

P.O. Box 4699 Oak Ridge, TN 37831

Mr. Brian T. Henry Portfolio Federal Project Director Oak Ridge Office of Environmental Management U.S. Department of Energy Post Office Box 2001 Oak Ridge, Tennessee 37831

Dear Mr. Henry:

# DE-SC-0004645: Transmittal of the Technical Memorandum #2, Environmental Management Disposal Facility Phase 1 Monitoring, Oak Ridge, Tennessee (DOE/OR/01-2819&D1)

Enclosed are eight copies and seven compact disks of the *Technical Memorandum #2, Environmental Management Disposal Facility Phase 1 Monitoring, Oak Ridge, Tennessee* (DOE/OR/01-2819&D1) for transmittal to the U.S. Environmental Protection Agency and the Tennessee Department of Environment and Conservation (jointly "the Regulators") for their review. The document has incorporated comment resolutions and required text changes from the Oak Ridge Office of Environmental Management review on the D0 version.

If you have any questions or need additional information, please contact Julie Pfeffer at (865) 712-4172.

Sincerely teven T. Dahlgren

Chief Operating Officer and Deputy Project Manager

STD:JLP:jll

Enclosure: As Stated

c: D. G. Adler, DOE OREM H. H. Cloar, DOE OREM P. J. Halsey, DOE OREM K. A. Hernandez, DOE OREM J. M. Japp, DOE OREM J. A. Mullis II, DOE OREM S. Pack S. T. Phillips K. J. Rueter K. S. Shears, DOE OREM J. D. Speed, DOE OREM R. S. Starkey A. G. Stokes, DOE OREM L. O. Wilkerson, DOE OREM c/enc: A. M. Bartlett, DOE OREM (CD only)
J. L. Sager, DOE OREM
S. M. DePaoli, DOE OREM
J. L. Pfeffer
File—OREM Mailroom
File—DMC-RC

### DOE/OR/01-2819&D1

# Technical Memorandum #2, Environmental Management Disposal Facility Phase 1 Monitoring Oak Ridge, Tennessee



This document is approved for public release per review by:

Peter J. Kortman for Teresa Fancher5/23/19UCOR Classification and InformationDateControl Office

19-009(E)/052819

#### DOE/OR/01-2819&D1

# Technical Memorandum #2, Environmental Management Disposal Facility Phase 1 Monitoring Oak Ridge, Tennessee

Date Issued—May 2019

Prepared by Leidos Oak Ridge, Tennessee under subcontract SC-17-024714 under revision number 24

Prepared for the U.S. Department of Energy Office of Environmental Management

UCOR, an AECOM-led partnership with Jacobs Managing and Safely Delivering the Department of Energy's Vision for the East Tennessee Technology Park Mission under contract DE-SC-0004645

# CONTENTS

| FIG | URES         |                                            |      |
|-----|--------------|--------------------------------------------|------|
| TAE | BLES         |                                            | v    |
| ACF | RONY         | /MS                                        | vii  |
| EXE | ECUTI        | IVE SUMMARY                                | ES-1 |
|     | <b>ES</b> .1 | SETTING                                    | ES-1 |
|     | ES.2         | PHASE 1 INVESTIGATION APPROACH AND RESULTS | ES-1 |
|     |              | ES.2.1 Surface Water Walkdown              | ES-4 |
|     |              | ES.2.2 Locate the Maynardville Limestone   | ES-4 |
|     |              | ES.2.3 Determine Surface Water Flow        | ES-4 |
|     |              | ES.2.4 Drill and Install Piezometers       | ES-5 |
|     |              | ES.2.5 Test Subsurface Materials           | ES-5 |
|     | ES.3         | PHASE 1 CHARACTERIZATION CONCLUSIONS       | ES-6 |
| 1.  | INTR         | RODUCTION                                  | 1-1  |
| 2.  | BAC          | KGROUND                                    | 2-1  |
|     | 2.1          | GENERAL SITE LOCATION                      | 2-1  |
|     | 2.2          | HYDROGEOLOGY                               | 2-1  |
|     | 2.3          | SURFACE WATER HYDROLOGY                    | 2-8  |
|     | 2.4          | GROUNDWATER                                | 2-8  |
|     | 2.5          | SITE CONCEPTUAL MODEL                      | 2-11 |
| 3.  | SURI         | FACE WATER WALKDOWN EVALUATION             | 3-1  |
|     | 3.1          | APPROACH                                   | 3-1  |
|     | 3.2          | RESULTS                                    | 3-1  |
|     |              | 3.2.1 Parameter Results                    | 3-1  |
|     |              | 3.2.2 Seep Locations                       |      |
|     |              | 3.2.3 Conclusions                          |      |
| 4.  | MAY          | YNARDVILLE CONTACT EVALUATION              | 4-1  |
|     | 4.1          | APPROACH                                   | 4-1  |
|     | 4.2          | FINDINGS                                   | 4-1  |
| 5.  | SURI         | FACE WATER FLOW EVALUATION                 | 5-1  |
|     | 5.1          | APPROACH                                   | 5-1  |
|     | 5.2          | FLUME DATA FINDINGS                        | 5-1  |
| 6.  | GRO          | OUNDWATER PIEZOMETER EVALUATION            | 6-1  |
|     | 6.1          | HYDRAULIC CONDUCTIVITY TESTING APPROACH    | 6-1  |
|     |              | 6.1.1 FLUTe <sup>1M</sup> Tests            | 6-1  |
|     | <b>()</b>    | 6.1.2 Slug Tests                           | 6-1  |
|     | 6.2          | PHASE I PIEZOMETEKS                        |      |
|     | 6.3          | HYDRAULIC CONDUCTIVITY FINDINGS            |      |
|     |              | 6.3.1 FLUTe <sup>TM</sup> Test Results     |      |
|     |              | 0.3.2 Slug 1 est Kesults                   |      |

| 7.       | LONG-TERM MONITORING RESULTS FROM PHASE 1 WELLS – THROUGH APRIL |                 |                                                  |            |  |
|----------|-----------------------------------------------------------------|-----------------|--------------------------------------------------|------------|--|
|          | 2019                                                            |                 |                                                  | /-1        |  |
|          | /.1                                                             | DESCR           | CIPTION OF DOWNHOLE MONITOR ISSUES               | /-1        |  |
|          | 7.2                                                             | POTEN           | TIOMETRIC SURFACE FLUCTUATIONS OVER TIME         | 7-1        |  |
|          | 7.3                                                             | POTEN           | TIOMETRIC SURFACE MAPS, GRADIENTS, AND FLOW RATE | 7-22       |  |
|          | 7.4                                                             | POTEN           | TIAL FOR UPWELLING BENEATH THE KNOLL             | 7-30       |  |
|          |                                                                 | 7.4.1           | Piezometer Pair GW-982/GW-983                    | 7-30       |  |
|          |                                                                 | 7.4.2           | Piezometer Pair GW-980R/GW-981                   | 7-30       |  |
|          |                                                                 | 7.4.3           | Piezometer Pair GW-986/GW-987                    | 7-33       |  |
|          |                                                                 | 7.4.4           | Piezometer Pair GW-988/GW-989                    |            |  |
|          |                                                                 | 7.4.5           | Summary and Conclusion                           |            |  |
| 8.<br>9. | SUM<br>REFI                                                     | IMARY<br>ERENCE | AND CONCLUSIONS                                  | 8-1<br>9-1 |  |
| API      | PEND                                                            | IX A SU         | RFACE WATER WALKDOWN RESULTS                     | A-1        |  |
| API      | PEND                                                            | IX B BC         | ORING LOGS                                       | B-1        |  |
| API      | PEND                                                            | IX C SL         | UG TEST DATA                                     | C-1        |  |
| API      | PEND                                                            | IX D FL         | UTe™ TESTS                                       | D-1        |  |
| API      | PEND                                                            | IX E GE         | OTECHNICAL LABORATORY REPORTS                    | E-1        |  |

