25.41	25.51
Minor Principle Stress, psi:	5.69	12.39	32.39
Maximum Deviator Stress, psi:	21.30	24.07	22.39
Cohesion (c'), psi:	0.0		
phi Angle (Ø'):	30.0		
Apparent Specific Gravity:	2.73		

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805 extension 322.


Respectfully submitted,


BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430248 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-208 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowsermorner.com/accreditations for reviews.

F-210

BOWSER-MORNER, INC.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To:	CTI & Associates, Inc.	Report Date:	May 3, 2018
	Attn: Michael Partenio	Job No.:	183923
	28001 Cabot Drive, Ste. 250	Report No.:	430245
	Novi, MI 48377	No. of Pages:	1

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW993 – ST-1, 3.0'-5.0' – Sample Date: 2/22/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the following procedures:

ASTM D 854, "Specific Gravity of Soils Solids by Water Pycnometer".

ASTM D 2216, "Laboratory Determination of Water (Moisture) Content of Soil and Rock".

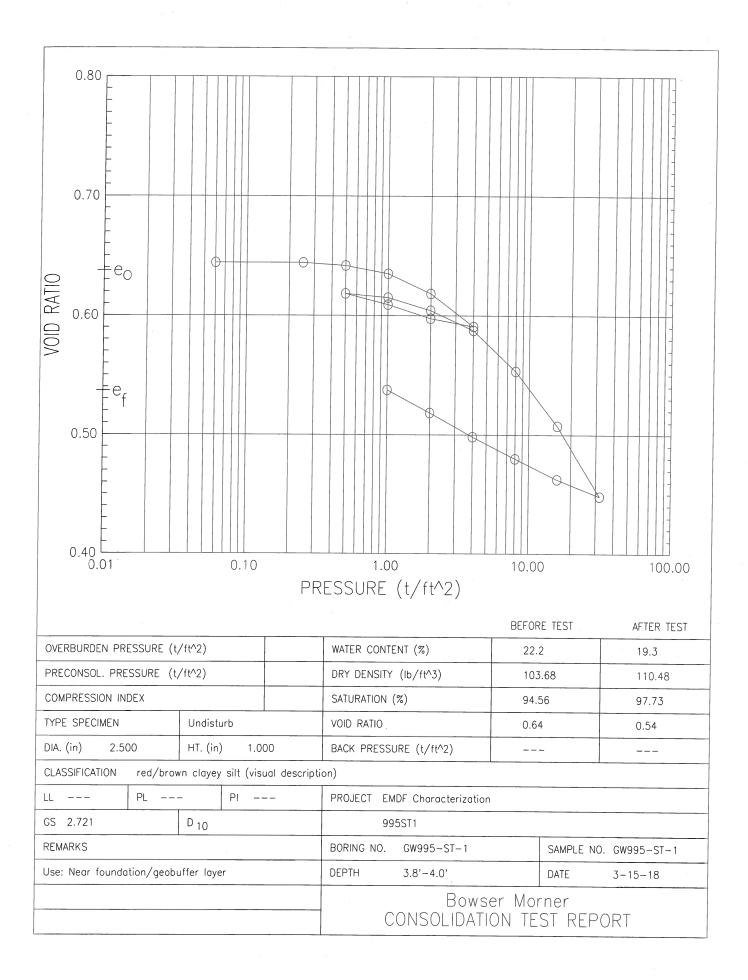
ASTM D 7263, "Laboratory Determination of Density (Unit Weight) of Soil Specimens - Method B".

Results are summarized in the following table.

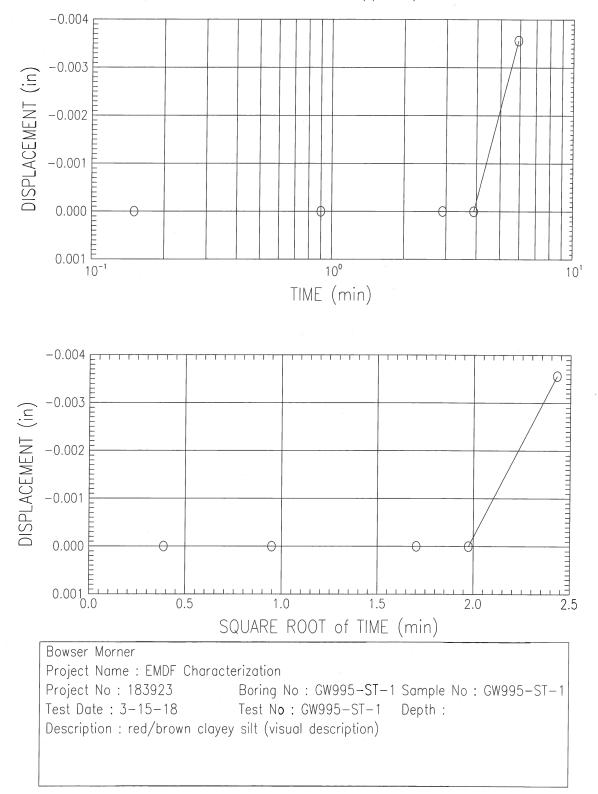
Test Parameter	Results
Depth of Test Specimen:	3.9'-5.1'
As Received Moisture Content, %:	25.4
Apparent Specific Gravity:	2.73
Wet Unit Weight, pcf:	125.9
Dry Unit Weight, pcf:	100.4
Void Ratio:	0.6978
Porosity, %:	41.1
Degree of Saturation, %:	99.4
Volume of Water, %:	40.9
Volume of Solids, %:	58.9
Air Filled Voids, %:	0.6
Water Filled Voids, %:	99.4

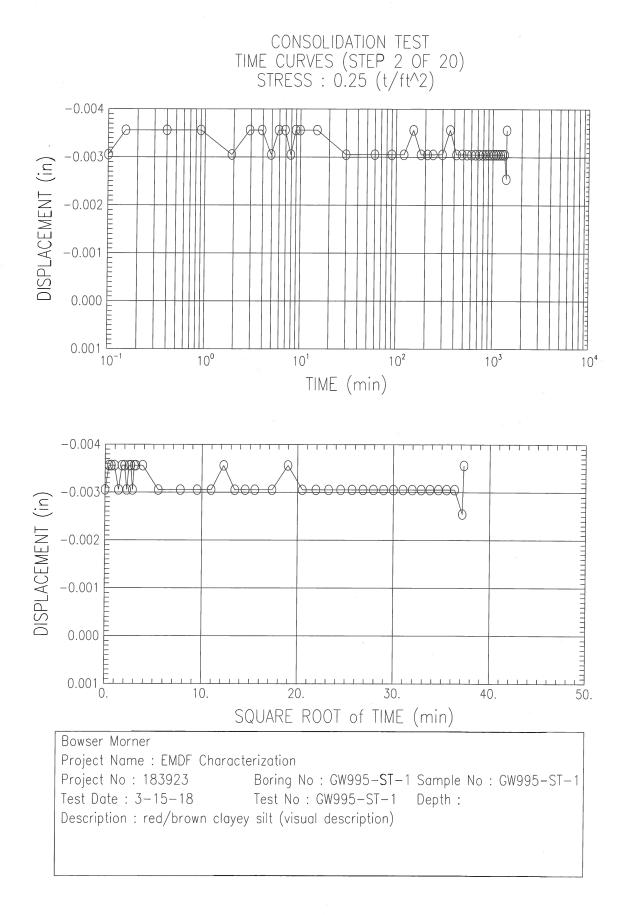
Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,


BOWSER-MORNER. INC

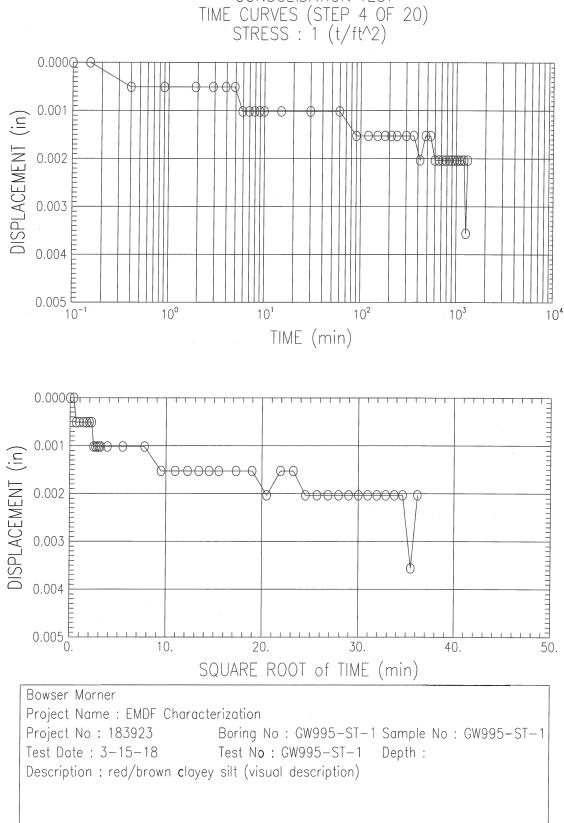
Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories


KAF/blc 430245 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

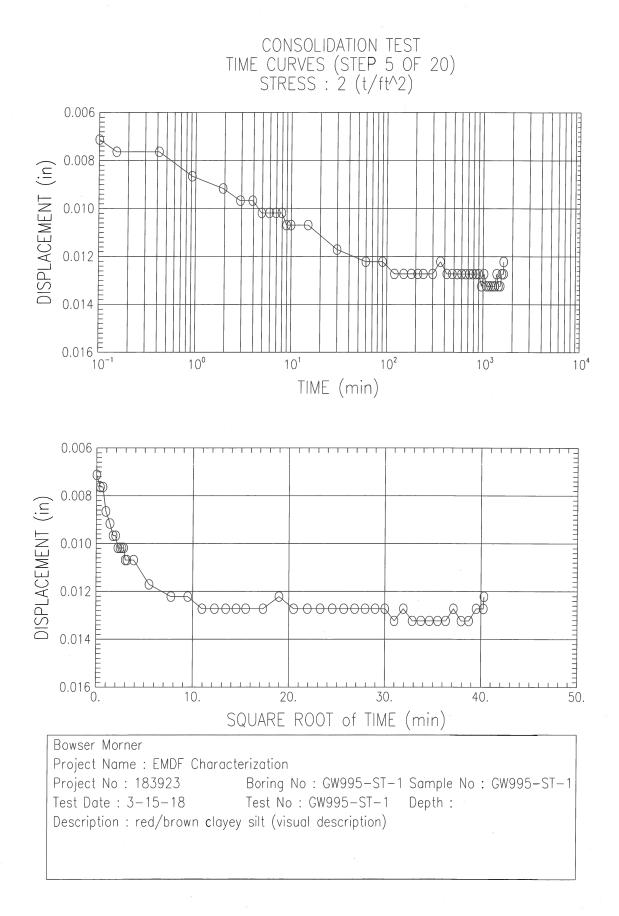

F-211

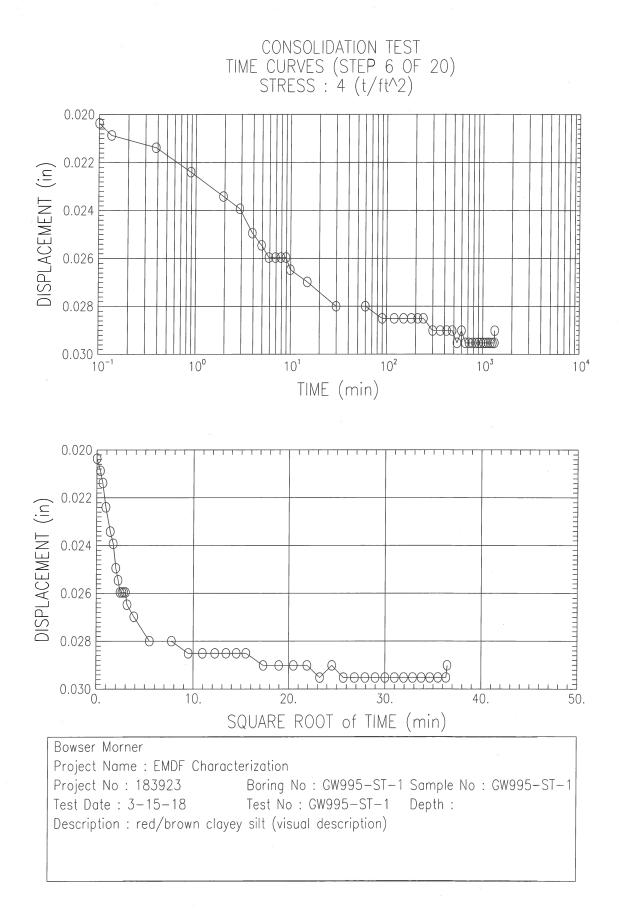
All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

CONSOLIDATION TEST TIME CURVES (STEP 1 OF 20) STRESS : 0.06 (t/ft^2)

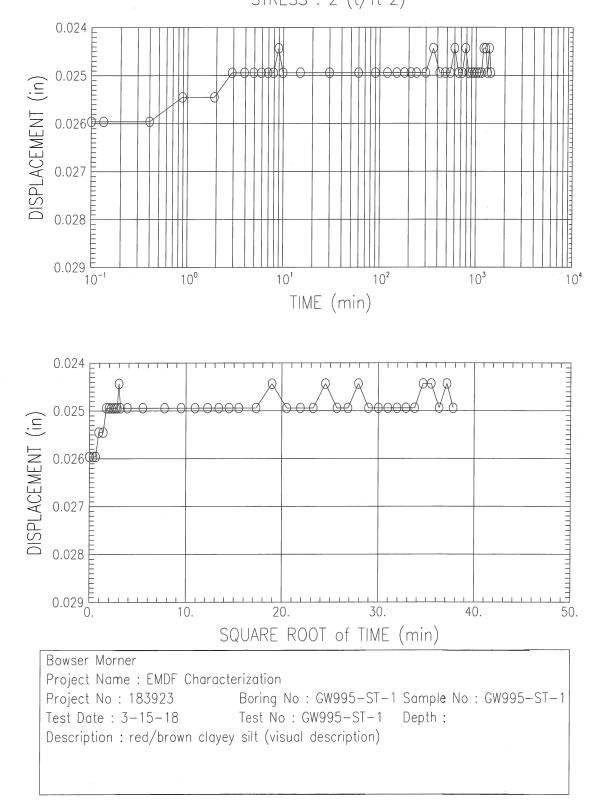


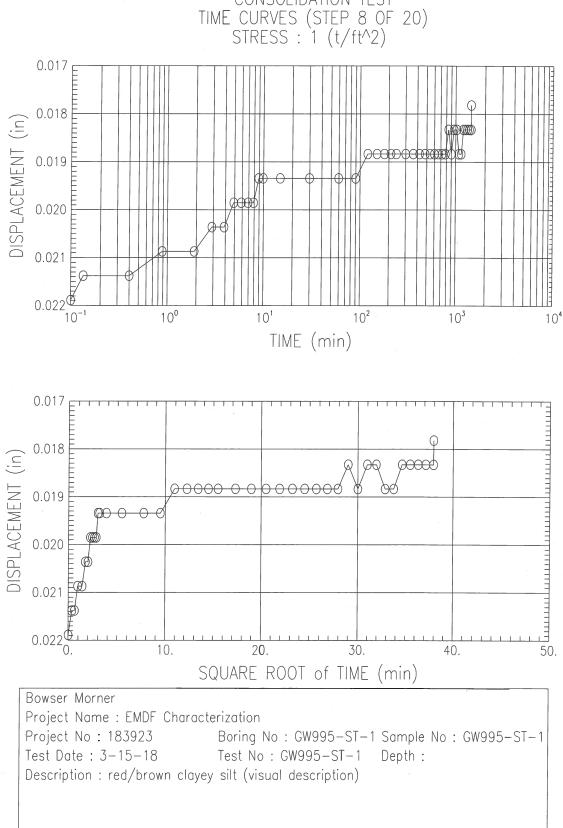
F-214

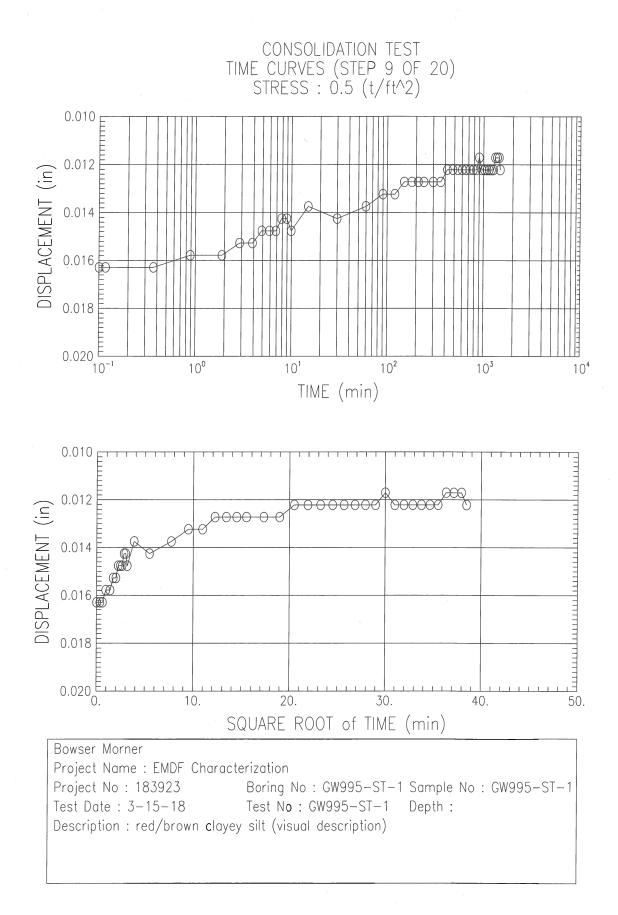

TIME CURVES (STEP 3 OF 20) STRESS : 0.5 (t/ft^2) -0.003 -0.002 DISPLACEMENT (in) ЖЖ ക -0.001 0.000 0.001 0.002 10-1 10⁰ 10¹ 10^{2} 10^{3} 104 TIME (min) -0.003 -0.002 DISPLACEMENT (in) -0.001 0.000 0.001 Ξ 0.002 E 50. 10. 20. 30. 40. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW995-ST-1 Sample No : GW995-ST-1 Test Date : 3-15-18 Test No : GW995-ST-1 Depth : Description : red/brown clayey silt (visual description)

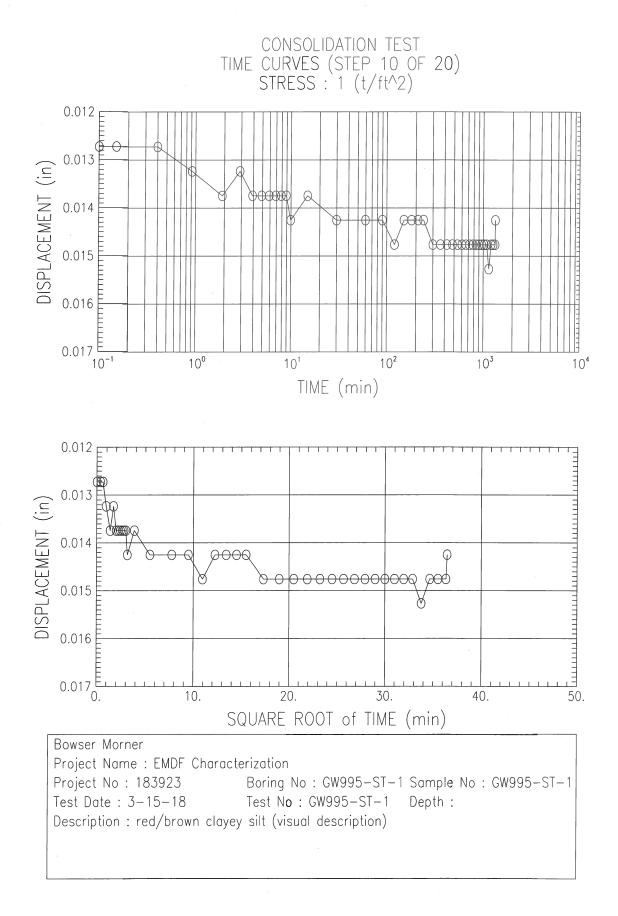

CONSOLIDATION TEST

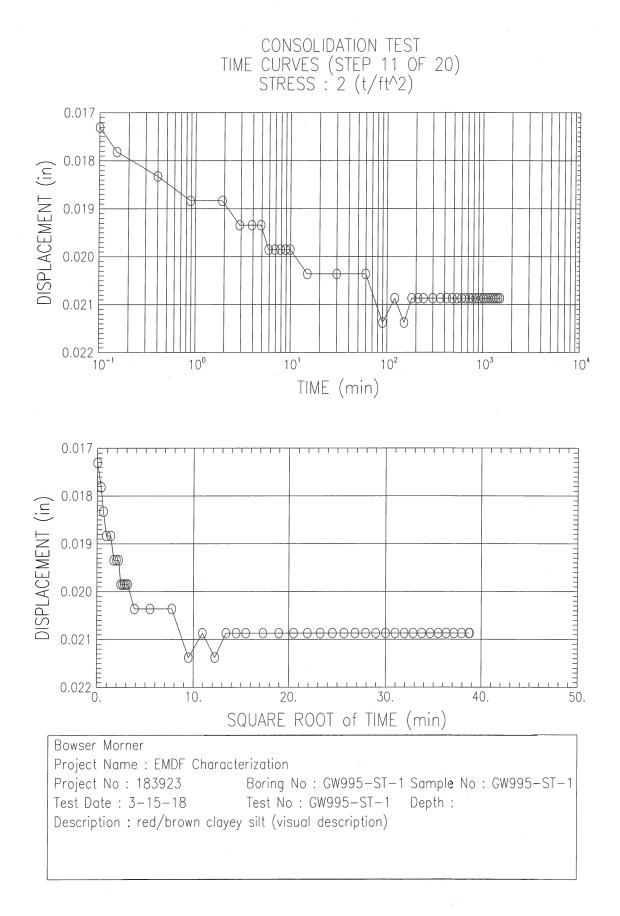
F-215

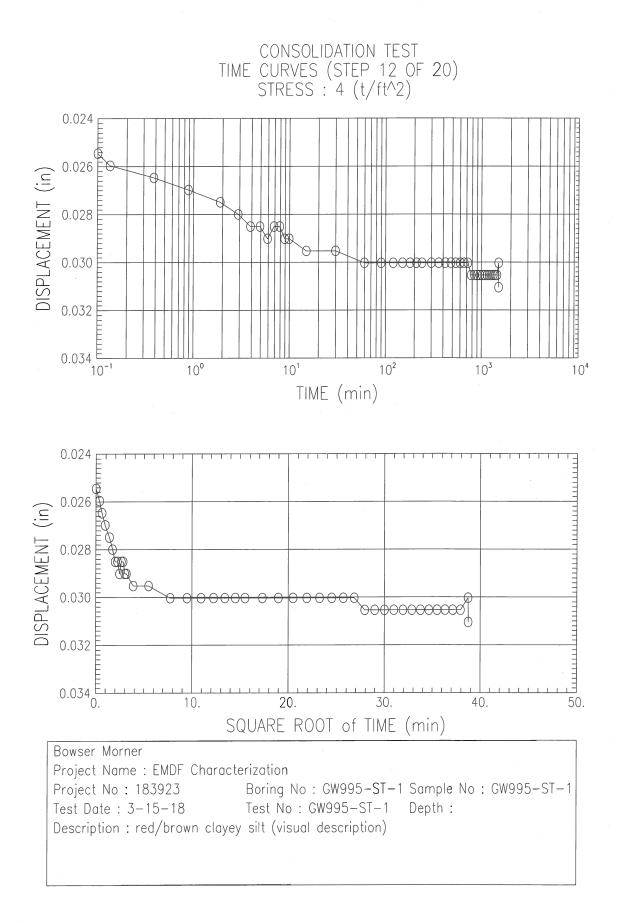


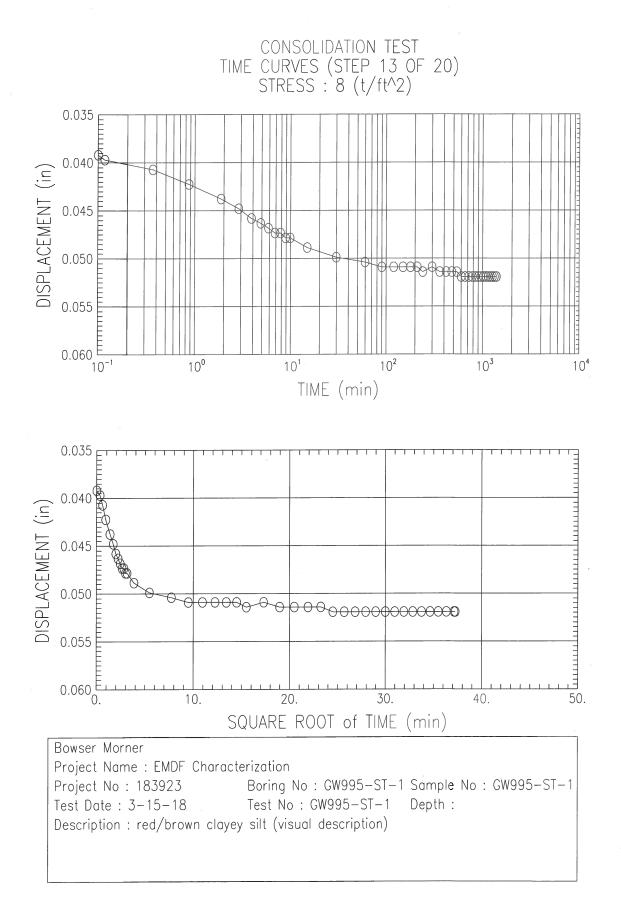

CONSOLIDATION TEST

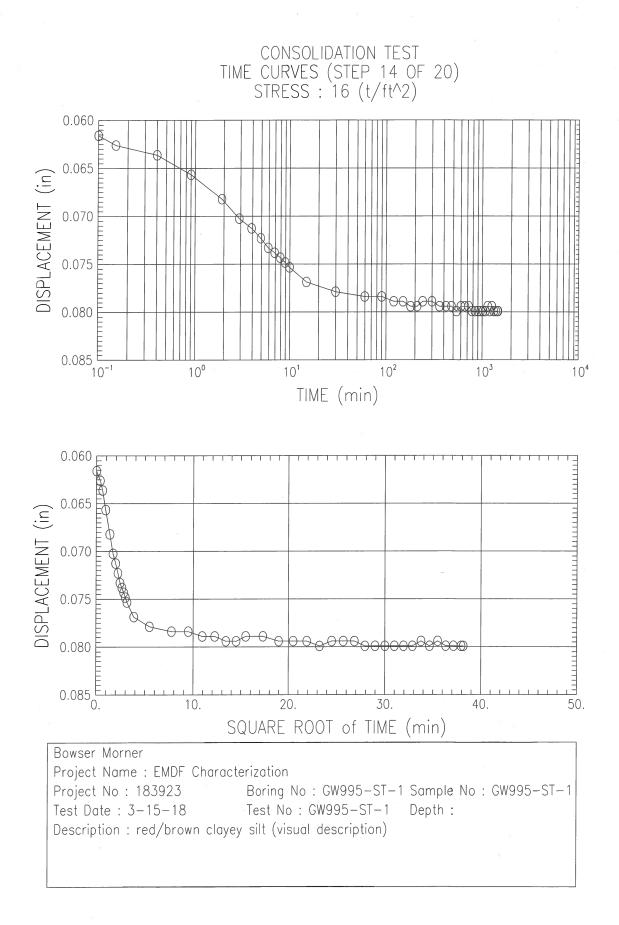


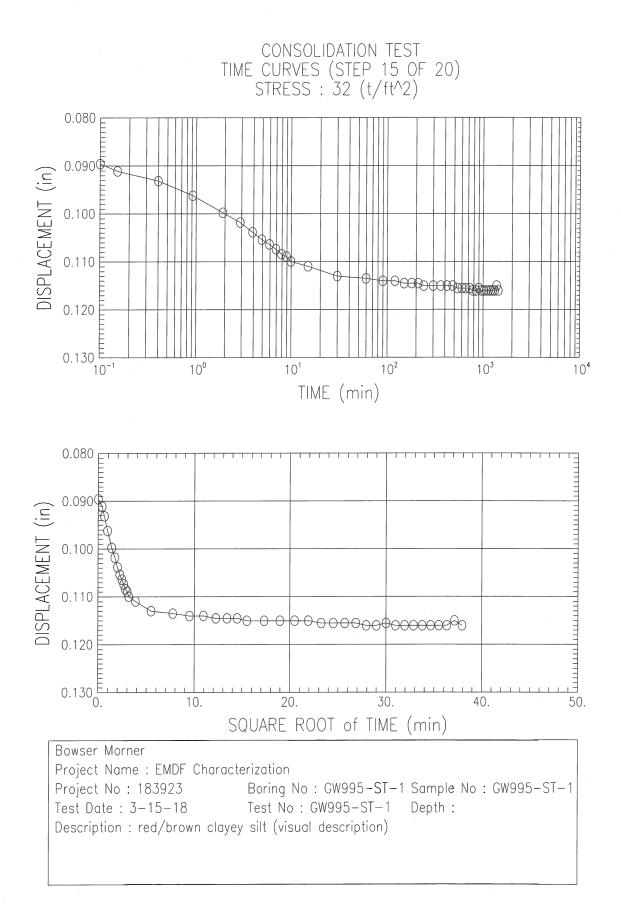

CONSOLIDATION TEST TIME CURVES (STEP 7 OF 20) STRESS : 2 (t/ft^2)

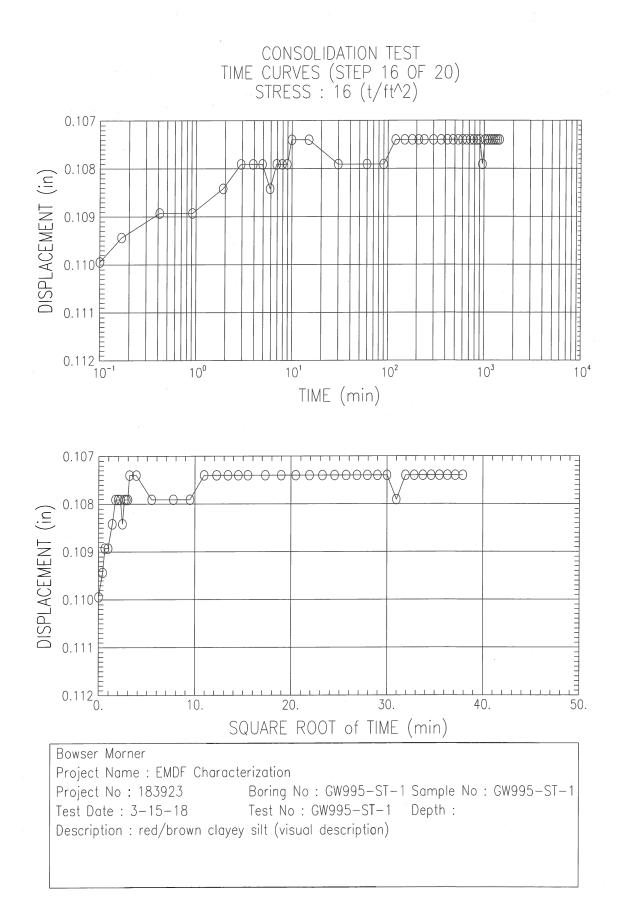


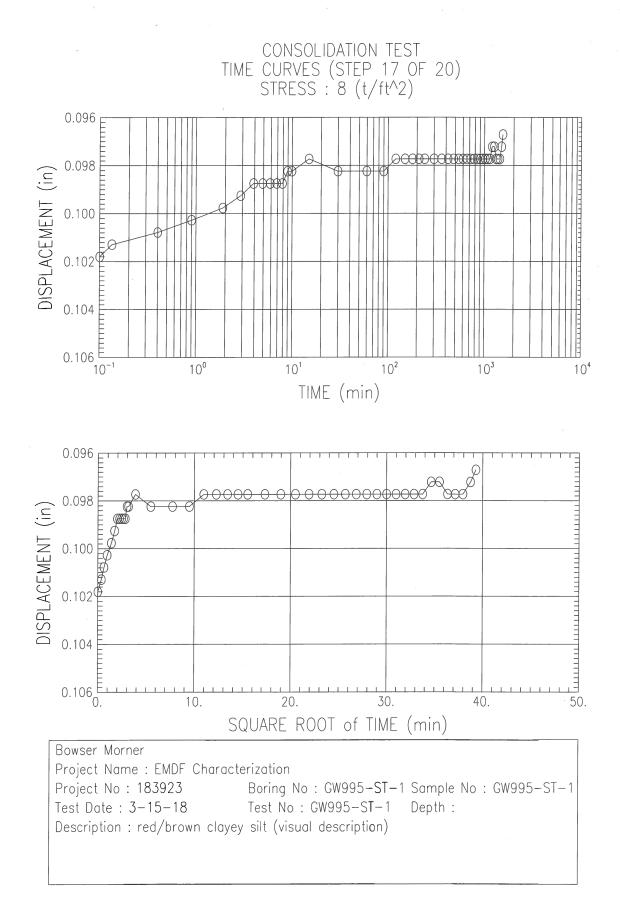


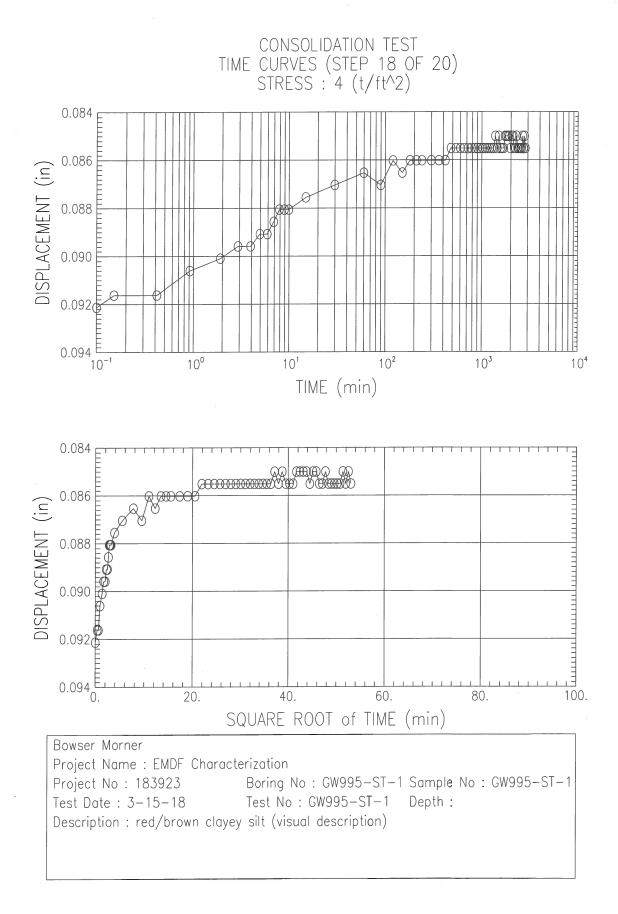

CONSOLIDATION TEST

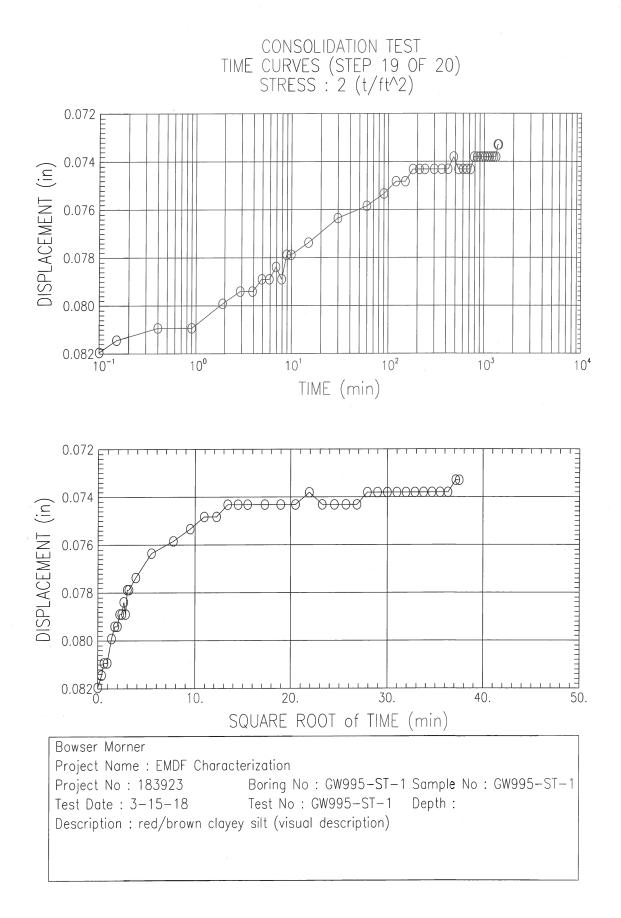












CONSOLIDATION TEST TIME CURVES (STEP 20 OF 20) STRESS : 1 (t/ft^2) 0.060 0.065 DISPLACEMENT (in) 0.070 0.075 0.080 0.085 ^t 10° 10² 10³ 10-1 10¹ 104 TIME (min) 0.060 .000 0.065 DISPLACEMENT (in) 0.070 0.075 0.080 Ē 0.085 20. 30. 10. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW995-ST-1 Sample No : GW995-ST-1 Test Date : 3-15-18 Test No : GW995-ST-1 Depth : Description : red/brown clayey silt (visual description)