# **FIGURES**

| Fig. ES.1. | Location of the proposed CBCV site                                                                 | ES-2 |
|------------|----------------------------------------------------------------------------------------------------|------|
| Fig. ES.2. | Monitoring locations at the CBCV site                                                              | ES-3 |
| Fig. 1.1.  | Location of the proposed CBCV site                                                                 | 1-3  |
| Fig. 1.2.  | Annual precipitation records for Oak Ridge, TN                                                     | 1-4  |
| Fig. 2.1.  | General features of the CBCV site                                                                  | 2-3  |
| Fig. 2.2.  | Geologic map of CBCV and the surrounding area                                                      | 2-5  |
| Fig. 2.3.  | General geologic cross-section of the CBCV site                                                    | 2-7  |
| Fig. 2.4.  | Annual average groundwater mass balance based on the CBCV Model                                    | 2-9  |
| Fig. 2.5.  | Typical subsurface profile - upland areas                                                          | 2-12 |
| Fig. 2.6.  | BCV Groundwater flow patterns                                                                      | 2-13 |
| Fig. 2.7.  | BCV plumes                                                                                         | 2-14 |
| Fig. 3.1.  | Surface water measurement locations in the vicinity of the CBCV site                               | 3-2  |
| Fig. 4.1.  | Surface water monitoring locations and field-verified contact for Maynardville                     |      |
|            | Limestone at the CBCV site                                                                         | 4-2  |
| Fig. 5.1.  | Surface water flow measurement flumes at the CBCV site                                             | 5-3  |
| Fig. 5.2.  | Surface water pH at the CBCV site                                                                  | 5-5  |
| Fig. 5.3.  | Surface water temperature at the CBCV site                                                         | 5-6  |
| Fig. 5.4.  | Surface water specific conductivity at the CBCV site                                               | 5-7  |
| Fig. 6.1.  | Phase 1 piezometer locations at the CBCV site                                                      | 6-2  |
| Fig. 7.1.  | Existing conditions profile location map                                                           | 7-3  |
| Fig. 7.2.  | North-south existing conditions profile 1 of the CBCV site                                         | 7-4  |
| Fig. 7.3.  | North-south existing conditions profile 2 of the CBCV site                                         | 7-5  |
| Fig. 7.4.  | West-east existing conditions profile of the CBCV site                                             | 7-6  |
| Fig. 7.5.  | Water levels at paired wells GW-978 and GW-979                                                     | 7-9  |
| Fig. 7.6.  | Water levels at paired wells GW-980R and GW-981                                                    | 7-10 |
| Fig. 7.7.  | Water levels at paired wells GW-982 and GW-983                                                     | 7-11 |
| Fig. 7.8.  | Water levels at paired wells GW-986 and GW-987                                                     | 7-12 |
| Fig. 7.9.  | Water levels at paired wells GW-988 and GW-989                                                     | 7-13 |
| Fig. 7.10. | Water levels at paired wells GW-992R and GW-993                                                    | 7-14 |
| Fig. 7.11. | Water levels at paired wells GW-994 and GW-995                                                     | 7-15 |
| Fig. 7.12. | Water levels at paired wells GW-998 and GW-999                                                     | 7-16 |
| Fig. 7.13. | Measurements of temperature at the CBCV site piezometers                                           | 7-19 |
| Fig. 7.14. | Measurements of pH at the CBCV site piezometers                                                    | 7-20 |
| Fig. 7.15. | Measurements of specific conductivity at the CBCV site piezometers                                 | 7-21 |
| Fig. 7.16. | Bear Creek Valley well locations                                                                   | 7-23 |
| Fig. 7.17. | Water level comparison for GW-994 (CBCV) and GW-078 (BCV)                                          | 7-25 |
| Fig. 7.18. | Water level comparison for GW-980R (CBCV) and GW-080 (BCV)                                         | 7-25 |
| Fig. 7.19. | Piezometric surface map of the peak high conditions at the CBCV site, February 24, 2019            | 7-26 |
| Fig. 7.20. | Piezometric surface map of the average seasonal high conditions at the CBCV site,<br>February 2019 | 7-27 |
| Fig. 7.21  | Piezometric surface map of the average seasonal low conditions at the CBCV site                    |      |
| <u> </u>   | August to September 2018.                                                                          | 7-28 |
| Fig. 7.22. | GW-982/983 comparisons                                                                             | 7-31 |
| Fig. 7.23  | GW-980R/981 comparisons                                                                            | 7-32 |
| Fig. 7.24  | GW-986/987 comparisons                                                                             | 7-33 |
| Fig. 7.25  | GW-986/987 gradient evaluation                                                                     | 7-34 |
| Fig. 7.26. | GW-988/989 comparisons                                                                             | 7-35 |
| 0          | 1                                                                                                  |      |

# **TABLES**

| Table 5.1. | Minimum and maximum flow rates for the CBCV site flumes, April 2018 to        |      |
|------------|-------------------------------------------------------------------------------|------|
|            | April 2019                                                                    | 5-4  |
| Table 6.1. | Slug test results for the CBCV site shallow piezometers                       | 6-3  |
| Table 6.2. | CBCV site piezometer construction summary                                     | 6-5  |
| Table 6.3. | FLUTe <sup>TM</sup> test result summary for the CBCV site piezometers         | 6-8  |
| Table 7.1. | Phase 1 groundwater monitoring data gaps                                      | 7-2  |
| Table 7.2. | Potentiometric surface variations at the CBCV site piezometers, March 2018 to |      |
|            | April 2019                                                                    | 7-7  |
| Table 7.3. | Vertical gradients at the CBCV site, September 2018 and February 2019         | 7-29 |

# ACRONYMS

| amsl                       | above mean sea level                                                          |
|----------------------------|-------------------------------------------------------------------------------|
| BCV                        | Bear Creek Valley                                                             |
| bgs                        | below ground surface                                                          |
| CBCV                       | Central Bear Creek Valley                                                     |
| CERCLA                     | Comprehensive Environmental Response, Compensation, and Liability Act of 1980 |
| D                          | Drainage                                                                      |
| DOE                        | U.S. Department of Energy                                                     |
| DTW                        | depth to water                                                                |
| EC                         | electrical conductivity                                                       |
| EMDF                       | Environmental Management Disposal Facility                                    |
| EMWMF                      | Environmental Management Waste Management Facility                            |
| EPA                        | U.S. Environmental Protection Agency                                          |
| <b>FLUTe</b> <sup>TM</sup> | Flexible Liner Underground Technologies, LLC                                  |
| FS                         | Feasibility Study                                                             |
| FSP                        | Field Sampling Plan                                                           |
| NT                         | North Tributary                                                               |
| ORNL                       | Oak Ridge National Laboratory                                                 |
| ORR                        | Oak Ridge Reservation                                                         |
| PVC                        | polyvinyl chloride                                                            |
| QAPP                       | Quality Assurance Project Plan                                                |
| RI                         | Remedial Investigation                                                        |
| SME                        | Subject Matter Expert                                                         |
| SU                         | standard unit                                                                 |
| Т                          | transmissivity                                                                |
| TDEC                       | Tennessee Department of Environment and Conservation                          |
| TDS                        | total dissolved solids                                                        |
| TM                         | Technical Memorandum                                                          |
| UPF                        | Uranium Processing Facility                                                   |
| USGS                       | U.S. Geological Survey                                                        |
| W                          | West                                                                          |

### **EXECUTIVE SUMMARY**

An estimated 2.2 million cubic yards of disposal facility capacity beyond what is already available in the existing Environmental Management Waste Management Facility (EMWMF) is needed for the disposal of wastes from continuing Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup actions on the Oak Ridge Reservation. Additional capacity will be provided by the Environmental Management Disposal Facility, which is proposed to be located in Central Bear Creek Valley (CBCV), approximately 1.5 miles southwest of the existing EMWMF (Fig. ES.1).

Characterization of the CBCV site began in February 2018 as described in the *Phase 1 Field Sampling Plan for the Proposed Environmental Management Disposal Facility for Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee* (Field Sampling Plan) [U.S. Department of Energy (DOE) 2018a]. Technical Memorandum (TM) #1 was issued in July 2018 (DOE 2018b) describing the Phase 1 field activities that had been completed and presenting the surface water and groundwater data that had been collected over the first 90 days of monitoring through May 8, 2018, for groundwater and through June 4, 2018, for surface water. This document, TM #2, contains a full year of surface water and groundwater data through March 8, 2019, including that reported on in TM #1. These initial characterization results have confirmed the CBCV site is acceptable for a new, low-level waste landfill.

#### ES.1 SETTING

The CBCV site is located on the southern flank of Pine Ridge between two streams, North Tributary (NT)-10 and NT-11. A smaller stream at the site, Drainage (D)-10 West (W), is located just west of NT-10 (Fig. ES.2). The area is mostly forested, except for a cleared area with a large soil pile and two constructed wetlands for the Y-12 National Security Complex. The Haul Road and Bear Creek Road cross the southern edge of the site and will need to be rerouted prior to CBCV site construction.

The proposed landfill would overlie steeply angled bedrock consisting of shales, siltstones, and mudstones with some limestone layers. Recent stream deposits are present on the valley floors, particularly along D-10W at the eastern side of the site. Karst features, such as sinkholes, sinking streams, and resurgent springs, are not present beneath the proposed footprint of the CBCV site, but are present along Bear Creek south of the site.

Precipitation primarily runs off as surface water and shallow groundwater in the stormflow zone. During the summer/fall growing season, the streams within the CBCV site may dry up, although there is still flow during significant rainfall events. However, there is continuous surface water flow in Bear Creek located south of the proposed landfill.

#### ES.2 PHASE 1 INVESTIGATION APPROACH AND RESULTS

Bear Creek Valley (BCV) has been extensively investigated and monitored over the years, although not specifically at the proposed CBCV location. The Phase 1 investigation has provided site-specific information for the proposed CBCV site.





Fig. ES.1. Location of the proposed CBCV site.



Fig. ES.2. Monitoring locations at the CBCV site.

The investigation approach for the CBCV site was developed in cooperation with the U.S. Environmental Protection Agency and Tennessee Department of Environment and Conservation (TDEC). The characterization effort consisted of the following tasks:

- Perform surface water walkdowns to continue to evaluate streams and identify seeps, springs, and other expressions of shallow groundwater.
- Locate the contact with the Maynardville Limestone, the type of bedrock most prone to contain karst features.
- Monitor surface water flow by utilizing flumes installed to measure flow, and select water quality parameters in NT-10, D-10W, and NT-11.
- Drill and install piezometers to measure groundwater surfaces and to obtain detailed subsurface information. Measure piezometric surfaces/elevations and select water quality parameters in Phase 1 piezometers.
- Test subsurface materials to obtain design data to develop the engineering design for the proposed landfill.

The acquired data are used to verify the CBCV site is appropriate for siting a landfill and will be used to develop the engineering design.

#### ES.2.1 Surface Water Walkdown

Two detailed site walkdowns were performed during the wet season (January 30 and February 27, 2018) to further characterize surface geology and hydrology; identify geotechnical areas of interest; and identify seeps, springs, and other expressions of shallow groundwater (Fig. ES.2). Three additional walkdowns, representing drier conditions (May 1, June 4, and October 10, 2018) were also completed to further characterize surface water hydrology; monitor geotechnical areas of interest; and confirm and monitor seeps, springs, and other expressions of shallow groundwater that had been identified during previous walkdowns. TDEC personnel participated in all of the surface water walkdowns.

Field data collected during the walkdowns are provided in Appendix A. In general, pH and specific conductivity of the surface water in these tributaries increase from north to south. Temperature remains relatively consistent throughout each tributary with minor fluctuations.

#### ES.2.2 Locate the Maynardville Limestone

The Maynardville Limestone is the type of bedrock most prone to contain karst features in BCV. The contact between the Maynardville and Nolichucky Shale was previously mapped by a regional investigation about 300 ft south of the planned landfill footprint. The January 2018 surface walkdown with Subject Matter Experts (SMEs) and TDEC geologists examined this location and revised the Maynardville Limestone contact in CBCV based on observations within NT-10 and D-10W streambeds. The contact location within the NT-11 streambed was found later by the same SME. The contact was confirmed to be approximately 50 ft further south of the proposed landfill location than was originally mapped (Fig. ES.2).

#### ES.2.3 Determine Surface Water Flow

Six surface water flow measurement stations have been installed at the CBCV site to determine surface water flow along the stream channels of NT-10, D-10W, and NT-11 (Fig. ES.2). The stations were placed

to evaluate surface water flow, particularly close to the proposed landfill location. TDEC personnel participated in the initial walkdown and discussion to determine flume placement.

Three flumes were installed along NT-11, two along D-10W, and one at NT-10 (Fig. ES-2). The flumes were sized to accommodate the reasonably expected flow rates based on historical information and additional field observations. The flumes were equipped to measure surface water flow, pH, specific conductivity, and temperature at 30-min intervals. These data are automatically recorded and downloaded by characterization personnel every two weeks for one year. The surface water flow data will be used to design surface water controls for the landfill.

As expected, flow rates generally increase downstream, from north to south, and increase quickly in response to rainfall. The maximum flow rates were recorded on February 23, 2019, when the Y-12 National Security Complex area received from 4 to 5 in. of rainfall during a wet period in February 2019. Minimum to no flow rates were observed at all flumes during dry periods.

#### ES.2.4 Drill and Install Piezometers

Eight pairs of bedrock and shallow piezometers were installed within the proposed landfill area to monitor the shallow and intermediate piezometric surface within the cell boundary (Fig. ES.2). First, boreholes were drilled and sampled using split-spoon samplers from the surface through the complete soil column to obtain soil samples and geotechnical data, and once rock was encountered, the boreholes were cored to the total depth to obtain representative rock cores. These cores were photographed and described at the drill site. Next, subsurface testing was conducted in the bedrock holes to estimate the hydraulic properties. Piezometers were constructed with well screens placed to monitor groundwater bearing zones.

Following piezometer construction, the shallow piezometers were tested to estimate the hydraulic properties. After testing was completed, downhole monitors were installed to measure piezometric surface, temperature, pH, and specific conductivity at 30-min intervals. In general, the CBCV site wells show typical fluctuations in specifc conductivity and pH in response to precipitation events. Piezometric surface data show responses to precipitation events, as would be expected, with more subdued responses at the well pairs located at the higher elevations (i.e., GW-980R/GW-981 and GW-982/GW-983).

This TM includes a full year of data from the continuous monitoring of these 16 piezometers from March 2018 to early April 2019. Monitoring of the CBCV site piezometric surface is expected to continue for at least one more year for continued evaluation in the design of a disposal facility at the CBCV site.

#### ES.2.5 Test Subsurface Materials

The laboratory testing program was directed toward determining the general soil classification, physical properties, shear strength, and compressibility of the soil for the engineering analysis and design of the CBCV site. Limited permeability testing was also conducted on both relatively undisturbed samples (tube samples) and from recompacted bulk samples taken during piezometer drilling. All laboratory testing was performed in accordance with applicable American Society for Testing and Materials standards. In total, 18 thin-walled (i.e., Shelby tube) samples, 69 split-spoon soil samples, 10 bulk soil samples, and 10 rock core samples were shipped to laboratories for testing. Appendix E provides the laboratory reports for geotechnical laboratory testing. The collected data will be used to develop the engineering design.

#### ES.3 PHASE 1 CHARACTERIZATION CONCLUSIONS

Results of the Phase 1 site monitoring continue to validate acceptability of the CBCV site for a new, low-level waste landfill and support final site selection based on the following conclusions.

Walkdowns confirmed the location of existing seeps and did not locate additional seeps in the CBCV area. The contact with the Maynardville Limestone was located approximately 50 ft further south of the currently proposed CBCV footprint than previously mapped.

Precipitation primarily runs off as surface water and as shallow groundwater in the stormflow zone. Site walkdowns conducted in January, February, May, June, September, and October 2018 found numerous cases where surface water entered and exited the soil through decayed trees and other types of features. Flumes record higher stream flows following precipitation, indicating that a large portion of precipitation is running off as stormwater. Flow rates rapidly decrease when precipitation is over, indicating a smaller influence from groundwater.