Page : 1

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

	APPLIED	FINAL	VOID	STRAIN	FITI	ING	COEFFIC	IENT OF CONSOL	IDATION
	PRESSURE	DISPLACEMENT	RATIO	AT END	T50 TIME (min)		(in^2/s)	
	(t/ft^2)	(in)		(%)	SQ.RT.	LOG	SQ.RT.	LOG	AVE
1)	0.06	-0.004	0.644	-0.35	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
2)	0.25	-0.004	0.644	-0.35	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
3)	0.50	-0.002	0.642	-0.20	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
4)	1.00	0.002	0.635	0.21	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
5)	2.00	0.012	0.618	1.23	8.1	0.0	1.00E-004	0.00E+000	1.00E-004
6)	4.00	0.029	0.591	2.91	3.6	3.3	2.18E-004	2.40E-004	2.29E-004
7)	2.00	0.025	0.597	2.50	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
8)	1.00	0.018	0.609	1.79	8.8	0.0	8.91E-005	0.00E+000	8.91E-005
9)	0.50	0.012	0.618	1.23	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
10)	1.00	0.014	0.615	1.43	0.0	0.0	0.00E+000	0.00E+000	0.00E+000
11)	2.00	0.021	0.604	2.09	0.9	0.0	9.01E-004	0.00E+000	9.01E-004
12)	4.00	0.031	0.587	3.11	3.0	0.0	2.59E-004	0.00E+000	2.59E-004
13)	8.00	0.052	0.553	5.20	3.5	0.0	2.14E-004	0.00E+000	2.14E-004
14)	16.00	0.080	0.507	8.00	2.2	0.0	3.25E-004	0.00E+000	3.25E-004
15)	32.00	0.116	0.448	11.61	2.2	0.0	3.02E-004	0.00E+000	3.02E-004
16)	16.00	0.107	0.462	10.74	1.2	0.0	5.39E-004	0.00E+000	5.39E-004
17)	8.00	0.097	0.480	9.68	2.9	0.0	2.29E-004	0.00E+000	2.29E-004
18)	4.00	0.086	0.498	8.56	13.4	0.0	5.04E-005	0.00E+000	5.04E-005
19)	2.00	0.073	0.518	7.33	19.8	0.0	3.52E-005	0.00E+000	3.52E-005
20)	1.00	0.062	0.537	6.16	16.0	0.0	4.47E-005	0.00E+000	4.47E-005

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995- ST -1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Specific Gravity : 2.72	Liquid Limit : 0	Initial Height : 1.00 (in)
Initial Void Ratio : 0.64	Plastic Limit : 0	Sample Diameter : 2.50 (in)
Final Void Ratio : 0.54	Plasticity Index : 0	

	BEFORE CONSOLIDATION		AFTER CONSO	LIDATION
	TRIMMINGS	SPECIMEN + RING	SPECIMEN + RING	TRIMMINGS
CONTAINER NO.		RING	RING	
WT CONTAINER + WET SOIL (gm)	163.23	163.23	159.38	159.38
WT CONTAINER + DRY SOIL (gm)	133.59	133.59	133.59	133.59
WT CONTAINER (gm)	0.00	0.00	0.00	0.00
WT DRY SOIL (gm)	133.59	133.59	133.59	133.59
WATER CONTENT (%)	22.19	22.19	19.31	19.31
VOID RATIO	*	0.64	0.54	
DEGREE OF SATURATION (%)		94.56	97.73	
DRY DENSITY (lb/ft^3)		103.68	110.48	

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefor values may not represent actual values for the specimen.

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 1 of 20

Stress increment from 0.00 (t/ft^2) to 0.06 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
1)	0.15	0.39	0.0000	0.638	0.00
2)	0.90	0.95	0.0000	0.638	0.00
3)	2.90	1.70	0.0000	0.638	0.00
4)	3.90	1.97	0.0000	0.638	0.00
5)	5.90	2.43	-0.0036	0.644	-0.36

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 2 of 20

Stress increment from 0.06 (t/ft^2) to 0.25 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	-0.0031	0.643	-0.31
2)	0.15	0.39	-0.0036	0.644	-0.36
3)	0.40	0.63	-0.0036	0.644	-0.36
4)	0.90	0.95	-0.0036	0.644	-0.36
5)	1.90	1.38	-0.0031	0.643	-0.31
6)	2.92	1.71	-0.0036	0.644	-0.36
7)	3.92	1.98	-0.0036	0.644	-0.36
8)	4.92	2.22	-0.0031	0.643	-0.31
9)	5.90	2.43	-0.0036	0.644	-0.36
10)	6.90	2.63	-0.0036	0.644	-0.36
11)	7.90	2.81	-0.0031	0.643	-0.31
12)	8.90	2.98	-0.0036	0.644	-0.36
13)	9.90	3.15	-0.0036	0.644	-0.36
14)	14.90	3.86	-0.0036	0.644	-0.36
15)	29.90	5.47	-0.0031	0.643	-0.31
16)	59.92	7.74	-0.0031	0.643	-0.31
17)	89.90	9.48	-0.0031	0.643	-0.31
18)	119.90	10.95	-0.0031	0.643	-0.31
19)	149.92	12.24	-0.0036	0.644	-0.36
20)	179.92	13.41	-0.0031	0.643	-0.31
21)	209.90	14.49	-0.0031	0.643	-0.31
22)	239.90	15.49	-0.0031	0.643	-0.31
23)	299.90	17.32	-0.0031	0.643	-0.31
24)	359.92	18.97	-0.0036	0.644	-0.36
25)	419.90	20.49	-0.0031	0.643	-0.31
26)	479.92	21.91	-0.0031	0.643	-0.31
27)	539.90	23.24	-0.0031	0.643	-0.31
28)	599.90	24.49	-0.0031	0.643	-0.31
29)	659.90	25.69	-0.0031	0.643	-0.31
30)	719.90	26.83	-0.0031	0.643	-0.31
31)	779.92	27.93	-0.0031	0.643	-0.31
32)	839.90	28.98	-0.0031	0.643	-0.31
33)	899.90	30.00	-0.0031	0.643	-0.31
34)	959.90	30.98	-0.0031	0.643	-0.31
35)	1019.90	31.94	-0.0031	0.643	-0.31

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 2 of 20 Stress increment from 0.06 (t/ft²) to 0.25 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	-0.0031	0.643	-0.31
37)	1139.90	33.76	-0.0031	0.643	-0.31
38)	1199.92	34.64	-0.0031	0.643	-0.31
39)	1259.90	35.50	-0.0031	0.643	-0.31
40)	1319.90	36.33	-0.0031	0.643	-0.31
41)	1379.90	37.15	-0.0025	0.643	-0.25
42)	1391.47	37.30	-0.0036	0.644	-0.36

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 3 of 20

Stress increment from 0.25 (t/ft^2) to 0.50 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
					- 9
1)	0.00	0.00	-0.0025	0.643	-0.25
2)	0.13	0.37	-0.0025	0.643	-0.25
3)	0.40	0.63	-0.0025	0.643	-0.25
4)	0.90	0.95	-0.0025	0.643	-0.25
5)	1.88	1.37	-0.0025	0.643	-0.25
6)	2.92	1.71	-0.0020	0.642	-0.20
7)	3.93	1.98	-0.0025	0.643	-0.25
8)	4.93	2.22	-0.0025	0.643	-0.25
9)	5.93	2.44	-0.0020	0.642	-0.20
10)	6.90	2.63	-0.0025	0.643	-0.25
11)	7.90	2.81	-0.0025	0.643	-0.25
12)	8.90	2.98	-0.0025	0.643	-0.25
13)	9.90	3.15	-0.0025	0.643	-0.25
14)	14.90	3.86	-0.0020	0.642	-0.20
15)	29.88	5.47	-0.0015	0.641	-0.15
16)	59.90	7.74	-0.0020	0.642	-0.20
17)	89.90	9.48	-0.0015	0.641	-0.15
18)	119.90	10.95	-0.0020	0.642	-0.20
19)	149.90	12.24	-0.0015	0.641	-0.15
20)	179.90	13.41	-0.0020	0.642	-0.20
21)	209.92	14.49	-0.0015	0.641	-0.15
22)	239.90	15.49	-0.0020	0.642	-0.20
23)	299.90	17.32	-0.0020	0.642	-0.20
24)	359.88	18.97	-0.0020	0.642	-0.20
25)	419.90	20.49	-0.0020	0.642	-0.20
26)	479.92	21.91	-0.0020	0.642	-0.20
27)	539.88	23.24	-0.0020	0.642	-0.20
28)	599.90	24.49	-0.0015	0.641	-0.15
29)	659.90	25.69	-0.0015	0.641	-0.15
30)	719.88	26.83	-0.0020	0.642	-0.20
31)	779.90	27.93	-0.0020	0.642	-0.20
32)	839.88	28.98	-0.0015	0.641	-0.15
33)	899.90	30.00	-0.0020	0.642	-0.20
34)	959.88	30.98	-0.0020	0.642	-0.20
35)	1019.92	31.94	-0.0020	0.642	-0.20

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	-0.0020	0.642	-0.20
37)	1139.88	33.76	-0.0020	0.642	-0.20
38)	1199.88	34.64	-0.0015	0.641	-0.15
39)	1259.90	35.50	-0.0015	0.641	-0.15
40)	1298.28	36.03	-0.0020	0.642	-0.20

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 4 of 20

Stress increment from 0.50 (t/ft²) to 1.00 (t/ft²)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0000	0 630	0.00
	0.15	0.00	0.0000	0.638	0.00
2)		0.39	0.0000	0.638	0.00
3)	0.40	0.63	0.0005	0.638	0.05
4)	0.90	0.95	0.0005	0.638	0.05
5)	1.90	1.38	0.0005	0.638	0.05
6)	2.88	1.70	0.0005	0.638	0.05
7)	3.92	1.98	0.0005	0.638	0.05
8)	4.90	2.21	0.0005	0.638	0.05
9)	5.90	2.43	0.0010	0.637	0.10
10)	6.90	2.63	0.0010	0.637	0.10
11)	7.90	2.81	0.0010	0.637	0.10
12)	8.92	2.99	0.0010	0.637	0.10
13)	9.92	3.15	0.0010	0.637	0.10
14)	14.92	3.86	0.0010	0.637	0.10
15)	29.90	5.47	0.0010	0.637	0.10
16)	59.90	7.74	0.0010	0.637	0.10
17)	89.88	9.48	0.0015	0.636	0.15
18)	119.92	10.95	0.0015	0.636	0.15
19)	149.92	12.24	0.0015	0.636	0.15
20)	179.90	13.41	0.0015	0.636	0.15
21)	209.88	14.49	0.0015	0.636	0.15
22)	239.90	15.49	0.0015	0.636	0.15
23)	299.92	17.32	0.0015	0.636	0.15
24)	359.92	18.97	0.0015	0.636	0.15
25)	419.88	20.49	0.0020	0.635	0.20
26)	479.92	21.91	0.0015	0.636	0.15
27)	539.90	23.24	0.0015	0.636	0.15
28)	599.90	24.49	0.0020	0.635	0.20
29)	659.90	25.69	0.0020	0.635	0.20
30)	719.92	26.83	0.0020	0.635	0.20
31)	779.90	27.93	0.0020	0.635	0.20
32)	839.88	28.98	0.0020	0.635	0.20
33)	899.90	30.00	0.0020	0.635	0.20
34)	959.90	30.98	0.0020	0.635	0.20
35)	1019.88	31.94	0.0020	0.635	0.20

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 4 of 20

Stress increment from 0.50 (t/ft^2) to 1.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
36)	1079.90	32.86	0.0020	0.635	0.20
37)	1139.90	33.76	0.0020	0.635	0.20
38)	1199.90	34.64	0.0020	0.635	0.20
39)	1259.88	35.49	0.0036	0.633	0.36
40)	1309.58	36.19	0.0020	0.635	0.20

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995- S T-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 5 of 20

Stress increment from 1.00 (t/ft^2) to 2.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0071	0.627	0.71
2)	0.15	0.39	0.0076	0.626	0.76
3)	0.42	0.65	0.0076	0.626	0.76
4)	0.92	0.96	0.0087	0.624	0.87
5)	1.92	1.38	0.0092	0.623	0.92
6)	2.92	1.71	0.0097	0.623	0.97
7)	3.92	1.98	0.0097	0.623	0.97
8)	4.90	2.21	0.0102	0.622	1.02
9)	5.92	2.43	0.0102	0.622	1.02
10)	6.95	2.64	0.0102	0.622	1.02
11)	7.95	2.82	0.0102	0.622	1.02
12)	8.90	2.98	0.0107	0.621	1.07
13)	9.92	3.15	0.0107	0.621	1.07
14)	14.92	3.86	0.0107	0.621	1.07
15)	29.92	5.47	0.0117	0.619	1.17
16)	59.92	7.74	0.0122	0.618	1.22
17)	89.90	9.48	0.0122	0.618	1.22
18)	119.90	10.95	0.0127	0.618	1.27
19)	149.93	12.24	0.0127	0.618	1.27
20)	179.90	13.41	0.0127	0.618	1.27
21)	209.92	14.49	0.0127	0.618	1.27
22)	239.92	15.49	0.0127	0.618	1.27
23)	299.93	17.32	0.0127	0.618	1.27
24)	359.93	18.97	0.0122	0.618	1.22
25)	419.90	20.49	0.0127	0.618	1.27
26)	479.92	21.91	0.0127	0.618	1.27
27)	539.90	23.24	0.0127	0.618	1.27
28)	599.93	24.49	0.0127	0.618	1.27
29)	659.90	25.69	0.0127	0.618	1.27
30)	719.92	26.83	0.0127	0.618	1.27
31)	779.92	27.93	0.0127	0.618	1.27
32)	839.92	28.98	0.0127	0.618	1.27
33)	899.90	30.00	0.0127	0.618	1.27
34)	959.90	30.98	0.0132	0.617	1.32
35)	1019.93	31.94	0.0127	0.618	1.27

Page : 11

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 5 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1079.92	32.86	0.0132	0.617	1.32
1139.90	33.76	0.0132	0.617	1.32
1199.95	34.64	0.0132	0.617	1.32
1259.92	35.50	0.0132	0.617	1.32
1319.90	36.33	0.0132	0.617	1.32
1379.90	37.15	0.0127	0.618	1.27
1439.92	37.95	0.0132	0.617	1.32
1499.92	38.73	0.0132	0.617	1.32
1559.90	39.50	0.0127	0.618	1.27
1619.90	40.25	0.0127	0.618	1.27
1624.45	40.30	0.0122	0.618	1.22
	(min) 1079.92 1139.90 1199.95 1259.92 1319.90 1379.90 1439.92 1499.92 1559.90 1619.90	(min)TIME (min)1079.9232.861139.9033.761199.9534.641259.9235.501319.9036.331379.9037.151439.9237.951499.9238.731559.9039.501619.9040.25	(min)TIME (min)HEIGHT (in)1079.9232.860.01321139.9033.760.01321199.9534.640.01321259.9235.500.01321319.9036.330.01321379.9037.150.01271439.9237.950.01321499.9238.730.01321559.9039.500.01271619.9040.250.0127	(min)TIME (min)HEIGHT (in)RATIO1079.9232.860.01320.6171139.9033.760.01320.6171199.9534.640.01320.6171259.9235.500.01320.6171319.9036.330.01320.6171379.9037.150.01270.6181439.9237.950.01320.6171559.9039.500.01270.6181619.9040.250.01270.618

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995- S T-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 6 of 20

Stress increment from 2.00 (t/ft^2) to 4.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0204	0.605	2.04
2)	0.13	0.37	0.0209	0.604	2.09
3)	0.38	0.62	0.0214	0.603	2.14
4)	0.88	0.94	0.0224	0.602	2.24
5)	1.93	1.39	0.0234	0.600	2.34
6)	2.88	1.70	0.0239	0.599	2.39
7)	3.90	1.97	0.0249	0.598	2.49
8)	4.92	2.22	0.0255	0.597	2.55
9)	5.88	2.43	0.0260	0.596	2.60
10)	6.90	2.63	0.0260	0.596	2.60
11)	7.88	2.81	0.0260	0.596	2.60
12)	8.90	2.98	0.0260	0.596	2.60
13)	9.90	3.15	0.0265	0.595	2.65
14)	14.88	3.86	0.0270	0.594	2.70
15)	29.88	5.47	0.0280	0.593	2.80
16)	59.88	7.74	0.0280	0.593	2.80
17)	89.88	9.48	0.0285	0.592	2.85
18)	119.90	10.95	0.0285	0.592	2.85
19)	149.90	12.24	0.0285	0.592	2.85
20)	179.90	13.41	0.0285	0.592	2.85
21)	209.90	14.49	0.0285	0.592	2.85
22)	239.90	15.49	0.0285	0.592	2.85
23)	299.92	17.32	0.0290	0.591	2.90
24)	359.88	18.97	0.0290	0.591	2.90
25)	419.90	20.49	0.0290	0.591	2.90
26)	479.92	21.91	0.0290	0.591	2.90
27)	539.90	23.24	0.0295	0.590	2.95
28)	599.88	24.49	0.0290	0.591	2.90
29)	659.88	25.69	0.0295	0.590	2.95
30)	719.90	26.83	0.0295	0.590	2.95
31)	779.90	27.93	0.0295	0.590	2.95
32)	839.88	28.98	0.0295	0.590	2.95
33)	899.90	30.00	0.0295	0.590	2.95
34)	959.90	30.98	0.0295	0.590	2.95
35)	1019.88	31.94	0.0295	0.590	2.95

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 6 of 20 Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0295	0.590	2.95
37)	1139.92	33.76	0.0295	0.590	2.95
38)	1199.88	34.64	0.0295	0.590	2.95
39)	1259.90	35.50	0.0295	0.590	2.95
40)	1319.90	36.33	0.0295	0.590	2.95
41)	1329.13	36.46	0.0290	0.591	2.90