Piezometric surface elevations are typical of other BCV wells in similar settings and were similar to the piezometric surface elevations predicted in the Remedial Investigation/Feasibility Study (DOE 2017). Piezometric surface elevations measured in both intermediate and shallow piezometers during the Phase 1 characterization confirmed that the piezometric surface generally mirrors topography (i.e., is higher topographically beneath knolls/ridges and lower near the tributaries). The piezometric surface responds to rainfall events, indicating recharge is occurring on the site.

Evaluation of the downhole and surface water data in the CBCV site knoll area determined that the primary groundwater flow gradients are lateral and towards the nearby drainages. Strong upward gradients within the knoll area which could affect the landfill are not present.

# 1. INTRODUCTION

The mission of the U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management is to decommission and demolish numerous facilities and conduct remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. This effort requires an estimated 2.2 million cubic yards of landfill disposal capacity beyond what is available in the existing Environmental Management Waste Management Facility (EMWMF) for the disposal of wastes from CERCLA cleanup actions. The *Remedial Investigation/Feasibility Study for the Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee* (RI/FS) [DOE 2017], evaluated several alternatives for the disposal of this waste, including no action, off-site disposal, and on-site disposal.

The proposed Central Bear Creek Valley (CBCV) site on the ORR is located approximately 1.5 miles southwest of the existing EMWMF. The approximately 70-acre tract was identified as the best alternative for development of the disposal facility based on available capacity and location (Fig. 1.1). The Phase 1 site characterization activities are focused on the CBCV site.

The Phase 1 site characterization activities have been ongoing since January 2018. All activities are conducted in accordance with the *Phase 1 Field Sampling Plan for the Proposed Environmental Management Disposal Facility for Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee* (Field Sampling Plan [FSP]) [DOE 2018a], which includes the project-specific Quality Assurance Project Plan (QAPP). The QAPP identifies the procedures that are to be followed in the collection, custody, sample handling, data management, and quality control activities for all anticipated CBCV investigation activities.

The objective of Phase 1 site characterization of the proposed CBCV site was to validate key assumptions regarding the hydrogeologic setting (groundwater and surface water conditions) at the site. These key assumptions were validated and were used to confirm the acceptability of the CBCV for a new, low-level waste landfill and to support a final site selection. The key validated assumptions for the Phase 1 characterization are:

- Geology is typical of Bear Creek Valley (BCV) with steeply dipping, fractured bedrock, and there are no major karstic features in the Maryville, Nolichucky, or Rogersville formations underlying the CBCV site.
- The contact with the Maynardville Limestone is located south of the proposed CBCV footprint.
- Precipitation primarily runs off as surface water and shallow groundwater in the stormflow zone.
- Potentiometric surface elevations are typical of other BCV wells in similar settings.
- Water level extrapolations presented in Technical Memorandum (TM) #1 (DOE 2018b) based on other BCV wells are found to be relatively consistent with observations at the CBCV site.

This TM #2 presents the additional data collected during the continued monitoring of the CBCV site since TM #1 was issued. Also included in this TM is the analysis of the data in relation to the geologic and hydrologic properties associated with the CBCV site. All of these data have been provided to the U.S. Environmental Protection Agency (EPA) and the Tennessee Department of Environment and

Conservation (TDEC). The data are available as text files on the DOE Oak Ridge Environmental Information System (http://oreis.ettp.energy.gov).

The hydrologic data presented herein must be considered within the context of the climatological conditions for the period of record. Figure 1.2 shows the average annual precipitation for the years from 1989 to 2018. Also shown is the 30-yr average precipitation from 1981 to 2010 as reported on the Oak Ridge National Laboratory (ORNL) meteorology webpage (https://metweb.ornl.gov/page5.htm). These data are based on the National Oceanic and Atmospheric Administration records for Oak Ridge, Tennessee, and available on the ORNL meteorology webpage (https://metweb.ornl.gov/page5.htm). Calendar year 2018 was one of the wetter years of record for the Oak Ridge area, and nearly 9 in. above the 1981 to 2010 30-yr average. A total of 64.73 inches of precipitation was recorded at the Y-12 Tower W station for calendar year 2018. The wet conditions continued throughout the 1-yr monitoring period of record for TM #2. The wet conditions are demonstrated by the total precipitation of 73.15 inches recorded at Tower W over the monitoring period of March 2018 through February 2019.





Fig. 1.1. Location of the proposed CBCV site.



Fig. 1.2. Annual precipitation records for Oak Ridge, TN.

### 2. BACKGROUND

#### 2.1 GENERAL SITE LOCATION

The CBCV site is situated within an upland area located between north-south trending valleys of North Tributary (NT)-10 and NT-11 in BCV. The southern boundary of the site extends to just north of Bear Creek Road (Fig. 2.1). The site and surrounding areas are forested, except for areas along the south side between the Haul Road and Bear Creek Road, where the area has been cleared. The cleared area includes a recent soil staging area along the southern margin and two wetland basins completed in 2015 for the Y-12 National Security Complex compensatory wetland mitigation. The Haul Road and Bear Creek Road are located at the southern edge of the site and will need to be rerouted prior to CBCV site construction.

The larger surface water conveyances within the site are Drainage (D)-10 West (W), parallel to and just west of NT-10, and D-11 East (E), an east–west trending feature that drains westward into NT-11 near the center of the site (Fig. 2.1). An additional shallow east–west trending drainage was present in the southern part of the area prior to construction of the Uranium Processing Facility (UPF) wet spoils pile. This drainage was noted as dry when observed prior to the Phase 1 investigation, and is now covered by the UPF wet spoils pile; however, there was a seep within this drainage area downgradient of the wet spoils pile that is now covered by a sediment basin. (Note: The figures in this TM illustrating a disposal facility boundary have used the boundary information from the 2017 RI/FS.)

The BCV has been extensively investigated over the years. Geologic, hydrogeologic, and groundwater contamination conditions have been characterized, and there is routine monitoring of surface water conditions and groundwater conditions in specific areas. In addition, other investigations have been conducted to identify wetlands, ecological species of concern, and cultural resources. This Phase 1 site characterization provides additional site-specific hydrogeologic information for the proposed CBCV site. The monitoring that is being reported in this TM is a continuation of the Phase 1 site characterization, which was initially provided in TM #1.

#### 2.2 HYDROGEOLOGY

The available hydrogeologic data for various potential disposal sites in BCV are described in the RI/FS (DOE 2017). The general subsurface hydrogeological conditions at the CBCV site are known from previous characterization performed of the BCV watershed summarized in the *Groundwater Strategy for the* U.S. Department of Energy, Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2014).

The CBCV site overlies bedrock formations of the Conasauga Group (Fig. 2.2), which include (from oldest to youngest): Pumpkin Valley Shale, Rutledge Limestone (Friendship Formation), Rogersville Shale, Maryville Limestone (Dismal Gap Formation), Nolichucky Shale, and Maynardville Limestone. The bedrock formations consist predominantly of shales, siltstones, and mudstones, with some interbedded limestones. There is little limestone present in the bedrock lying directly beneath the proposed CBCV site, even in the Maryville Formation. There are no major karstic features in the formations underlying the CBCV site (DOE 2018b). Detailed descriptions of the geologic units that make up the Conasauga Group can be found in *Status Report on the Geology of the Oak Ridge Reservation* (Hatcher et al. 1992).

In BCV the average dip of the bedrock formations is approximately 45°, to the southeast (Fig. 2.3); a similar dip was assumed for the formations lying directly underneath the CBCV site. Folds and fractures are present

within the bedrock and exert substantial control on the location of the tributaries to Bear Creek. The fractures and macro/micropores within the remaining soils/saprolite and bedrock provide the primary routes for groundwater flow (and contaminant transport) as documented in the 2016 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2016). A key assumption was that the geology is typical of BCV with steeply dipping, fractured bedrock, and there are no major karstic features in the Maryville, Nolichucky, or Rogersville formations underlying the CBCV site.