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 7 of 20 Stress increment from 4.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0260	0.596	2.60
2)	0.13	0.37	0.0260	0.596	2.60
3)	0.40	0.63	0.0260	0.596	2.60
4)	0.88	0.94	0.0255	0.597	2.55
5)	1.90	1.38	0.0255	0.597	2.55
6)	2.90	1.70	0.0249	0.598	2.49
7)	3.90	1.97	0.0249	0.598	2.49
8)	4.90	2.21	0.0249	0.598	2.49
9)	5.90	2.43	0.0249	0.598	2.49
10)	6.90	2.63	0.0249	0.598	2.49
11)	7.88	2.81	0.0249	0.598	2.49
12)	8.90	2.98	0.0244	0.598	2.44
13)	9.88	3.14	0.0249	0.598	2.49
14)	14.90	3.86	0.0249	0.598	2.49
15)	29.88	5.47	0.0249	0.598	2.49
16)	59.88	7.74	0.0249	0.598	2.49
17)	89.88	9.48	0.0249	0.598	2.49
18)	119.88	10.95	0.0249	0.598	2.49
19)	149.90	12.24	0.0249	0.598	2.49
20)	179.88	13.41	0.0249	0.598	2.49
21)	209.88	14.49	0.0249	0.598	2.49
22)	239.90	15.49	0.0249	0.598	2.49
23)	299.88	17.32	0.0249	0.598	2.49
24)	359.88	18.97	0.0244	0.598	2.44
25)	419.88	20.49	0.0249	0.598	2.49
26)	479.90	21.91	0.0249	0.598	2.49
27)	539.88	23.24	0.0249	0.598	2.49
28)	599.90	24.49	0.0244	0.598	2.44
29)	659.90	25.69	0.0249	0.598	2.49
30)	719.90	26.83	0.0249	0.598	2.49
31)	779.92	27.93	0.0244	0.598	2.44
32)	839.88	28.98	0.0249	0.598	2.49
33)	899.88	30.00	0.0249	0.598	2.49
34)	959.90	30.98	0.0249	0.598	2.49
35)	1019.88	31.94	0.0249	0.598	2.49

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 7 of 20 Stress increment from 4.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
36)	1079.90	32.86	0.0249	0.598	2.49
37)	1139.88	33.76	0.0249	0.598	2.49
38)	1199.88	34.64	0.0244	0.598	2.44
39)	1259.88	35.49	0.0244	0.598	2.44
40)	1319.88	36.33	0.0249	0.598	2.49
41)	1379.88	37.15	0.0244	0.598	2.44
42)	1428.52	37.80	0.0249	0.598	2.49

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 8 of 20

Stress increment from 2.00 (t/ft²) to 1.00 (t/ft²)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0219	0.603	2.19
2)	0.13	0.37	0.0214	0.603	2.14
3)	0.40	0.63	0.0214	0.603	2.14
4)	0.88	0.94	0.0209	0.604	2.09
5)	1.90	1.38	0.0209	0.604	2.09
6)	2.90	1.70	0.0204	0.605	2.04
7)	3.88	1.97	0.0204	0.605	2.04
8.)	4.90	2.21	0.0199	0.606	1.99
9)	5.88	2.43	0.0199	0.606	1.99
10)	6.92	2.63	0.0199	0.606	1.99
11)	7.88	2.81	0.0199	0.606	1.99
12)	8.90	2.98	0.0193	0.607	1.93
13)	9.90	3.15	0.0193	0.607	1.93
14)	14.90	3.86	0.0193	0.607	1.93
15)	29.88	5.47	0.0193	0.607	1.93
16)	59.90	7.74	0.0193	0.607	1.93
17)	89.90	9.48	0.0193	0.607	1.93
18)	119.90	10.95	0.0188	0.608	1.88
19)	149.88	12.24	0.0188	0.608	1.88
20)	179.90	13.41	0.0188	0.608	1.88
21)	209.92	14.49	0.0188	0.608	1.88
22)	239.90	15.49	0.0188	0.608	1.88
23)	299.88	17.32	0.0188	0.608	1.88
24)	359.90	18.97	0.0188	0.608	1.88
25)	419.88	20.49	0.0188	0.608	1.88
26)	479.88	21.91	0.0188	0.608	1.88
27)	539.88	23.24	0.0188	0.608	1.88
28)	599.90	24.49	0.0188	0.608	1.88
29)	659.88	25.69	0.0188	0.608	1.88
30)	719.88	26.83	0.0188	0.608	1.88
31)	779.88	27.93	0.0188	0.608	1.88
32)	839.90	28.98	0.0183	0.608	1.83
33)	899.90	30.00	0.0188	0.608	1.88
34)	959.88	30.98	0.0183	0.608	1.83
35)	1019.88	31.94	0.0183	0.608	1.83

F-248

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 8 of 20 Stress increment from 2.00 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0188	0.608	1.88
37)	1139.88	33.76	0.0188	0.608	1.88
38)	1199.88	34.64	0.0183	0.608	1.83
39)	1259.88	35.49	0.0183	0.608	1.83
40)	1319.90	36.33	0.0183	0.608	1.83
41)	1379.88	37.15	0.0183	0.608	1.83
42)	1439.90	37.95	0.0183	0.608	1.83
43)	1441.12	37.96	0.0178	0.609	1.78

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0163	0.612	1.63
2)	0.12	0.34	0.0163	0.612	1.63
3)	0.37	0.61	0.0163	0.612	1.63
4)	0.88	0.94	0.0158	0.613	1.58
5)	1.88	1.37	0.0158	0.613	1.58
6)	2.87	1.69	0.0153	0.613	1.53
7)	3.88	1.97	0.0153	0.613	1.53
8)	4.87	2.21	0.0148	0.614	1.48
9)	5.88	2.43	0.0148	0.614	1.48
10)	6.87	2.62	0.0148	0.614	1.48
11)	7.88	2.81	0.0143	0.615	1.43
12)	8.90	2.98	0.0143	0.615	1.43
13)	9.90	3.15	0.0148	0.614	1.48
14)	14.90	3.86	0.0137	0.616	1.37
15)	29.90	5.47	0.0143	0.615	1.43
16)	59.88	7.74	0.0137	0.616	1.37
17)	89.92	9.48	0.0132	0.617	1.32
18)	119.90	10.95	0.0132	0.617	1.32
19)	149.87	12.24	0.0127	0.618	1.27
20)	179.90	13.41	0.0127	0.618	1.27
21)	209.87	14.49	0.0127	0.618	1.27
22)	239.88	15.49	0.0127	0.618	1.27
23)	299.87	17.32	0.0127	0.618	1.27
24)	359.88	18.97	0.0127	0.618	1.27
25)	419.90	20.49	0.0122	0.618	1.22
26)	479.88	21.91	0.0122	0.618	1,22
27)	539.88	23.24	0.0122	0.618	1.22
28)	599.90	24.49	0.0122	0.618	1.22
29)	659.88	25.69	0.0122	0.618	1.22
30)	719.88	26.83	0.0122	0.618	1.22
31)	779.90	27.93	0.0122	0.618	1.22
32)	839.88	28.98	0.0122	0.618	1.22
33)	899.88	30.00	0.0117	0.619	1.17
34)	959.87	30.98	0.0122	0.618	1.22
35)	1019.88	31.94	0.0122	0.618	1.22

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft²) to 0.50 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.87	32.86	0.0122	0.618	1.22
37)	1139.87	33.76	0.0122	0.618	1.22
38)	1199.88	34.64	0.0122	0.618	1.22
39)	1259.92	35,50	0.0122	0.618	1.22
40)	1319.87	36.33	0.0117	0.619	1.17
41)	1379.87	37.15	0.0117	0.619	1.17
42)	1439.88	37.95	0.0117	0.619	1.17
43)	1479.92	38.47	0.0122	0.618	1.22

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0127	0.618	1.27
2)	0.15	0.39	0.0127	0.618	1.27
3)	0.40	0.63	0.0127	0.618	1.27
4)	0.92	0.96	0.0132	0.617	1.32
5)	1.90	1.38	0.0137	0.616	1.37
6)	2.90	1.70	0.0132	0.617	1.32
7)	3.92	1.98	0.0137	0.616	1.37
8)	4.92	2.22	0.0137	0.616	1.37
9)	5.90	2.43	0.0137	0.616	1.37
10)	6.92	2.63	0.0137	0.616	1.37
11)	7.90	2.81	0.0137	0.616	1.37
12)	8.90	2.98	0.0137	0.616	1.37
13)	9.90	3.15	0.0143	0.615	1.43
14)	14.90	3.86	0.0137	0.616	1.37
15)	29.95	5.47	0.0143	0.615	1.43
16)	59.92	7.74	0.0143	0.615	1.43
17)	89.90	9.48	0.0143	0.615	1.43
18)	119.92	10.95	0.0148	0.614	1.48
19)	149.92	12.24	0.0143	0.615	1.43
20)	179.92	13.41	0.0143	0.615	1.43
21)	209.92	14.49	0.0143	0.615	1.43
22)	239.92	15.49	0.0143	0.615	1.43
23)	299.90	17.32	0.0148	0.614	1.48
24)	359.92	18.97	0.0148	0.614	1.48
25)	419.92	20.49	0.0148	0.614	1.48
26)	479.90	21.91	0.0148	0.614	1.48
27)	539.92	23.24	0.0148	0.614	1.48
28)	599.93	24.49	0.0148	0.614	1.48
29)	659.90	25.69	0.0148	0.614	1.48
30)	719.90	26.83	0.0148	0.614	1.48
31)	779.90	27.93	0.0148	0.614	1.48
32)	839.92	28.98	0.0148	0.614	1.48
33)	899.90	30.00	0.0148	0.614	1.48
34)	959.90	30.98	0.0148	0.614	1.48
35)	1019.90	31.94	0.0148	0.614	1.48

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID	STRAIN (%)
36)	1079.88	32.86	0.0148	0.614	1.48
37)	1139.92	33.76	0.0153	0.613	1.53
38)	1199.92	34.64	0.0148	0.614	1.48
39)	1259.90	35.50	0.0148	0.614	1.48
40)	1319.90	36.33	0.0148	0.614	1.48
41)	1328.40	36.45	0.0143	0.615	1,43

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0173	0.610	1.73
2)	0.15	0.39	0.0178	0.609	1.78
3)	0.40	0.63	0.0183	0.608	1.83
4)	0.88	0.94	0.0188	0.608	1.88
5)	1.90	1.38	0.0188	0.608	1.88
6)	2.90	1.70	0.0193	0.607	1.93
7)	3.90	1.97	0.0193	0.607	1.93
8)	4.90	2.21	0.0193	0.607	1.93
9)	5.90	2.43	0.0199	0.606	1.99
10)	6.88	2.62	0.0199	0.606	1.99
11)	7.88	2.81	0.0199	0.606	1.99
12)	8.90	2.98	0.0199	0.606	1.99
13)	9.90	3.15	0.0199	0.606	1.99
14)	14.88	3.86	0.0204	0.605	2.04
15)	29.90	5.47	0.0204	0.605	2.04
16)	59.90	7.74	0.0204	0.605	2.04
17)	89.90	9.48	0.0214	0.603	2.14
18)	119.88	10.95	0.0209	0.604	2.09
19)	149.90	12.24	0.0214	0.603	2.14
20)	179.90	13.41	0.0209	0.604	2.09
21)	209.88	14.49	0.0209	0.604	2.09
22)	239.90	15.49	0.0209	0.604	2.09
23)	299.88	17.32	0.0209	0.604	2.09
24)	359.90	18.97	0.0209	0.604	2.09
25)	419.88	20.49	0.0209	0.604	2.09
26)	479.90	21.91	0.0209	0.604	2.09
27)	539.90	23.24	0.0209	0.604	2.09
28)	599.88	24.49	0.0209	0.604	2.09
29)	659.90	25.69	0.0209	0.604	2.09
30)	719.88	26.83	0.0209	0.604	2.09
31)	779.90	27.93	0.0209	0.604	2.09
32)	839.90	28.98	0.0209	0.604	2.09
33)	899.88	30.00	0.0209	0.604	2.09
34)	959.90	30.98	0.0209	0.604	2.09
35)	1019.90	31.94	0.0209	0.604	2.09

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft²) to 2.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.88	32.86	0.0209	0.604	2.09
37)	1139.88	33.76	0.0209	0.604	2.09
38)	1199.90	34.64	0.0209	0.604	2.09
39)	1259.88	35.49	0.0209	0.604	2.09
40)	1319.88	36.33	0.0209	0.604	2.09
41)	1379.90	37.15	0.0209	0.604	2.09
42)	1439.88	37.95	0.0209	0.604	2.09
43)	1499.88	38.73	0.0209	0.604	2.09
44)	1503.95	38.78	0.0209	0.604	2.09

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0255	0.597	2.55
2)	0.13	0.37	0.0260	0.596	2.60
3)	0.38	0.62	0.0265	0.595	2.65
4)	0.88	0.94	0.0270	0.594	2.70
5)	1.88	1.37	0.0275	0.593	2.75
6)	2.90	1.70	0.0280	0.593	2.80
7)	3.88	1.97	0.0285	0.592	2.85
8)	4.90	2.21	0.0285	0.592	2.85
9)	5.90	2.43	0.0290	0.591	2.90
10)	6.88	2.62	0.0285	0.592	2.85
11)	7.88	2.81	0.0285	0.592	2.85
12)	8.88	2.98	0.0290	0.591	2.90
13)	9.88	3.14	0.0290	0.591	2.90
14)	14.88	3.86	0.0295	0.590	2.95
15)	29.88	5.47	0.0295	0.590	2.95
16)	59.90	7.74	0.0300	0.589	3.00
17)	89.88	9.48	0.0300	0.589	3.00
18)	119.88	10.95	0.0300	0.589	3.00
19)	149.88	12.24	0.0300	0.589	3.00
20)	179.88	13.41	0.0300	0.589	3.00
21)	209.90	14.49	0.0300	0.589	3.00
22)	239.88	15.49	0.0300	0.589	3.00
23)	299.90	17.32	0.0300	0.589	3.00
24)	359.88	18.97	0.0300	0.589	3.00
25)	419.88	20.49	0.0300	0.589	3.00
26)	479.88	21.91	0.0300	0.589	3.00
27)	539.88	23.24	0.0300	0.589	3.00
28)	599.90	24.49	0.0300	0.589	3.00
29)	659.87	25.69	0.0300	0.589	3.00
30)	719.88	26.83	0.0300	0.589	3.00
31)	779.88	27.93	0.0305	0.588	3.05
32)	839.88	28.98	0.0305	0.588	3.05
33)	899.92	30.00	0.0305	0.588	3.05
34)	959.88	30.98	0.0305	0.588	3.05
35)	1019.88	31.94	0.0305	0.588	3.05

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0305	0.588	3.05
37)	1139.88	33.76	0.0305	0.588	3.05
38)	1199.88	34.64	0.0305	0.588	3.05
39)	1259.90	35.50	0.0305	0.588	3.05
40)	1319.88	36.33	0.0305	0.588	3.05
41)	1379.88	37.15	0.0305	0.588	3.05
42)	1439.87	37.95	0.0305	0.588	3.05
43)	1499.93	38.73	0.0300	0.589	3.00
44)	1501.02	38.74	0.0310	0.588	3.10

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 13 of 20 Stress increment from 4.00 (t/ft²) to 8.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	·(%)
1)	0.00	0.00	0.0392	0.574	3.92
2)	0.12	0.34	0.0397	0.573	3.97
3)	0.37	0.61	0.0407	0.572	4.07
4)	0.87	0.93	0.0422	0.569	4.22
5)	1.87	1.37	0.0438	0.567	4.38
6)	2.85	1.69	0.0448	0.565	4.48
7)	3.87	1.97	0.0458	0.563	4.58
8)	4.85	2.20	0.0463	0.563	4.63
9)	5.87	2.42	0.0468	0.562	4.68
10)	6.87	2.62	0.0473	0.561	4.73
11)	7.85	2.80	0.0473	0.561	4.73
12)	8.85	2.97	0.0478	0.560	4.78
13)	9.87	3.14	0.0478	0.560	4.78
14)	14.85	3.85	0.0489	0.558	4.89
15)	29.87	5.47	0.0499	0.557	4.99
16)	59.85	7.74	0.0504	0.556	5.04
17)	89.87	9.48	0.0509	0.555	5.09
18)	119.85	10.95	0.0509	0.555	5.09
19)	149.87	12.24	0.0509	0.555	5.09
20)	179.87	13.41	0.0509	0.555	5.09
21)	209.87	14.49	0.0509	0.555	5.09
22)	239.88	15.49	0.0514	0.554	5.14
23)	299.90	17.32	0.0509	0.555	5.09
24)	359.87	18.97	0.0514	0.554	5.14
25)	419.87	20.49	0.0514	0.554	5.14
26)	479.85	21.91	0.0514	0.554	5.14
27)	539.85	23.23	0.0514	0.554	5.14
28)	599.85	24.49	0.0519	0.553	5.19
29)	659.87	25.69	0.0519	0.553	5.19
30)	719.87	26.83	0.0519	0.553	5.19
31)	779.87	27.93	0.0519	0.553	5.19
32)	839.85	28.98	0.0519	0.553	5.19
33)	899.85	30.00	0.0519	0.553	5.19
34)	959.85	30.98	0.0519	0.553	5.19
35)	1019.85	31.94	0.0519	0.553	5.19

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995- ST -1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 13 of 20

Stress increment from 4.00 (t/ft²) to 8.00 (t/ft²)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.87	32.86	0.0519	0.553	5.19
37)	1139.87	33.76	0.0519	0.553	5.19
38)	1199.87	34.64	0.0519	0.553	5.19
39)	1259.87	35.49	0.0519	0.553	5.19
40)	1319.87	36.33	0.0519	0.553	5.19
41)	1379.87	37.15	0.0519	0.553	5.19
42)	1388.23	37.26	0.0519	0.553	5.19

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	a, s

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 14 of 20

Stress increment from 8.00 (t/ft^2) to 16.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
				*	
1)	0.00	0.00	0.0616	0.538	6.16
2)	0.15	0.39	0.0626	0.536	6.26
3)	0.40	0.63	0.0636	0.534	6.36
4)	0.90	0.95	0.0657	0.531	6.57
5)	1.90	1.38	0.0682	0.527	6.82
6)	2.90	1.70	0.0702	0.523	7.02
7)	3.90	1.97	0.0713	0.522	7.13
8)	4.90	2.21	0.0723	0.520	7.23
9)	5.90	2.43	0.0733	0.518	7.33
10)	6.90	2.63	0.0738	0.517	7.38
11)	7.90	2.81	0.0743	0.517	7.43
12)	8.90	2.98	0.0748	0.516	7.48
13)	9.92	3.15	0.0753	0.515	7.53
14)	14.90	3.86	0.0769	0.512	7.69
15)	29.90	5.47	0.0779	0.511	7.79
16)	59.93	7.74	0.0784	0.510	7.84
17)	89.92	9.48	0.0784	0.510	7.84
18)	119.92	10.95	0.0789	0.509	7.89
19)	149.90	12.24	0.0789	0.509	7.89
20)	179.90	13.41	0.0794	0.508	7.94
21)	209.90	14.49	0.0794	0.508	7.94
22)	239.92	15.49	0.0789	0.509	7.89
23)	299.90	17.32	0.0789	0.509	7.89
24)	359.90	18.97	0.0794	0.508	7.94
25)	419.90	20.49	0.0794	0.508	7.94
26)	479.90	21.91	0.0794	0.508	7.94
27)	539.92	23.24	0.0799	0.507	7.99
28)	599.93	24.49	0.0794	0.508	7.94
29)	659.90	25.69	0.0794	0.508	7.94
30)	719.92	26.83	0.0794	0.508	7.94
31)	779.90	27.93	0.0799	0.507	7.99
32)	839.90	28.98	0.0799	0.507	7.99
33)	899.90	30.00	0.0799	0.507	7.99
34)	959.88	30.98	0.0799	0.507	7.99
35)	1019.90	31.94	0.0799	0.507	7.99

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 14 of 20 Stress increment from 8.00 (t/ft²) to 16.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME (min)	SQRT. OF TIME (min)	CHANGE IN HEIGHT (in)	VOID RATIO	STRAIN (%)
36)	1079.88	32.86	0.0799	0.507	7.99
37)	1139.92	33.76	0.0794	0.508	7.94
38)	1199.88	34.64	0.0799	0.507	7.99
39)	1259.90	35.50	0.0794	0.508	7.94
40)	1319.90	36.33	0.0799	0.507	7.99
41)	1379.92	37.15	0.0799	0.507	7.99
42)	1439.90	37.95	0.0799	0.507	7.99
43)	1456.82	38.17	0.0799	0.507	7.99

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 15 of 20

Stress increment from 16.00 (t/ft^2) to 32.00 (t/ft^2) $\,$

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0000	0 400	0.00
1) 2)		0.00	0.0896	0.492	8.96
3)	0.15 0.40	0.39	0.0911	0.489	9.11
4)	0.40		0.0931	0.486	9.31
4) 5)	1.90	0.96	0.0962	0.481	9.62
6)	2.90		0.0998	0.475	9.98
7)	3.90	1.70	0.1018	0.472	10.18
		1.97	0.1038	0.468	10.38
8) 9)	4.90 5.92	2.21	0.1054	0.466	10.54
	6.92	2.43	0.1064	0.464	10.64
10)		2.63	0.1074	0.462	10.74
11)	7.90	2.81	0.1084	0.461	10.84
12)	8.92	2.99	0.1089	0.460	10.89
13)	9.90	3.15	0.1099	0.458	10.99
14)	14.90	3.86	0.1110	0.457	11.10
15)	29.92	5.47	0.1130	0.453	11.30
16)	59.90	7.74	0.1135	0.452	11.35
17)	89.90	9.48	0.1140	0.452	11.40
18)	119.92	10.95	0.1140	0.452	11.40
19)	149.92	12.24	0.1145	0.451	11.45
20)	179.90	13.41	0.1145	0.451	11.45
21)	209.88	14.49	0.1145	0.451	11.45
22)	239.90	15.49	0.1150	0.450	11.50
23)	299.90	17.32	0.1150	0.450	11.50
24)	359.93	18.97	0.1150	0.450	11.50
25)	419.90	20.49	0.1150	0.450	11.50
26)	479.90	21.91	0.1150	0.450	11.50
27)	539.90	23.24	0.1155	0.449	11.55
28)	599.90	24.49	0.1155	0.449	11.55
29)	659.90	25.69	0.1155	0.449	11.55
30)	719.93	26.83	0.1155	0.449	11.55
31)	779.92	27.93	0.1161	0.448	11.61
32)	839.88	28.98	0.1161	0.448	11.61
33)	899.90	30.00	0.1155	0.449	11.55
34)	959.93	30.98	0.1161	0.448	11.61
35)	1019.90	31.94	0.1161	0.448	11.61

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 15 of 20

Stress increment from 16.00 $(t/{\rm ft}^2)$ to 32.00 $(t/{\rm ft}^2)$

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.1161	0.448	11.61
37)	1139.90	33.76	0.1161	0.448	11.61
38)	1199.90	34.64	0.1161	0.448	11.61
39)	1259.88	35.49	0.1161	0.448	11.61
40)	1319.90	36.33	0.1161	0.448	11.61
41)	1379.90	37.15	0.1150	0.450	11.50
42)	1439.48	37.94	0.1161	0.448	11.61

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 16 of 20

Stress increment from 32.00 $(t/{\rm ft}^2)$ to 16.00 $(t/{\rm ft}^2)$

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
	()			141110	(0)
1)	0.00	0.00	0.1099	0.458	10.99
2)	0.17	0.41	0.1094	0.459	10.94
3)	0.42	0.65	0.1089	0.460	10.89
4)	0.92	0.96	0.1089	0.460	10.89
5)	1.90	1.38	0.1084	0.461	10.84
6)	2.92	1.71	0.1079	0.462	10.79
7)	3.90	1.97	0.1079	0.462	10.79
8)	4.90	2.21	0.1079	0.462	10.79
9)	5.90	2.43	0.1084	0.461	10.84
10)	6.92	2.63	0.1079	0.462	10.79
11)	7.92	2.81	0.1079	0.462	10.79
12)	8.90	2.98	0.1079	0.462	10.79
13)	9.92	3.15	0.1074	0.462	10.74
14)	14.90	3.86	0.1074	0.462	10.74
15)	29.93	5.47	0.1079	0.462	10.79
16)	59.92	7.74	0.1079	0.462	10.79
17)	89.90	9.48	0.1079	0.462	10.79
18)	119.92	10.95	0.1074	0.462	10.74
19)	149.90	12.24	0.1074	0.462	10.74
20)	179.90	13.41	0.1074	0.462	10.74
21)	209.90	14.49	0.1074	0.462	10.74
22)	239.90	15.49	0.1074	0.462	10.74
23)	299.90	17.32	0.1074	0.462	10.74
24)	359.93	18.97	0.1074	0.462	10.74
25)	419.90	20.49	0.1074	0.462	10.74
26)	479.90	21.91	0.1074	0.462	10.74
27)	539.90	23.24	0.1074	0.462	10.74
28)	599.90	24.49	0.1074	0.462	10.74
29)	659.92	25.69	0.1074	0.462	10.74
30)	719.88	26.83	0.1074	0.462	10.74
31)	779.92	27.93	0.1074	0.462	10.74
32)	839.90	28.98	0.1074	0.462	10.74
33)	899.88	30.00	0.1074	0.462	10.74
34)	959.92	30.98	0.1079	0.462	10.79
35)	1019.90	31.94	0.1074	0.462	10.74

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 16 of 20 Stress increment from 32.00 (t/ft²) to 16.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.92	32.86	0.1074	0.462	10.74
37)	1139.90	33.76	0.1074	0.462	10.74
38)	1199.90	34.64	0.1074	0.462	10.74
39)	1259.90	35.50	0.1074	0.462	10.74
40)	1319.90	36.33	0.1074	0.462	10.74
41)	1379.90	37.15	0.1074	0.462	10.74
42)	1437.65	37.92	0.1074	0.462	10.74

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 17 of 20

Stress increment from 16.00 (t/ft^2) to 8.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.1018	0.472	10.18
2)	0.13	0.37	0.1013	0.472	10.13
3)	0.40	0.63	0.1008	0.473	10.08
4)	0.90	0.95	0.1003	0.474	10.03
5)	1.88	1.37	0.0998	0.475	9.98
6)	2.88	1.70	0.0993	0.476	9.93
7)	3.92	1.98	0.0987	0.477	9.87
8)	4.90	2.21	0.0987	0.477	9.87
9)	5.88	2.43	0.0987	0.477	9.87
10)	6.88	2.62	0.0987	0.477	9.87
11)	7.88	2.81	0.0987	0.477	9.87
12)	8.90	2.98	0.0982	0.477	9.82
13)	9.90	3.15	0.0982	0.477	9.82
14)	14.92	3.86	0.0977	0.478	9.77
15)	29.88	5.47	0.0982	0.477	9.82
16)	59.90	7.74	0.0982	0.477	9.82
17)	89.88	9.48	0.0982	0.477	9.82
18)	119.90	10.95	0.0977	0.478	9.77
19)	149.88	12.24	0.0977	0.478	9.77
20)	179.88	13.41	0.0977	0.478	9.77
21)	209.88	14.49	0.0977	0.478	9.77
22)	239.92	15.49	0.0977	0.478	9.77
23)	299.88	17.32	0.0977	0.478	9.77
24)	359.88	18.97	0.0977	0.478	9.77
25)	419.88	20.49	0.0977	0.478	9.77
26)	479.90	21.91	0.0977	0.478	9.77
27)	539.90	23.24	0.0977	0.478	9.77
28)	599.88	24.49	0.0977	0.478	9.77
29)	659.88	25.69	0.0977	0.478	9.77
30)	719.88	26.83	0.0977	0.478	9.77
31)	779.90	27.93	0.0977	0.478	9.77
32)	839.88	28.98	0.0977	0.478	9.77
33)	899.88	30.00	0.0977	0.478	9.77
34)	959.90	30.98	0.0977	0.478	9.77
35)	1019.88	31.94	0.0977	0.478	9.77

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring Nc.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 17 of 20 Stress increment from 16.00 (t/ft²) to 8.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.92	32.86	0.0977	0.478	9.77
37)	1139.90	33.76	0.0977	0.478	9.77
38)	1199.88	34.64	0.0972	0.479	9.72
39)	1259.88	35.49	0.0972	0.479	9.72
40)	1319.88	36.33	0.0977	0.478	9.77
41)	1379.90	37.15	0.0977	0.478	9.77
42)	1439.88	37.95	0.0977	0.478	9.77
43)	1499.88	38.73	0.0972	0.479	9.72
44)	1543.13	39.28	0.0967	0.480	9.67

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 18 of 20

Stress increment from 8.00 (t/ft^2) to 4.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0921	0.487	9.21
2)	0.15	0.39	0.0916	0.488	9.16
3)	0.42	0.65	0.0916	0.488	9.16
4)	0.92	0.96	0.0906	0.490	9.06
5)	1.90	1.38	0.0901	0.491	9.01
6)	2.90	1.70	0.0896	0.492	8.96
7)	3.92	1.98	0.0896	0.492	8.96
8)	4.92	2.22	0.0891	0.492	8.91
9)	5.92	2.43	0.0891	0.492	8.91
10)	6.90	2.63	0.0886	0.493	8.86
11)	7.90	2.81	0.0881	0.494	8.81
12)	8.90	2.98	0.0881	0.494	8.81
13)	9.90	3.15	0.0881	0.494	8.81
14)	14.90	3.86	0.0875	0.495	8.75
15)	29.90	5.47	0.0870	0.496	8.70
16)	59.92	7.74	0.0865	0.497	8.65
17)	89.92	9.48	0.0870	0.496	8.70
18)	119.90	10.95	0.0860	0.497	8.60
19)	149.90	12.24	0.0865	0.497	8.65
20)	179.92	13.41	0.0860	0.497	8.60
21)	209.90	14.49	0.0860	0.497	8.60
22)	239.90	15.49	0.0860	0.497	8.60
23)	299.90	17.32	0.0860	0.497	8.60
24)	359.90	18.97	0.0860	0.497	8.60
25)	419.90	20.49	0.0860	0.497	8.60
26)	479.92	21.91	0.0855	0.498	8.55
27)	539.90	23.24	0.0855	0.498	8.55
28)	599.90	24.49	0.0855	0.498	8.55
29)	659.90	25.69	0.0855	0.498	8.55
30)	719.90	26.83	0.0855	0.498	8.55
31)	779.92	27.93	0.0855	0.498	8.55
32)	839.90	28.98	0.0855	0.498	8.55
33)	899.90	30.00	0.0855	0.498	8.55
34)	959.90	30.98	0.0855	0.498	8.55
35)	1019.90	31.94	0.0855	0.498	8.55

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft²) to 4.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.92	32.86	0.0855	0.498	8.55
37)	1139.90	33.76	0.0855	0.498	8.55
38)	1199.90	34.64	0.0855	0.498	8.55
39)	1259.90	35.50	0.0855	0.498	8.55
40)	1319.90	36.33	0.0855	0.498	8.55
41)	1379.90	37.15	0.0850	0.499	8.50
42)	1439.90	37.95	0.0855	0.498	8.55
43)	1499.90	38.73	0.0850	0.499	8.50
44)	1559.90	39.50	0.0855	0.498	8.55
45)	1619.90	40.25	0.0855	0.498	8.55
46)	1679.90	40.99	0.0855	0.498	8.55
47)	1739.90	41.71	0.0850	0.499	8.50
48)	1799.90	42.43	0.0850	0.499	8.50
49)	1859.90	43.13	0.0850	0.499	8.50
50)	1919.90	43.82	0.0850	0.499	8.50
51)	1979.90	44.50	0.0855	0.498	8.55
52)	2039.90	45.17	0.0850	0.499	8.50
53)	2099.88	45.82	0.0850	0.499	8.50
54)	2159.90	46.47	0.0855	0.498	8.55
55)	2219.90	47.12	0.0855	0.498	8.55
56)	2279.88	47.75	0.0850	0.499	8.50
57)	2339.90	48.37	0.0855	0.498	8.55
58)	2399.88	48.99	0.0855	0.498	8.55
59)	2459.90	49.60	0.0855	0.498	8.55
60)	2519.90	50.20	0.0855	0.498	8.55
61)	2579.88	50.79	0.0855	0.498	8.55
62)	2639.90	51.38	0.0850	0.499	8.50
63)	2699.88	51.96	0.0855	0.498	8.55
64)	2759.90	52.53	0.0850	0.499	8.50
65)	2812.53	53.03	0.0855	0.498	8.55

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995- S T-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 19 of 20

Stress increment from 4.00 (t/ft^2) to 2.00 (t/ft^2) $\,$

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0819	0.504	8.19
2)	0.15	0.39	0.0814	0.505	8.14
3)	0.40	0.63	0.0809	0.506	8.09
4)	0.90	0.95	0.0809	0.506	8.09
5)	1.90	1.38	0.0799	0.507	7.99
6)	2.90	1.70	0.0794	0.508	7.94
7)	3.90	1.97	0.0794	0.508	7.94
8)	4.90	2.21	0.0789	0.509	7.89
9)	5.90	2.43	0.0789	0.509	7.89
10)	6.92	2.63	0.0784	0.510	7.84
11)	7.90	2.81	0.0789	0.509	7.89
12)	8.90	2.98	0.0779	0.511	7.79
13)	9.90	3.15	0.0779	0.511	7.79
14)	14.90	3.86	0.0774	0.512	7.74
15)	29.90	5.47	0.0764	0.513	7.64
16)	59.90	7.74	0.0758	0.514	7.58
17)	89.92	9.48	0.0753	0.515	7.53
18)	119.90	10.95	0.0748	0.516	7.48
19)	149.90	12.24	0.0748	0.516	7.48
20)	179.90	13.41	0.0743	0.517	7.43
21)	209.93	14.49	0.0743	0.517	7.43
22)	239.90	15.49	0.0743	0.517	7.43
23)	299.92	17.32	0.0743	0.517	7.43
24)	359.90	18.97	0.0743	0.517	7.43
25)	419.90	20.49	0.0743	0.517	7.43
26)	479.90	21.91	0.0738	0.517	7.38
27)	539.88	23.24	0.0743	0.517	7.43
28)	599.90	24.49	0.0743	0.517	7.43
29)	659.90	25.69	0.0743	0.517	7.43
30)	719.90	26.83	0.0743	0.517	7.43
31)	779.88	27.93	0.0738	0.517	7.38
32)	839.90	28.98	0.0738	0.517	7.38
33)	899.88	30.00	0.0738	0.517	7.38
34)	959.90	30.98	0.0738	0.517	7.38
35)	1019.88	31.94	0.0738	0.517	7.38

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 19 of 20

Stress increment from 4.00 (t/ft^2) to 2.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0738	0.517	7.38
37)	1139.88	33.76	0.0738	0.517	7.38
38)	1199.90	34.64	0.0738	0.517	7.38
39)	1259.90	35.50	0.0738	0.517	7.38
40)	1319.90	36.33	0.0738	0.517	7.38
41)	1379.90	37.15	0.0733	0.518	7.33
42)	1407.72	37.52	0.0733	0.518	7.33

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample No.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft^2) to 1.00 (t/ft^2)

Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
1)	0.00	0.00	0.0708	0.523	7.08
2)	0.15	0.39	0.0702	0.523	7.02
3)	0.42	0.65	0.0702	0.523	7.02
4)	0.90	0.95	0.0697	0.524	6.97
5)	1.92	1.38	0.0697	0.524	6.97
6)	2.93	1:71	0.0692	0.525	6.92
7)	3.90	1.97	0.0687	0.526	6.87
8)	4.92	2.22	0.0687	0.526	6.87
9)	5.95	2.44	0.0682	0.527	6.82
10)	6.90	2.63	0.0682	0.527	6.82
11)	7.90	2.81	0.0687	0.526	6.87
12)	8.90	2.98	0.0677	0.528	6.77
13)	9.92	3.15	0.0677	0.528	6.77
14)	14.92	3.86	0.0667	0.529	6.67
15)	29.90	5.47	0.0662	0.530	6.62
16)	59.92	7.74	0.0646	0.533	6.46
17)	89.92	9.48	0.0636	0.534	6.36
18)	119.90	10.95	0.0636	0.534	6.36
19)	149.92	12.24	0.0631	0.535	6.31
20)	179.90	13.41	0.0631	0.535	6.31
21)	209.92	14.49	0.0631	0.535	6.31
22)	239.92	15.49	0.0626	0.536	6.26
23)	299.92	17.32	0.0626	0.536	6.26
24)	359.90	18.97	0.0621	0.537	6.21
25)	419.92	20.49	0.0621	0.537	6.21
26)	479.92	21.91	0.0621	0.537	6.21
27)	539.90	23.24	0.0621	0.537	6.21
28)	599.92	24.49	0.0621	0.537	6.21
29)	659.90	25.69	0.0621	0.537	6.21
30)	719.92	26.83	0.0621	0.537	6.21
31)	779.90	27.93	0.0616	0.538	6.16
32)	839.92	28.98	0.0616	0.538	6.16
33)	899.90	30.00	0.0621	0.537	6.21
34)	959.90	30.98	0.0621	0.537	6.21
35)	1019.92	31.94	0.0621	0.537	6.21

CONSOLIDATION TEST DATA

Project : EMDF Characterization	Location : GW995-ST-1, 2.5'-4.5'	Project No.: 183923
Boring No.: GW995-ST-1	Tested by : BMI: blc	Checked by : KAF
Sample Nc.: GW995-ST-1	Test Date : 3-15-18	Depth : 3.8'-4.0'
Test No. : GW995-ST-1	Sample Type: Undisturb	

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft²) to 1.00 (t/ft²) Start Date : Start Time :

	ELAPSED TIME	SQRT. OF	CHANGE IN	VOID	STRAIN
	(min)	TIME (min)	HEIGHT (in)	RATIO	(%)
36)	1079.90	32.86	0.0616	0.538	6.16
37)	1139.93	33.76	0.0616	0.538	6.16
38)	1199.92	34.64	0.0621	0.537	6.21
39)	1259.92	35.50	0.0616	0.538	6.16
40)	1319.92	36.33	0.0616	0.538	6.16
41)	1379.90	37.15	0.0616	0.538	6.16
42)	1420.95	37.70	0.0616	0.538	6.16

BOWSER-MORNER, INC.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377
 Report Date:
 May 24, 2018

 Job No.:
 183923

 Report No.:
 430281

 No. of Pages:
 1 + Appendix

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW995 - ST-2, 6.0'-8.0' – Sample Date: 2/20/18 Depth of Test Specimen: 6.3'-6.5'

On March 5, 2018, one shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with ASTM D 2435, "One-Dimensional Consolidation Properties of Soils Using Incremental Loading".