Thin layers of alluvial and colluvial soils may be present along streams, drainage ways, and the base of steeper slopes. These soils may be looser, more compressible, and more permeable than the underlying residual soils or saprolite. As noted in *Geology of the West Bear Creek Site* (ORNL 1989):

"The soils are underlain by a comparatively thick saprolite zone which varies from 10 to 20 ft thick. The saprolite is composed of weathered bedrock which has lost its rock cement but retained its bedding features. Its upper portions can be readily penetrated with a hand auger. The saprolite/bedrock contact is gradational due to decreasing weathering with depth but is typically defined as the depth of machine auger refusal."

The saprolite zone includes all materials that overlay unweathered (competent) bedrock, corresponding to the overburden in engineering terminology. Depending on the site topography and local conditions, the saprolite zone at the Environmental Management Disposal Facility (EMDF) site may include surficial soils (organic-rich topsoil and clayey residual subsoils), colluvium and alluvium along flanks and floors of the NT valleys, and the underlying saprolite, which is bedrock that has been completely chemically weathered but remains otherwise undisturbed. Saprolite transitions to less weathered or unweathered bedrock. For practical purposes, the depth of the saprolite zone may be considered as auger refusal drilling depth, which typically ranges from 10 to 30 ft, but can exceed 50 ft in some locations. Saprolite zone lies a bedrock zone that comprises less weathered and fractured bedrock. In general, the degree of weathering, average aperture and density of fractures, porosity, and permeability decrease with increasing depth below the surface. Materials near the saprolite-bedrock boundary are transitional and can include less weathered rock fragments (mostly shale and siltstone) in a fine-grained saprolite matrix.

The thin topsoil layer of organic-rich soil varies from a few inches to < 1 ft thick. The zone of fine-grained residual soil varies from < 2 ft up to 10 ft in thickness. The thickness of these intervals and the underlying saprolite varies, and downward transition from one to the next may be rapid, or gradual, depending on the topographic position and history of profile development. Pore structure within the clayey residuum reflects surface soil formation processes, including macropore structures related to root growth and bioturbation (e.g., earthworm activity). Structural features of the underlying saprolite reflect the bedding and fracture geometry of the parent sedimentary rocks. As documented in Driese et al. 2001, there is extensive filling in saprolite fractures at the base of the residual soil due to translocation of clays. These clays and associated iron and manganese deposits contribute to the decrease in permeability with depth within the regolith.

Along the valley floors of Bear Creek tributaries, the soil and saprolite upper portion of the subsurface profile may be replaced with alluvial sediment deposits that vary in width and thickness. Colluvial deposits may occur along the lower slopes of these valleys. A thicker belt of alluvial deposits occurs within the floodplain of BCV. Colluvial or alluvial deposits also may occur in places outside of the current stream valleys as demonstrated by detailed site soil surveys completed for a waste disposal demonstration project in West Bear Creek Valley [Lietzke et al. 1988].



Fig. 2.1. General features of the CBCV site.



Fig. 2.2. Geologic map of CBCV and the surrounding area.



Fig. 2.3. General geologic cross-section of the CBCV site.

#### 2.3 SURFACE WATER HYDROLOGY

The CBCV site surface water systems are fed by precipitation, surface runoff and shallow stormflow, and both shallow and deeper groundwater that discharges via springs and seeps (DOE 2018b). In areas underlain by Conasauga Group shales, as much as 90 percent of the water entering the groundwater system flows rapidly through highly porous, shallow soil. In areas underlain by soluble, massive carbonate bedrock of the Maynardville Limestone, a larger percentage of the available water enters the groundwater system by conduit flow through deeper flow pathways (DOE 2016). A key assumption for the CBCV site was that precipitation primarily runs off as surface water and shallow groundwater in the stormflow zone.

Historical continuous flow monitoring data were not previously available for NT-10, NT-11, or D-10W. The available U.S. Geological Survey (USGS) base flow data indicated that base flow was present along the NT-10, D-10W, and NT-11 stream channels during the winter/spring non-growing wet season. During the summer/fall growing season with warm and often dry conditions, base flow is negligible and limited to pulsed flow associated with significant storm rainfall events. Flow monitoring for Bear Creek downstream of the CBCV site indicates continuous flow in Bear Creek (DOE 2017).

#### 2.4 GROUNDWATER

The BCV RI (DOE 1997) provided the first comprehensive assessment of the environmental setting and hydrogeological conceptual model encompassing the entire length of BCV. The report incorporates the hydrologic framework for the ORR developed by ORNL researchers (Solomon et al. 1992; Moore and Toran 1992; Hatcher et al. 1992), includes a comprehensive assessment of historical waste sites and groundwater contaminant plumes, and presents human health and ecological risk assessments for BCV.

Hydrologic subsystems for areas underlain by predominantly clastic (non-carbonate) rocks were defined in *Status Report: A Hydrologic Framework for the Oak Ridge Reservation* (Solomon et al. 1992); likewise, the technical basis for these subsystems is described in detail in the status report and in *Supplement to a Hydrogeologic Framework for the Oak Ridge Reservation* (Moore and Toran 1992). The subsystems include a shallow subsurface stormflow zone, the vadose zone, three intervals within the saturated zone (shallow, intermediate, and deep intervals), and an aquiclude at great depth where minimal water flux is presumed to occur. The stormflow and vadose zones and the uppermost saturated zone (shallow interval) generally occur within materials of the saprolite zone (Fig. 2.4). A majority of the estimated subsurface water flux occurs within these uppermost parts of the subsurface hydrogeologic profile (Solomon et al. 1992). In general, the seasonal range of potentiometric surface elevations tends to span the transition between the saprolite zone and the underlying bedrock, suggesting that the weathering profile reflects the complexity of variably-saturated flow dynamics.

Subsurface flow within the saprolite zone is directed downward and laterally from higher elevations toward stream valleys where shallow groundwater discharge occurs. Water flux through the lower part of the vadose zone is primarily vertically downward. The vertical component of flow below the water table varies according to topographic position (recharge versus discharge areas). Shallow subsurface flux in the uppermost saprolite zone and lateral flux near the saprolite-bedrock interface respond rapidly to heavier precipitation events and contribute much of the quickflow component of storm-period runoff. At increasing depths (on the order of 100 ft or more), flow within the saturated zone contributes proportionally less to the overall subsurface flux, reflecting the decrease in porosity and permeability with increasing depth. A complete description of research methods, locations, interpretations, and findings completed in the headwaters areas of Melton Branch, underlain by the same Conasauga Group formations present in BCV, is documented in Solomon et al. 1992. Subsequent watershed studies (Clapp 1997) indicated the proportion



Fig. 2.4. Annual average groundwater mass balance based on the CBCV Model.

of flux via the uppermost saprolite zone may be less than reported by Solomon et al. 1992, but generally confirmed that most of the active groundwater flux occurs in the saprolite zone.

The depth to the water table or unsaturated zone thickness varies across a relatively wide range from upland to lowland areas. Vadose zone thickness is greatest below upland areas such as those along Pine Ridge and along the subsidiary ridges underlying the Maryville outcrop belt. In these topographic positions, the water table can lie within the bedrock zone (Fig. 2.4), at depths exceeding 30 ft below the surface. Away from these upland areas of groundwater recharge, the vadose zone thins along the transition to groundwater discharge areas in valley floors where the water table is at, or near, the ground surface. In most lower elevation areas, the water table lies within the saprolite zone materials at depths less than 20 ft below the surface.

Groundwater within the saturated zone converges and discharges into stream channels along the tributary valley floors, supporting dry-weather base flow, primarily during the wetter portions of the year. During drier periods, groundwater may support little or no stream base flow, but may continue to slowly migrate southward toward Bear Creek along the tributary valley floor areas within alluvium, saprolite, and bedrock fractures below the active stream channels. Deeper groundwater that does not discharge to the tributaries moves southward toward Bear Creek along pathways through the bedrock zone. Most of the groundwater flux within the saturated zone has been demonstrated to occur via the saprolite zone with progressively less flux occurring at greater depth. The flux decreases in proportion to a general decrease in saturated hydraulic conductivity ( $K_{sat}$ ) with depth that is associated with smaller fracture apertures and an overall decrease in the number and density of interconnected fractures capable of transmitting groundwater (Fig. 2.5).