Results are summarized in the following table. Consolidation data is detailed in Appendix I.

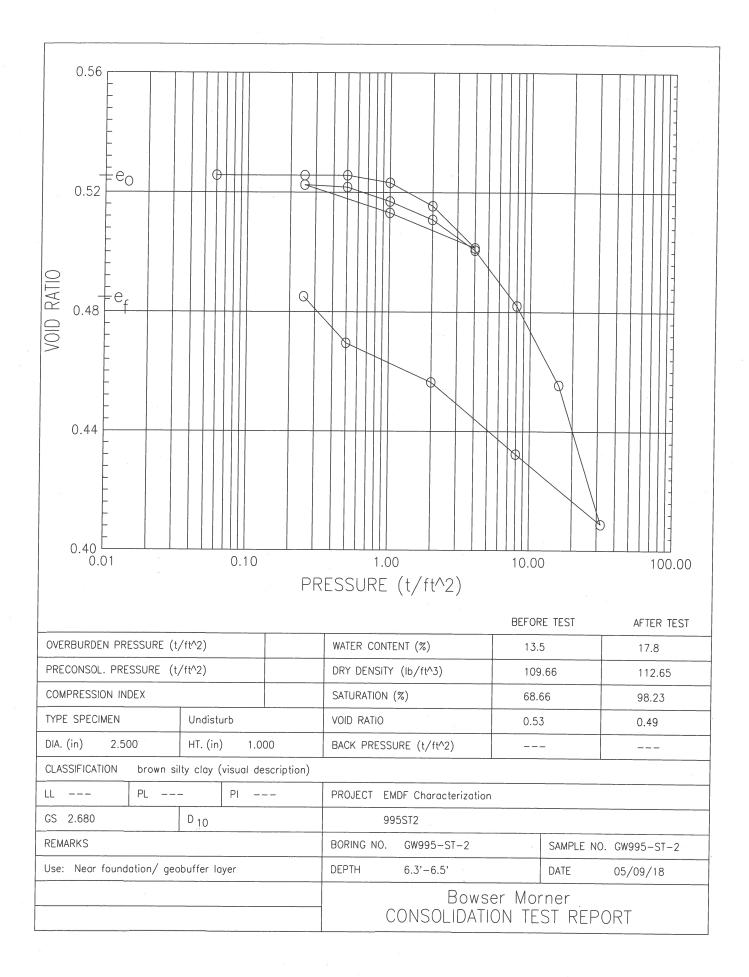
Test Parameter	Before Test	After Test	
Moisture Content, %:	13.5	17.8	
Dry Density, pcf:	109.66	112.65	
Saturation, %:	68.66	98.23	
Void Ratio:	0.53	0.49	
Apparent Specific Gravity:	2.680		

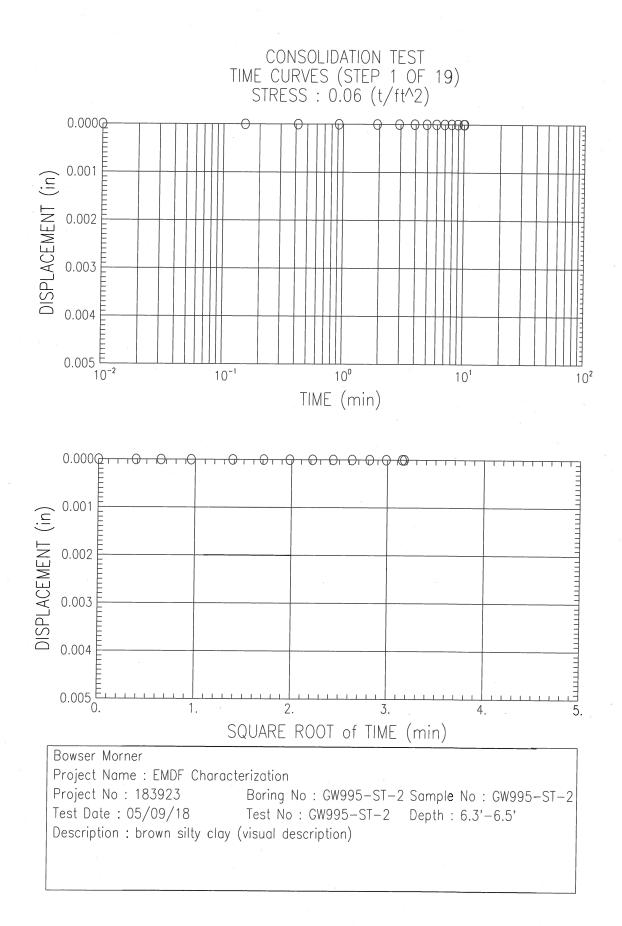
Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories


KAF/blc 430281 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com Report To: Project: CTI and Associates EMDF Characterization


Sample ID: GW995-ST-2, 6.0'-8.0'

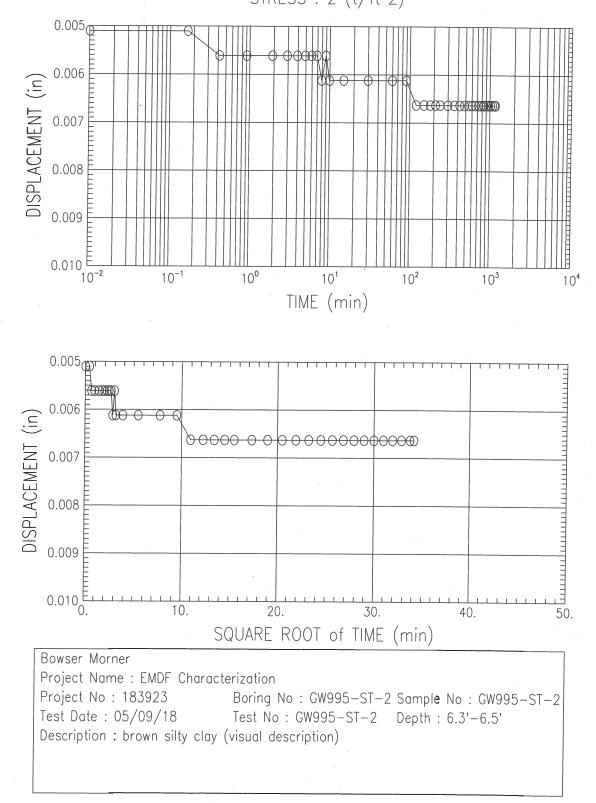
BMI Job No.: 183923 BMI Report No.: 430281

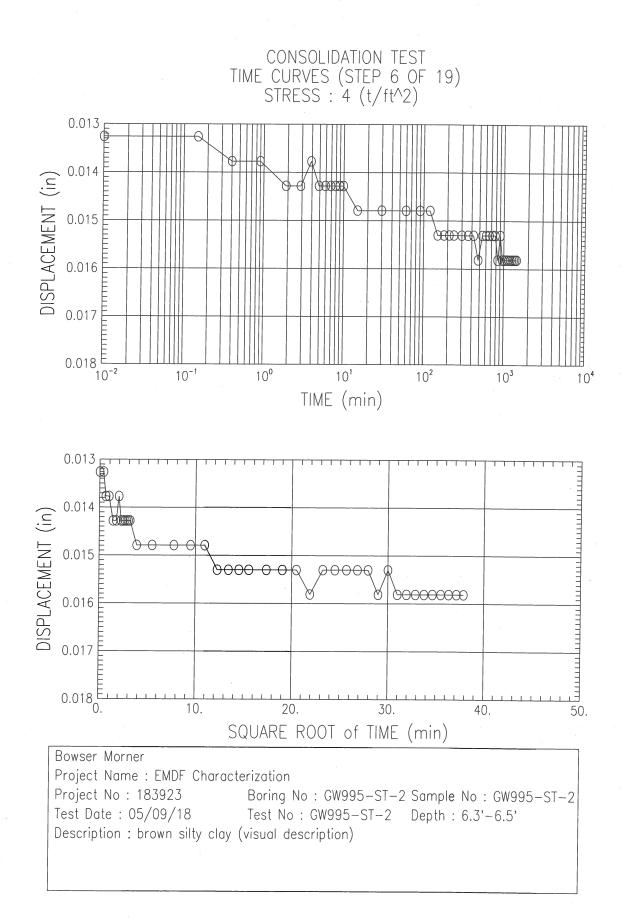
Appendix I

BOWSER

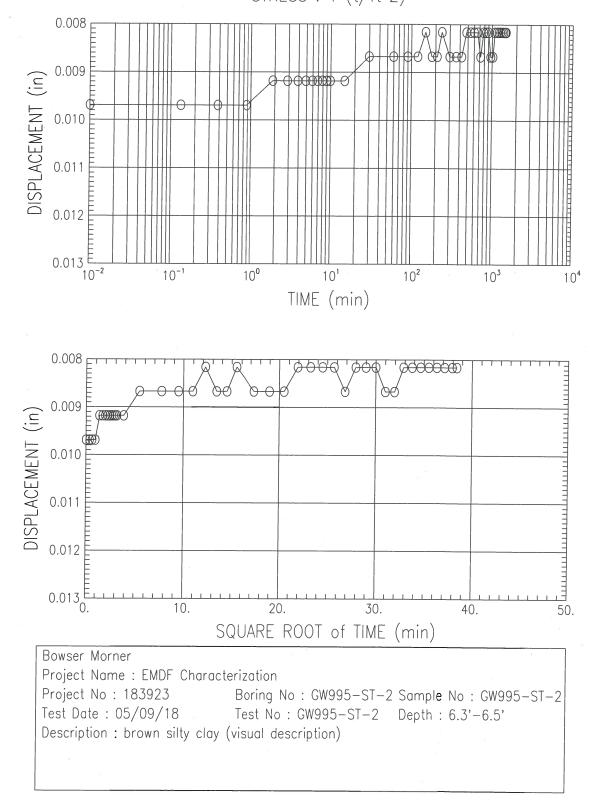


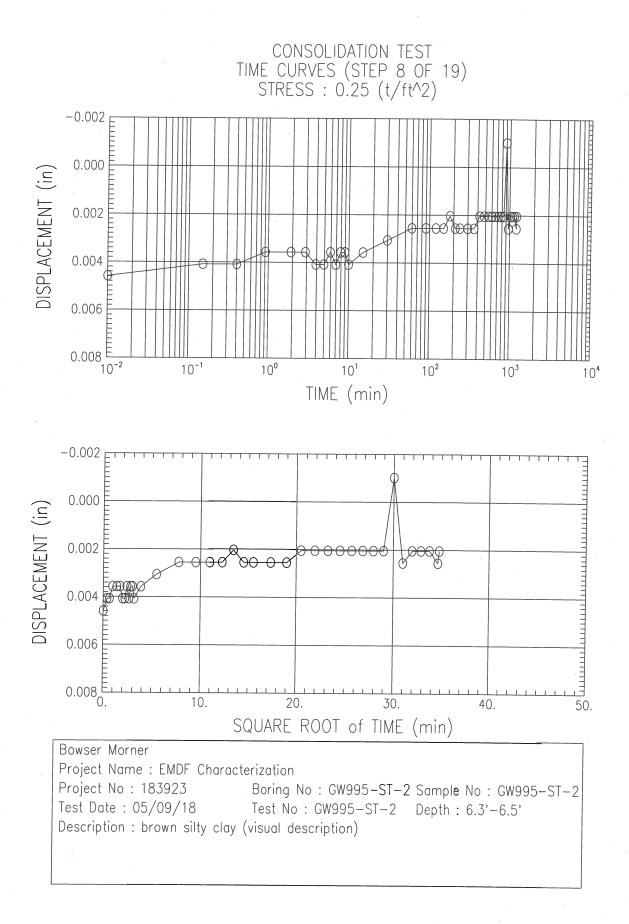
F-277


CONSOLIDATION TEST TIME CURVES (STEP 2 OF 19) STRESS : 0.25 (t/ft^2) -0.001 0M 0.000 DISPLACEMENT (in) 0.001 0.002 0.003 0.004 E 10⁻¹ 10-2 10° 10¹ 10^{2} 10^{3} TIME (min) -0.001 F 0.000 DISPLACEMENT (in) 0.001 0.002 0.003 0.004 ^E Ē 5. 10. 15. 20. 25. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No: 183923 Boring No : GW995-ST-2 Sample No : GW995-ST-2 Test Date : 05/09/18 Test No : GW995-ST-2 Depth : 6.3'-6.5' Description : brown silty clay (visual description)

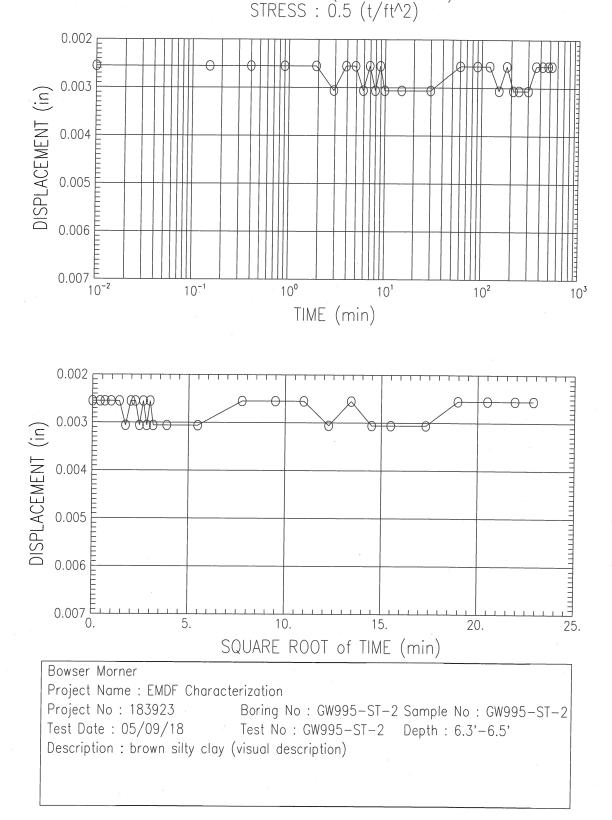

CONSOLIDATION TEST TIME CURVES (STEP 3 OF 19) STRESS : $0.5 (t/ft^2)$ 0.000Q 0.001 DISPLACEMENT (in) 0.002 0.003 0.004 0.005 E 10-2 10^{-1} 10° 10¹ 10^{2} 10^{3} 10⁴ TIME (min) 0.001 DISPLACEMENT (in) 0.002 0.003 0.004 0.005 ^L0 -20. 10. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW995-ST-2 Sample No : GW995-ST-2 Test Date : 05/09/18 Test No : GW995-ST-2 Depth : 6.3'-6.5' Description : brown silty clay (visual description)

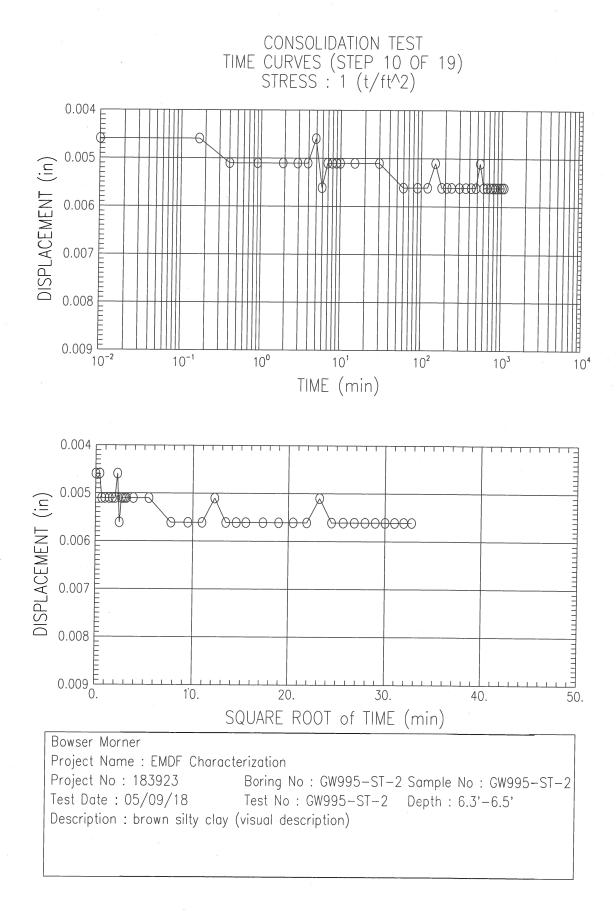
CONSOLIDATION TEST TIME CURVES (STEP 4 OF 19) STRESS : 1 (t/ft^2)