Shallow groundwater also discharges to springs in narrow headwater ravines of Pine Ridge and across broader seepage faces along portions of the tributary valleys. Groundwater from these discharge locations contributes to stream channel base flow, particularly during the wet season. Water level hydrographs indicate that recharge to the water table occurs rapidly in response to significant rainfall events in most areas, but the response may be subdued and delayed in wells below upland areas where the water table is at greater depth and recharge rates are slower (DOE 2017). In general, water table elevations are several feet higher, on average, during the wet season (approximately December through March or April) compared to the remainder of the year.

Unsaturated flow in undisturbed areas will migrate to the potentiometric surface through the typical sequence of topsoil, silty/clayey residuum, and saprolite as described in Sect. 2.2 which may also include veneers of alluvial and colluvial materials along the flanks and floors of the tributary valleys. According to research (Solomon et al. 1992; Moore and Toran 1992), most of the water infiltrating the surface during and immediately after storm events travels laterally and relatively quickly through the uppermost part of the soil profile to discharge along stream channels.

Research on the ORR (Solomon et al. 1992; Moore and Toran 1992; Clapp 1997) has demonstrated that recharge through the unsaturated zone in undisturbed natural settings is episodic and occurs along discrete permeable features that may become saturated during storm events, even though surrounding macro- and micropores remain unsaturated and contain trapped air. During recharge events, flow paths in the unsaturated zone are complex, controlled to a large degree by the nature and orientation of structures such as relict fractures in saprolite (Solomon et al. 1992).

Due to the abundant precipitation and shallow water tables in BCV, surface and groundwater hydrology are closely related in BCV. In BCV the major components of groundwater flow include movement through unconsolidated material, weathered bedrock, and fill under unconfined conditions, and flow along bedding planes, fractures, and solution channels in the competent bedrock, generally under confined conditions (Kamp 1985). Bear Creek flows primarily over non-karst bedrock but loses flow to subsurface conduits



Fig. 2.5. Typical subsurface profile - upland areas.

where it crosses karst features in the Maynardville Limestone. Karst features and fractures within the Maynardville Limestone provide the principal conduits for groundwater movement within BCV.

Hydraulic gradients mirror the topography and are much higher within the clastic rocks north of Bear Creek than gradients along the valley floor and Maynardville limestone outcrop (Fig. 2.6).

There were no previous potentiometric surface elevation data available for the CBCV site prior to this investigation. Available data were projected to this site from adjacent areas with similar hydrogeologic conditions to plan the Phase 1 investigation. A key assumption going into this investigation was that potentiometric surface elevations are typical of other BCV wells in similar settings. As the landfill is constructed, the current surface water and groundwater flow regime will be modified due to regrading of the site and installation of impermeable barriers that eliminate recharge, and adjustments to surface runoff.

#### 2.5 SITE CONCEPTUAL MODEL

The BCV hydrogeologic conceptual model differentiates between the surface water and groundwater flow within and across the predominantly clastic lithology underlying most of the valley floor and the flow along Bear Creek, including groundwater flow within the karstic carbonate rocks along the southern margin of BCV (Fig. 2.3).

An important aspect of the conceptual model relates to groundwater flow paths and rates that are dominant along fractures that trend parallel to geologic strike. Tracer tests and investigations of groundwater contaminant plumes on the ORR and in BCV demonstrate that groundwater tends to move more rapidly along fracture flow paths that are parallel to geologic strike versus flow paths that are perpendicular to strike. This is particularly true for the shallower portions of the saturated zone where most groundwater flux occurs (Fig. 2.7).

The distinction between the shallower parts of the saturated zone and deeper levels is based on variation in groundwater chemical composition with depth thought to be related to water residence time. The approximate boundary between mixed-cation-HCO<sub>3</sub> water and Na-HCO<sub>3</sub> water was defined at depths ranging from 30 to 50 m (approximately 100 to 165 ft) for the predominantly clastic rocks on the ORR such as those at the CBCV site. The deep "aquiclude," composed of saline water having total dissolved solids ranging from 2,000 to 275,000 mg/L lies beneath the deep interval at depths in portions of BCV believed to be greater than 300 m (approximately 1,000 ft) [Solomon et al. 1992 for details].

Across the clastic outcrop belts, groundwater at shallow to intermediate depth tends to flow south to southwest, whereas flow within the Maynardville and along Bear Creek tends to more closely parallel the geologic strike toward the southwest. Hydraulic gradients mirror the topography and are much higher within the clastic rocks north of Bear Creek than gradients along the valley floor and Maynardville limestone outcrop.

The majority of water flow from upland areas is directed toward the valley axis by the NTs where they discharge to Bear Creek. Bear Creek is located south of the proposed CBCV and flows more or less continuously over non-karst bedrock but loses flow to subsurface conduits where it crosses karst features in the Maynardville Limestone. Underflow conduits in the Maynardville Limestone continuously convey base flow, while overflow conduits and Bear Creek carry high flows during the wet season and heavy rainfall events.

The CBCV site area slopes to the south–southeast. As described in the *Oak Ridge Reservation Physical Characteristics and Natural Resources* (ORNL 2006), sloping land surfaces on the ORR exhibit the characteristics of hillslope hydrology. In undisturbed, naturally vegetated areas such as the CBCV site, an estimated 80 to 90 percent of precipitation is captured and discharged from the 1- to 2-m (3- to 6.5-ft) storm-flow zone/root zone and does not infiltrate into the subsurface. During November through March when plants are not consuming water and shallow soils are saturated, lateral drainage of water occurs on slopes through macropores (e.g., holes left by the decay of dead plant roots and animal burrows) as well as through vertical seepage to the potentiometric surface through pervious zones (Clapp 1997).



Fig. 2.6. BCV Groundwater flow patterns.




Fig. 2.7. BCV plumes.

# 3. SURFACE WATER WALKDOWN EVALUATION

# 3.1 APPROACH

Two detailed site walkdowns were performed during the wet season (January 30 and February 27, 2018), and three walkdowns, representing drier conditions (May 1, June 4, and October 10, 2018) were also completed to further characterize surface geology; examine hydrogeologic areas of interest; and identify seeps, springs, and other expressions of shallow groundwater in NT-10, D-10W, D-11E, and NT-11. The initial walkdowns were conducted by a qualified hydrologic professional, as defined in TDEC 0400-40-17. TDEC personnel also participated in all of the walkdowns. Additional information on these walkdowns is provided in Appendix A.

The walkdowns included a description at every 50 ft along NT-10, D-10W, and NT-11 (as safe access allowed) as well as field measurements of temperature, specific conductivity, and pH (Fig. 3.1). The walkdown of October 10, 2018, also included observations of flow in macropores and similar features to determine potential impacts on facility design.

# 3.2 RESULTS

The site walkdowns identified several noteworthy soil macropore and channel features in the upper 3 ft of soil in the Nolichucky Shale in the CBCV area. A shallow macropore/soil channel transmits percolation water from soils to the NT-11 stream channel in the Nolichucky Shale outcrop area. Overland surface water flow into a soil macropore/channel was also observed, and that subsurface channel is daylighted a short distance downstream due to collapse and downstream transport of shallow soils. A small amount of water flow emanating from the channel has been observed at this location. This feature joins another branch of subsurface flow from an unnamed western valley. These types of soil drainage features are typical in undisturbed ORR soils and are a part of the stormflow system that rapidly conducts percolation water laterally downslope to stream channels.

The site walkdowns determined that D-11E, the east–west valley draining to NT-11, located on the western slope of the high knoll in the Maryville Formation, contained no defined surface water channel.