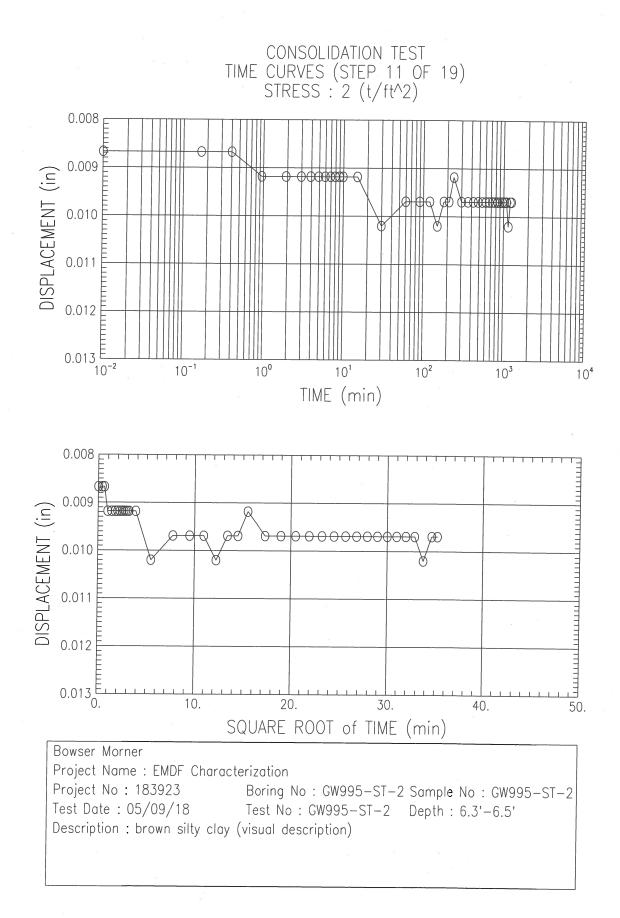

CONSOLIDATION TEST TIME CURVES (STEP 5 OF 19) STRESS : 2 (t/ft^2)



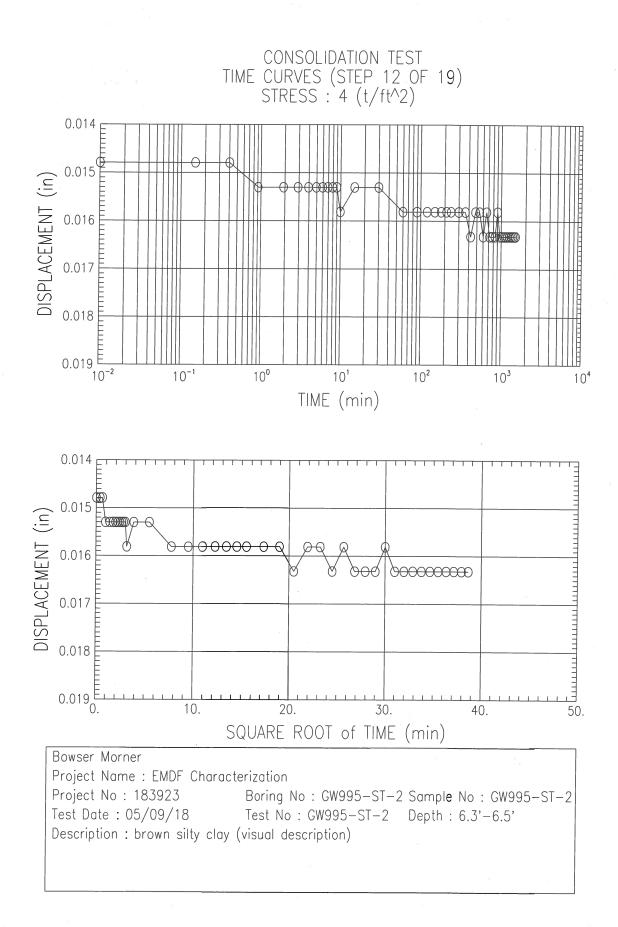
F-282

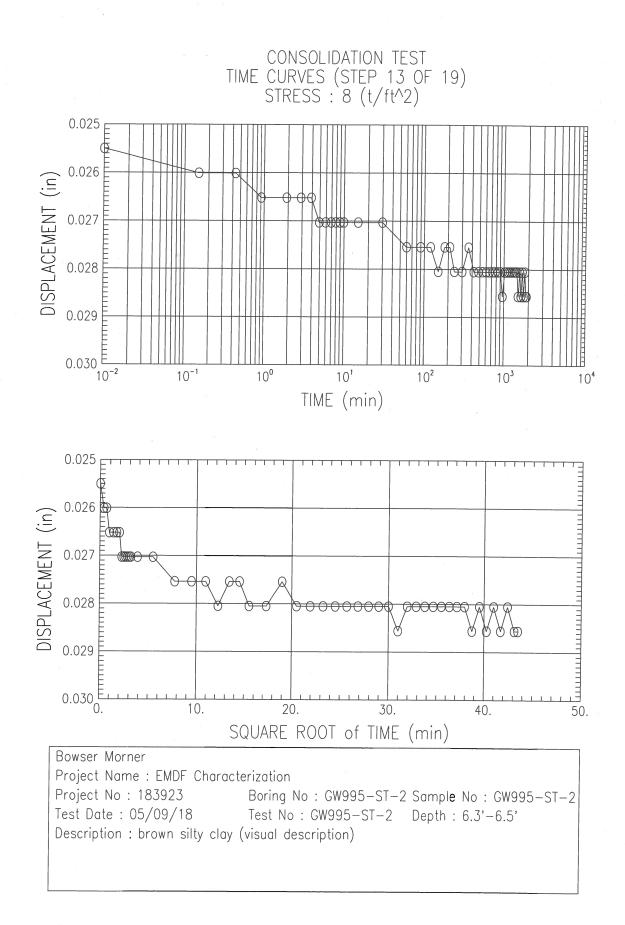

CONSOLIDATION TEST TIME CURVES (STEP 7 OF 19) STRESS : 1 (t/ft^2)

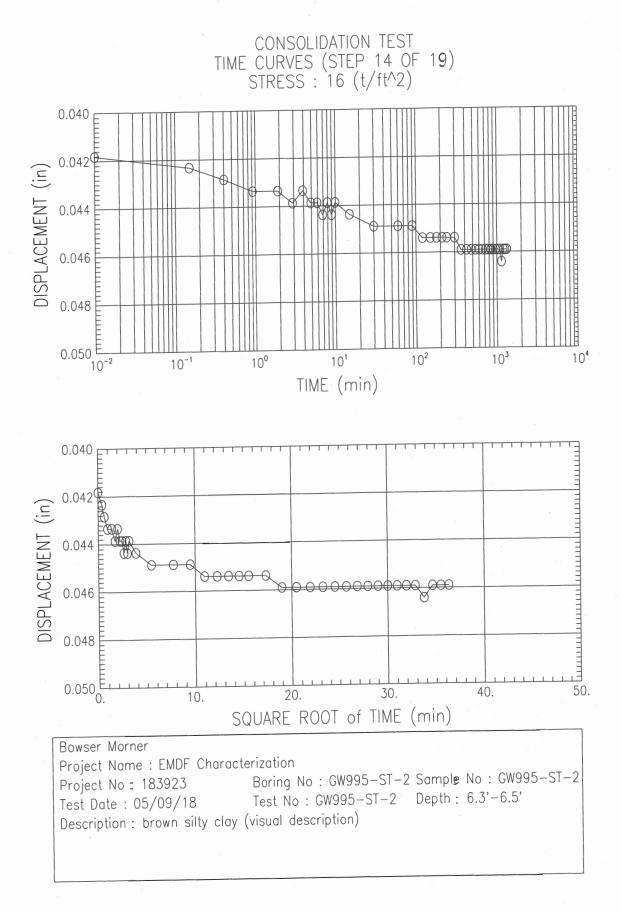


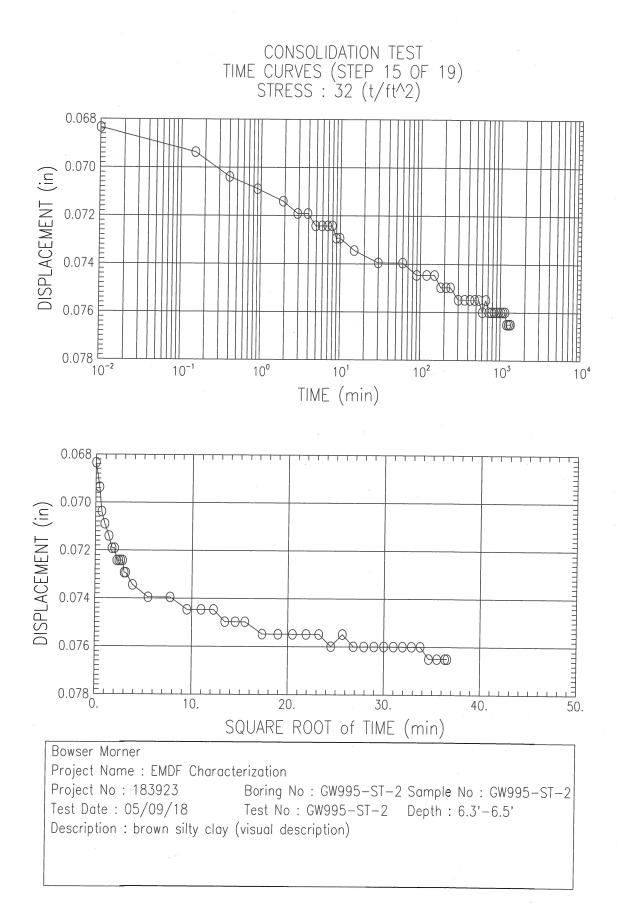


F-284

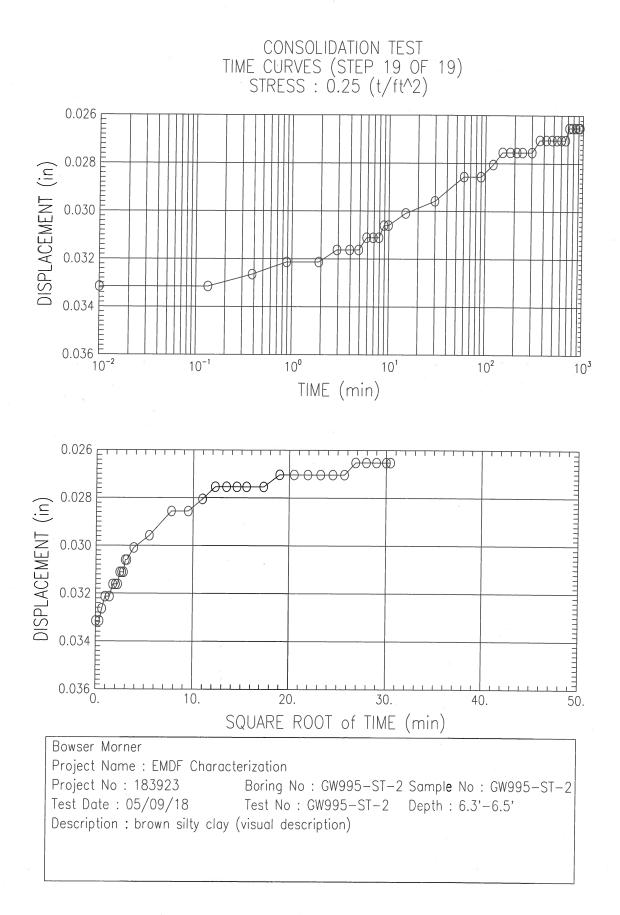

CONSOLIDATION TEST TIME CURVES (STEP 9 OF 19)







F-287



CONSOLIDATION TEST TIME CURVES (STEP 16 OF 19) STRESS : $8 (t/ft^2)$ 0.061 0.062 DISPLACEMENT (in) F 0.063 ሐ 0.064 0.065 0.066 <u>E</u> 10⁻² 10⁻¹ 10⁰ 10¹ 10^{2} 10³ 104 TIME (min) 0.061 00000€ 0.062 DISPLACEMENT (in) ~ 0.063 0.064 0.065 0.066 0 10. 20. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW995-ST-2 Sample No : GW995-ST-2 Test Date : 05/09/18 Test No : GW995-ST-2 Depth : 6.3'-6.5' Description : brown silty clay (visual description)

CONSOLIDATION TEST TIME CURVES (STEP 18 OF 19) STRESS : 0.5 (t/ft^2) 0.036 ADDAD 0.038 DISPLACEMENT (in) 0.040 0.042 0.044 0.046 <u>–</u> 10⁻² 10⁻¹ 10⁰ 10¹ 10³ 10^{2} 104 TIME (min) 0.036 0.038 DISPLACEMENT (in) 0.040 0.042 0.044 Ē 0.046 0 10. 20. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No: 183923 Boring No : GW995-ST-2 Sample No : GW995-ST-2 Test Date : 05/09/18 Test No : GW995-ST-2 Depth : 6.3'-6.5' Description : brown silty clay (visual description)

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377
 Report Date:
 May 17, 2018

 Job No.:
 183923

 Report No.:
 430272

 No. of Pages:
 3

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW995 – ST-2, 6.0'-8.0' – Sample Date: 2/22/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with ASTM D 4767, "Consolidated-Undrained Triaxial Compression Test on Cohesive Soils".

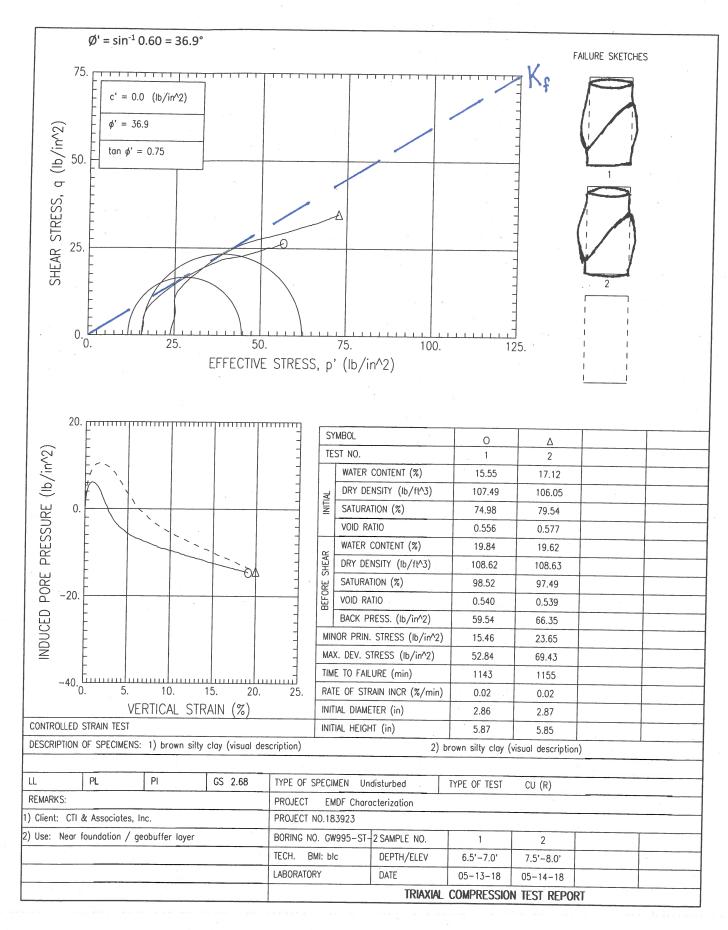
Results are summarized below and detailed on the attached data sheets.

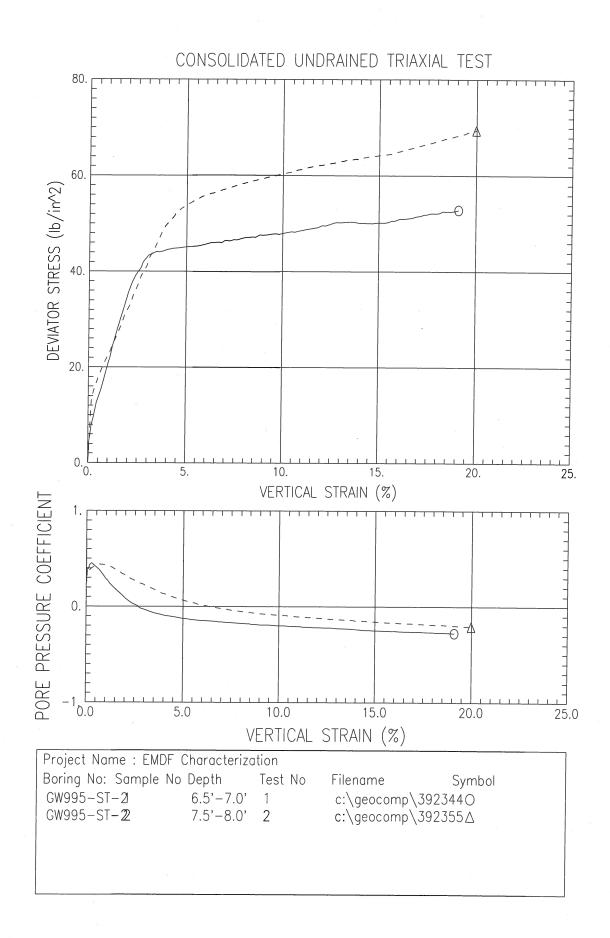
Test Parameter	Test No.1	Test No. 2	Test No. 3	
Dry Density, pcf:	107.9	106.05	No Test	
Moisture Content, %:	15.55	17.12	No Test	
Minor Principle Stress, psi:	15.46	23.65	No Test	
Maximum Deviator Stress, psi:	52.84	69.43	No Test	
Cohesion (c'), psi:	-	0.0		
phi Angle (Ø'):	36.9			
Apparent Specific Gravity:	2.68			

Note: Two triaxial points were tested instead of three due to insufficient amount of sample.

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805 extension 322.

Respectfully submitted,


BOWSER-MORNER. IN


Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430272 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-296

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowsermorner.com/accreditations for reviews.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377

Report Date: May 4, 2018 Job No.: 183923 **Report No.:** 430252 No. of Pages: 2

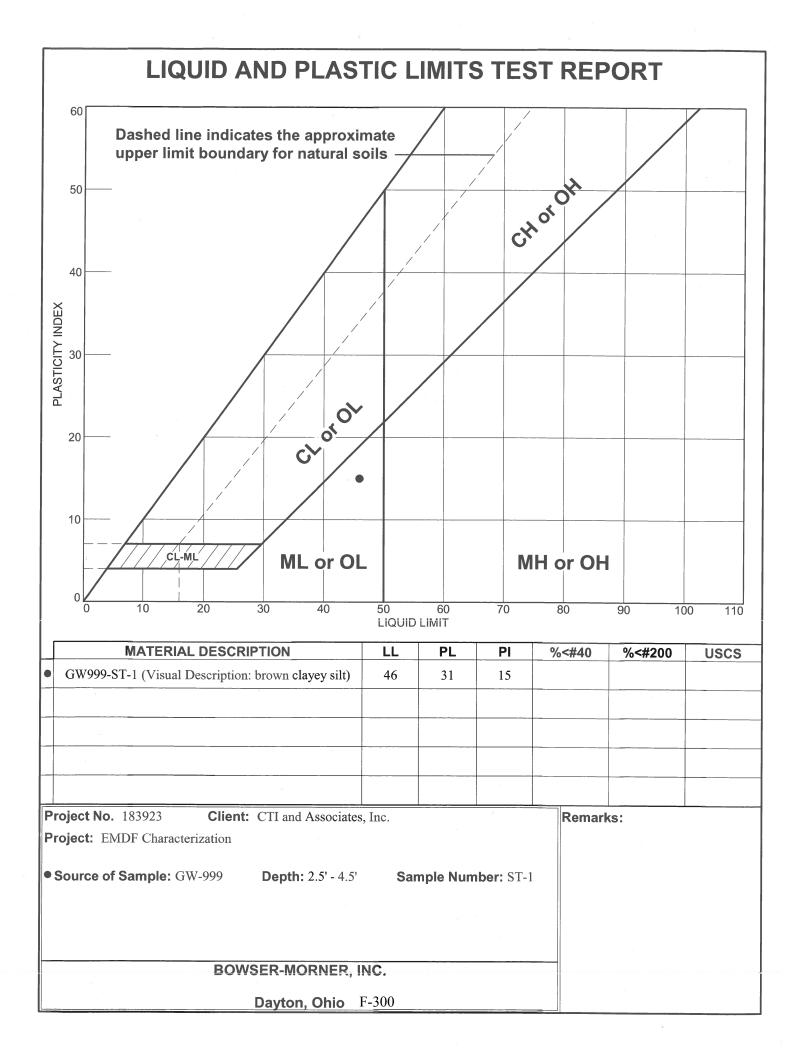
Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization - Project No. 1188070011 Sample ID: GW999 - ST-1, 2.5'-4.5' - Sample Date: 2/20/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the ASTM D 4318, "Liquid Limit, Plastic Limit, and Plasticity Index of Soils".

Results are presented in the following table and detailed on the attached data sheet.

Test Parameter	Results	
Liquid Limit:	46	
Plastic Limit:	31	
Plasticity Index:	15	

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.


Respectfully submitted,

BOWSER-MORNER, INC

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430252 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-299 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for review.

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377

Report Date: May 3, 2018 Job No.: 183923 **Report No.:** 430247 No. of Pages: 2

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization - Project No. 1188070011 Sample ID: GW999 - ST-2, 5.0'-5.85' - Sample Date: 2/20/18 Depth of Test Specimen: 5.0'-5.3'

On March 5, 2018, one Shelby tube sample was submitted for laboratory determination of permeability. Testing was performed as specified by the client and in accordance with ASTM D 5084. "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter".

Results are presented in the following table.

Test Parameter	Results		
Average Permeability, cm/sec:	3.9 x 10 ⁻⁸		

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430247 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

F-301 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

FALLING HEAD PERMEABILITY TEST

ASTM D 5084, Measurement of Hydraulic Conductivity

UNDISTURBED

Client:	CTI & Associates, Inc.
Project:	EMDF Characterization
BMI Work Order Number:	183923
Sample Identification:	GW999-ST-2, 5.0'-5.85'
Depth, ft:	5.0'-5.3'
Visual Description:	Saprolite

SPECIMEN DATA:

Dimension, inches Height: Diameter:	3.08 2.863
Mass, lbs:	1.458
Moisture Content,% Initial: Final:	21.4 25.0
Wet Unit Weight, pcf Initial: Final:	127.1 130.9
Initial Dry Unit Weight, pcf:	104.7
Back Pressure Saturation, psi Back Pressure, Exit: Back Pressure, Enter: Lateral Pressure:	60 63 67

Permeability (k), cm/sec:

3.9 x 10⁻⁸

Appendix F.4 – Rock Core Specimen Testing

This Page Intentionally Left Blank.

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

LABORATORY REPORT

Report To: CTI and Associates Attn: Kevin Foye 28001 Cabot Drive, Suite 250 Novi, MI 48477

 Report Date:
 04/18/18

 Job No.:
 183740

 Report No.:
 301273

 No. of Pages:
 8

Source: EMDF Characterization

Date Submitted: 03/01/18

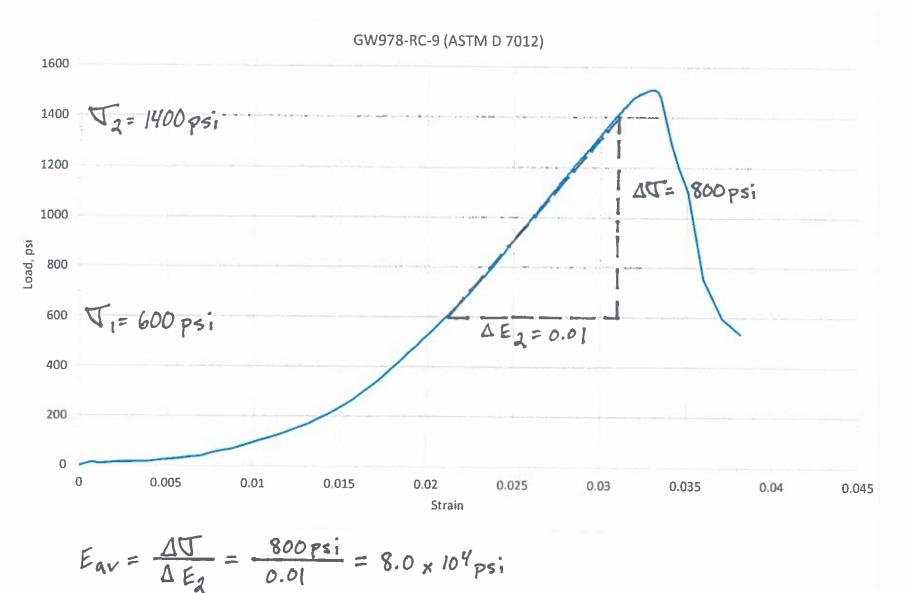
Project No.: 1188070011

Procedure: Compressive Strength of Intact Rock Core Specimens (ASTM D 7012 Method C & D)

					<u> </u>	
Sample Identification:	GW 978-RC-9	GW 988-RC-10	GW 982-RC-10	GW 982-RC-13	GW 978-RC-6	GW 992-RC-4
Length As Cut, Inches:	3.97	2.85	4.33	4.69	4.65	3.38
Diameter, Inches:	2.38	2.38	2.37	2.39	2.35	2.38
Mass, grams:	757.6	599.4	802.9	940.1	868.6	607.6
Maximum Load, Ibs:	6,720	32,462	190	107,074	3,241	2,755
Area, Square Inches:	4.45	4.45	4.41	4.49	4.34	4.45
Volume, cubic ft:	0.0102	0.0073	0.0111	0.0122	0.0117	0.0087
L/D Ratio:	1.67	1.20	1.83	1,96	1.98	1.42
Compressive Strength, psi:	1,510	7,290	40	23,850	750	620
Density, pcf:	163.4	180.0	160.2	170.1	164.0	153.9
Young's Modulus (E _{av})	8.0 x 10 ⁴	2.4 x 10 ⁵	cannot determine	4.5 x 10 ⁵	4.4 x 10 ⁴	5.0 x 10 ⁴

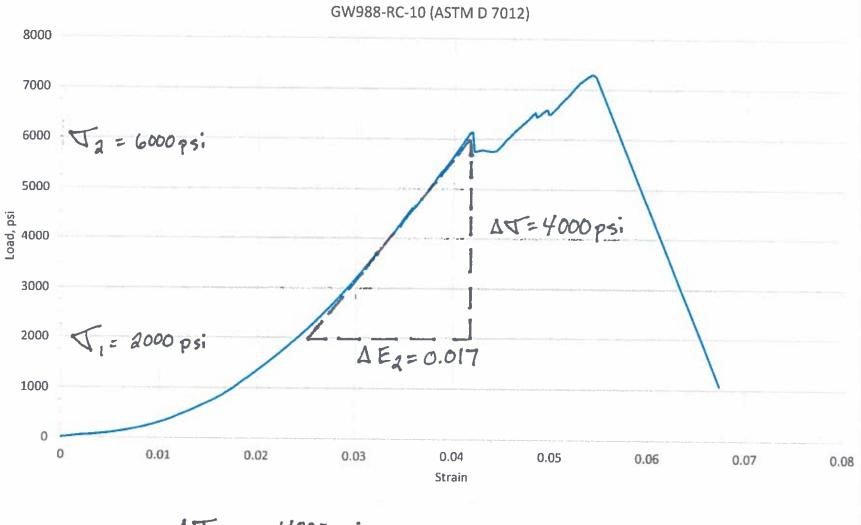
Note: specimens GW 982-RC-10, GW 982-RC-13, and GW 992-RC-4 all failed along natural planes of weakness contained in the rock core. See attached photos for mode of failure criteria.

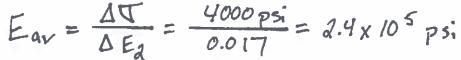
Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, ext. 322.

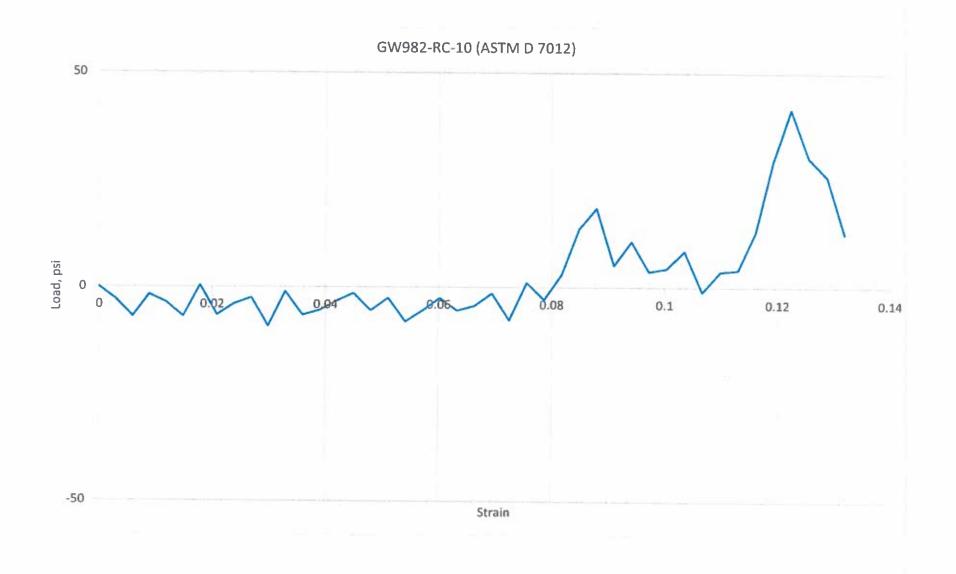

KAF/bk/jd 301273 1-File 1-kfoye@cticompanies.com This document has been provided in an electronic format to expedite delivery of results and / or recommendations to BOWSER-MORNER's Client: A wet-signed ordgnal is maintained at our Dayton office at 4518 Taylorsville Rd , Dayton, OH 45424. Recause electronic documents can be altered, if there is any question about the validity of this discussent, please contact our office to view the the wet signed original.

Respectfully submitted, BOWSER-MORNER, INC.

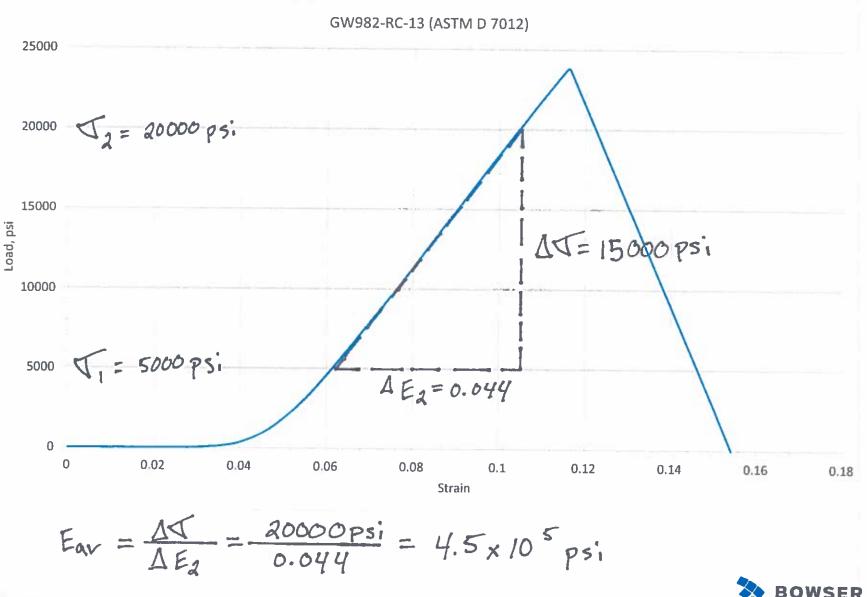
Karl A. Fletcher

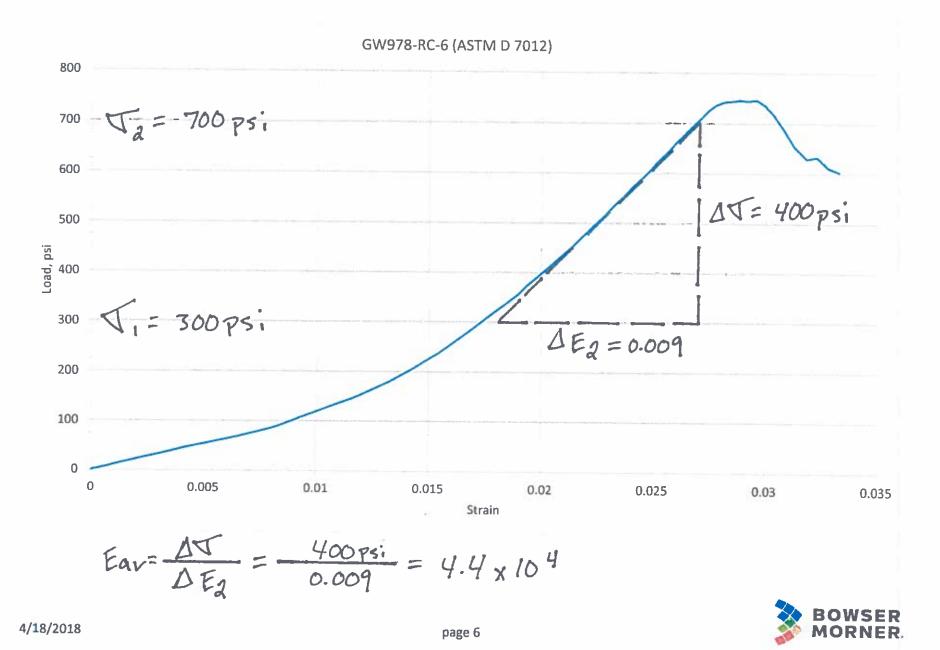

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

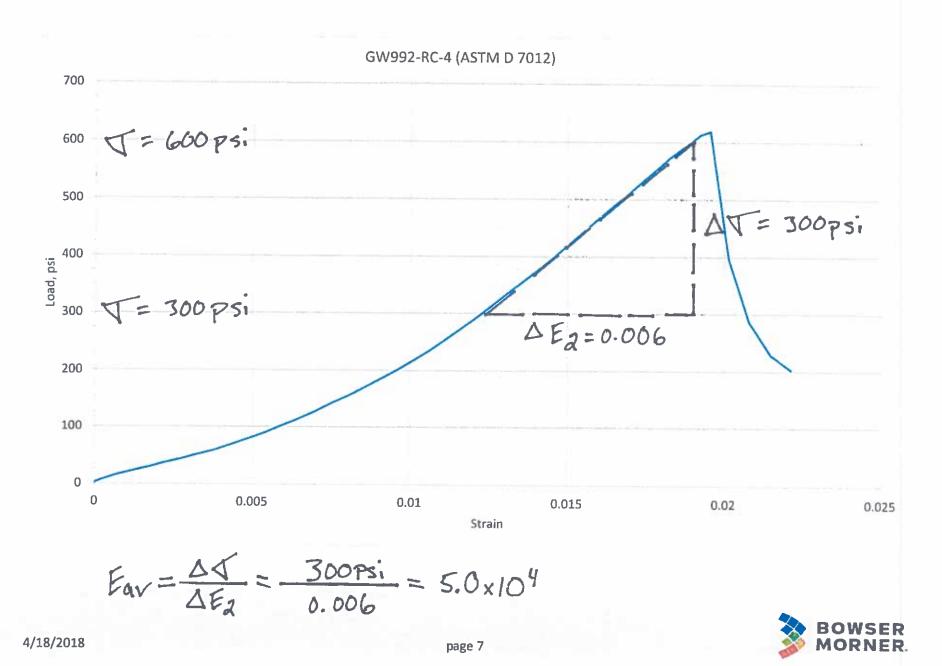

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only Of The Items Calibrated Or Tested. Unless Otherwise Agreed, Samples or Specimens Will Be Discarded Or Returned At Bowser-Momer's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www bowser-momer com/accreditations for review.

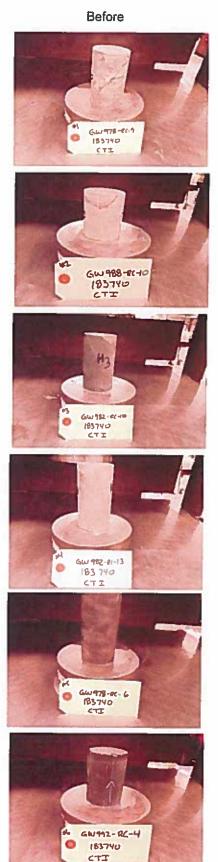


HY528









4/18/2018

Compressive Strength of Intact Rock Core Specimens (ASTM D 7012 Method C & D)