A well-established surface channel approximately 1 ft wide by 1 ft deep was encountered in the D-10W valley. Variable flow conditions were present throughout the channel during the walkdowns. Most of the northern portion of D-10W was either dry or too shallow for measurement collection during the dry period of the September and October 2018 walkdowns. The D-10W valley is approximately 50 percent less incised than the adjacent NT-10 and NT-11 valleys and has a much narrower headwater basin.

The surface water field measurement locations are shown on Fig. 3.1. The results of the surface water field measurements are illustrated on maps included in Appendix A.

## **3.2.1 Parameter Results**

The field data collected during the walkdown surveys conducted in January, February, May, June, September, and October 2018 are included in Appendix A (Figs. A.21 to A.26). Based on the number of dry data points or areas of low flow observed during the dry season walkdowns, it can be concluded that groundwater influence is minimal in the tributaries and drainages, especially in D-10W and NT-10 along the eastern side of the site. Flow in NT-11, which has a broader, more defined stream channel than many of the other tributaries at the CBCV site, was more consistent year round; however, the two USGS seeps



Fig. 3.1. Surface water measurement locations in the vicinity of the CBCV site.

on NT-11 (Fig. 3.1) were dry during all six walkdowns, suggesting the stream relies primarily on surface water for recharge. The D-11E macropore, which feeds into NT-11, also had less water when conditions were dry.

In general, pH and specific conductivity of the surface water in these tributaries increase from north to south. Downstream sampling locations showed more consistency in pH values than those located further upstream, suggesting that more carbonate is present in the lower reaches as one approaches the Maynardville contact.

The data collected during the walkdowns exhibited seasonal fluctuations, as would be expected. Conductivity was highest and showed the most variability during the dry season due to the number of low to no flow locations. Temperature also fluctuated seasonally, with water temperatures increasing as the year progressed. Values for pH were highest during the May walkdown when stream conditions were transitioning from spring to summer, causing more particulate matter to be present in the system.

Although the measured flows indicate NT-11 prirmarily relies on surface water for sustaining flow, the increase in pH in the downstream direction indicates that there is some influx of groundwater in the lower reaches.

#### 3.2.2 Seep Locations

Seep locations at the CBCV site are identified on Fig. 3.1. All but one of the previously identified seeps were located and no additional seeps were located during the site walkdowns. One seep was previously located in an area covered during placement of clean spoils from the UPF and could not be located during the walkdowns.

#### 3.2.3 Conclusions

As a result of the walkdowns, several conclusions can be drawn in terms of groundwater influence and seasonal fluctuations. Based on the number of dry data points or areas of low flow observed during the dry season walkdowns, it can be concluded that groundwater influence is minimal in many of the tributaries and drainages, especially in D-10W and NT-10 along the eastern side of the site. Flow in NT-11, which has a broader, more defined stream channel than many of the other locations, was more consistent year round; however, NT11-SEEP1 and NT11-SEEP2 (the seeps identified in the past by the USGS) were dry during all six walkdowns, suggesting the stream relies primarily on surface water for recharge. The D-11E macropore, which feeds into NT-11, also had less water when conditions were dry. Downstream sampling locations showed more consistency in pH values than those located further upstream, suggesting that more carbonate is present nearer to the Maynardville contact, and supporting the absence of carbonate beneath the CBCV site.

These walkdowns should be interpreted as trend data and used to set a baseline for what can be expected seasonally. The data fluctuated seasonally, as expected. Conductivity was highest and showed the most variability during the dry season due to the number of low- to no-flow locations. Temperature also fluctuated seasonally, with water temperatures increasing as the year progressed. Values for pH were highest during the May transitional walkdown when stream conditions were shifting from spring to summer, causing more particulate matter to be present in the system.

This page intentionally left blank.

# 4. MAYNARDVILLE CONTACT EVALUATION

Previous mapping of BCV indicated that the contact between the Nolichucky Shale and Maynardville Limestone was located approximately 300 ft south of the proposed southernmost waste limit (DOE 2017).

### 4.1 APPROACH

The Nolichucky/Maynardville geologic contact in the NT-10 and D-10W stream channels was located during the first surface water walkdown in January 2018. Participants included a hydrogeologist/Subject Matter Expert from UCOR, an AECOM-led partnership with Jacobs, Water Resources Restoration group, and TDEC geologists. The walkdown used observations of bedrock outcrops in the stream channels and observations of weathered bedrock material to more precisely identify the geologic contact. Coordinates for these contact locations were obtained using Global Positioning System equipment.

#### 4.2 FINDINGS

The Maynardville/Nolichucky geologic contact was observed in the field at three locations. The contact was located in the drainage channel of NT 10, D-10W, and near the confluence of NT-11 and Bear Creek (Fig. 4.1). The location of the Maynardville/Nolichucky geologic contacts observed in the field were approximately 50 ft further south than represented on the geologic maps prior to the field mapping effort.



Fig. 4.1. Surface water monitoring locations and field-verified contact for Maynardville Limestone at the CBCV site.

# 5. SURFACE WATER FLOW EVALUATION

# 5.1 APPROACH

The areas of the three surface water basins between the crest of Pine Ridge on the northwest and the geologic contact between the Maynardville Limestone and the Nolichucky Shale on the southeast are shown in Fig. 4.1. The Maynardville/Nolichucky geologic contact is the most downstream flow measurement location because further downstream surface water tends to sink into the Maynardville karst, causing a low bias to the flow data.

A total of six surface water flow measurement stations (flumes) were installed at locations identified during the January (2018) surface water walkdown survey (Fig. 5.1). The flumes were located in the Nolichucky Shale and Maryville Formation outcrop areas in NT-10, D-10W, and NT-11 (Fig. 5.1). TDEC personnel participated in the walkdown including discussion of flume placement. Flow readings obtained at the CBCV site flumes are measured to < 1 gpm. At low flow conditions, small changes in the flume environment could result in a perceived increase or decrease in flow at the flume.

Three measurement flumes were installed in NT-11 at locations identified during the site walkdown (SF-1, -2, and -3; Fig. 5.1). For the D-10W valley, a surface water flow measurement station was installed downstream of the Haul Road (SF-4) and another downstream of Bear Creek Road near the Nolichucky Shale/Maynardville Limestone geologic contact (SF-5). Surface water flow measurement station (SF-6) was placed on the downstream side of the culvert under Haul Road in NT-10, the northernmost location within NT-10 with a well-defined stream channel. The flumes were installed during March 2018.

The flumes were sized based on historical flow information and measurements of the stream width, depth, and bankfull dimensions collected during the site walkdown. Based on this information, 2.0-ft H-flumes and 1.5-ft H-flumes were sized for installation at the site. The 1.5-ft H-flumes were installed at upstream locations, where the stream channels, size of the catchment basins, and associated runoff are smaller. The 2.0-ft H-flumes were installed downstream, where higher flows are expected due to larger drainage areas as well as the influence of runoff from the Haul Road, Bear Creek Road, UPF Spoils Area, and other disturbed areas. In total, three 2.0-ft H-flumes and three 1.5-ft H-flumes were installed within the three primary tributaries at the CBCV site.

All of the surface water flumes were equipped with a flow meter and water quality analyzer and controller system to provide monitoring of water flow through the flumes. Final surveying of all locations occurred upon completion of monitoring station installation. The coordinates and elevations of the locations of each monitoring site and positions and elevations of the base of each flow control section were surveyed to an accuracy of 0.1 ft horizontal and 0.01 ft vertical. Figure 4.1 also indicates the locations of the three surface water basins (wetlands, identified by Rosensteel and Trettin, 1993) that occupy the valleys of NT-11 and D-10W and the surface expression of the geologic contact between the Maynardville Limestone and the Nolichucky Shale. The wetlands delineation available at the time FSPs were developed are shown instead of the newer boundaries to illustrate the information available when the sample locations were set.

## 5.2 FLUME DATA FINDINGS

Surface water flow measurements were performed as described in the Phase 1 FSP (DOE 2018a) at the six flumes and include continuous flow, temperature pH, and specific conductivity measurements collected at 30-min intervals.

Surface water flow data collected from April 2018 to April 2019 at the flow measurement stations at the CBCV site are illustrated in Fig. 5.1. As expected, flow rates increase downstream, from north to south, and increase quickly in response to rainfall. Flow rates for NT-11 ranged from 0.1 to 6,810 gpm. The flow rate for NT-10 during this period had a range of 0.1 to 4,426 gpm. D-10W is a smaller stream and generally has a lower flow rate. However, the peak flow rate during the wet February 2019 period at SF-5 did exceed the flow rate recorded at flume SF-6 on NT-10 during the same period. The flow rates at SF-5 have ranged from 0.1 to 5,273 gpm (Fig. 5.2). There have been periods where flumes SF-1 and SF-3 on NT-11 recorded no flow. However, SF-2, located between SF-1 and SF-3, showed low flows during those same periods. The SF-4 and SF-5 locations on D-10W showed periods of no flow in May, June, July, August, and September.

Table 5.1 provides a summary of the flow rates recorded from April 2018 to April 2019 at the CBCV weirs. Appendix A contains the individual measurements collected in the field during the surface water walkdowns.

Figures 5.2 through 5.4 provide graphs of the measurements recorded for pH, temperature, and specific conductivity at all of the CBCV site flume installations. The low readings of pH (Fig. 5.2) below 4 standard units (SUs) are suspected to be artifacts of the monitoring equipment as these generally occur as either the initial reading at the re-start of the data collection following a gap in the data collection, or the final reading before a gap in data collection. The average pH ranged from 7.00 SU at SF-5 to 7.58 SU at SF-4. The average pH for all six flumes at the CBCV was 7.25 SU.

Temperature follows a pattern similar to pH with the extreme low values occurring at the start or the end of a period of data collection between periods of no data collection. These temperatures are usually a single reading which deviates substantially from the rteadings prior to, or after, the extereme reading. Average temperature readings at the six CBCV site flumes ranged from 14.2°C at SF-1 to 18.4°C at SF-2.

Specific conductivity readings for surface water at the CBCV flumes also exhibited some extreme readings suspected to be a function of the equipment. This is especially true for the single readings that are extremely low or high compared to preceding or subsequent readings. The average specific conductivity readings ranged from 75.6  $\mu$ S/cm at SF-3 to 204.7  $\mu$ S/cm at SF-5. It can be seen in Fig. 5.4 that specific conductivity measurements at SF-3 are significantly lower than the other five CBCV site flume locations. The SF-3 flume is located in the northern upstream portion of NT-11 near the headwater for this stream. The lower conductivity at this flume location suggests that precipitation provides the majority of the observed flow at this flume location.

The flume data show expected responses to precipitation with high flow occurring during high precipitation events. Less flow occurs in D-10W in response to the same precipitation events. Stormflow bypass flow through macropores (see Fig. 2.4) is assumed to be contributing to surface water flow at the CBCV site.



Fig. 5.1. Surface water flow measurement flumes at the CBCV site.

| Tributary<br>measured | Flume | Minimum flow<br>rate (gpm) | Date of<br>minimum<br>flow rate                                                        | Maximum flow<br>rate (gpm) | Date of<br>maximum flow<br>rate |
|-----------------------|-------|----------------------------|----------------------------------------------------------------------------------------|----------------------------|---------------------------------|
| NT-11                 | SF-1  | 0.3                        | 9/18-19/2018                                                                           | 5,612                      | 2/23/2019                       |
| NT-11                 | SF-2  | 0.7                        | 9/05/2018<br>9/09/2018<br>9/12/2018                                                    | 6,810                      | 2/23/2019                       |
| NT-11                 | SF-3  | 0.1 <sup><i>a</i></sup>    | 9/01/2018<br>9/03/2018<br>9/05–09/2018<br>9/12–16/2018<br>9/18–19/2018<br>9/22–23/2018 | 2,678                      | 2/23/2019                       |
| D-10W                 | SF-4  | $0.1^{a}$                  | 9/01–10/2018<br>9/13–24/2018                                                           | 3,042                      | 2/23/2019                       |
| D-10W                 | SF-5  | $0.1^{a}$                  | 9/10/2018<br>9/13/2018<br>9/24–25/2018                                                 | 5,273                      | 2/23/2019                       |
| NT-10                 | SF-6  | $0.1^{a}$                  | 9/01/2018<br>9/10/2018<br>9/14/2018<br>9/17/2018<br>9/24/2018<br>9/28/2018             | 4,426                      | 2/23/2019                       |

Table 5.1. Minimum and maximum flow rates for the CBCV site flumes, April 2018 to April 2019

<sup>*a*</sup> Essentially no flow periods.

D = drainage. CBCV = Central Bear Creek Valley. NT = North Tributary.

W = West.



Fig. 5.2. Surface water pH at the CBCV site.



Fig. 5.3. Surface water temperature at the CBCV site.



Fig. 5.4. Surface water specific conductivity at the CBCV site.

This page intentionally left blank.

# 6. GROUNDWATER PIEZOMETER EVALUATION

The following describes the installation and testing of the piezometers installed at the CBCV site during the Phase 1 site characterization. The locations of the piezometers are shown on Fig. 6.1.

### 6.1 HYDRAULIC CONDUCTIVITY TESTING APPROACH

Flexible Liner Underground Technologies, LLC (FLUTe<sup>TM</sup>)<sup>1</sup> tests (bedrock piezometers) and slug tests (shallow piezometers) were conducted to develop a more complete picture of the *in situ* hydraulic conductivity. Hydraulic conductivity (horizontal) was measured by performing slug tests for piezometers completed in the residuum, and FLUTe<sup>TM</sup> testing was performed for bedrock intervals to maximize the amount and precision of hydraulic conductivity information obtained.

#### 6.1.1 FLUTe<sup>™</sup> Tests

FLUTe<sup>TM</sup> testing was performed in each open, intermediate borehole prior to piezometer installation. The results from the FLUTe<sup>TM</sup> testing and interpretation of the borehole logs, relative to identifying target intervals of permeable water-bearing bedrock, were used to determine screen and sand-pack intervals for both the intermediate and shallow piezometers at each location. In addition, interval hydraulic conductivity values were determined. During FLUTe<sup>TM</sup> testing, a flexible borehole liner made of a water-tight, urethane-coated, nylon fabric is lowered into the borehole. Each flexible liner is custom made for each borehole and shipped from the FLUTe<sup>TM</sup> manufacturing facility in New Mexico to the field site on a reel. Tests were performed in accordance with the manufacturer's guidelines. The rate of water addition to the liner during installation is carefully controlled to create a nearly constant applied head differential between the inside of the liner and the water level in the formation outside the liner. The rate at which water is added to the liner is governed mostly by the rate at which the water can escape into the permeable features in the open hole below the descending liner as it forces the water out into the permeable zones in the formation. About 1 percent of the transmissivity (T) remaining below the descending liner at any depth in the hole is the limit of resolution. For that reason, the resolution in the bottom portion of the hole is better than in the upper portion of the hole.

## 6.1.2 Slug Tests

Hydraulic conductivity (horizontal) was measured by performing slug tests for piezometers completed in the residuum. Slug tests were performed after well development in shallow piezometers GW-979, GW-981, GW-983, GW-987, GW-989, GW-993, GW-995, and GW-999 (Table 6.1). The slug tests were conducted by monitoring water-level changes after displacement of a volume of water. Water was displaced by the insertion of a 4-ft by 1.25-in. stainless steel slug bar into the well just below the static water level. Steady but rapid insertion of the slug bar was employed to create as rapid a displacement of the water as possible while creating minimal splash in the piezometer. A second test was performed by displacing water downward with the sudden removal of the slug bar. Slug test results are summarized in Table 6.1 and presented in Appendix C.

<sup>&</sup>lt;sup>1</sup> Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.



Fig. 6.1. Phase 1 piezometer locations at the CBCV site.

| Well ID | Screen<br>depth<br>(ft bgs) | Saturated<br>thickness<br>(ft) | Type of<br>test   | Initial<br>displacement<br>(ft) | Static water<br>column<br>height<br>(ft) | Bouwer-Rice<br>hydraulic<br>conductivity<br>(cm/sec) |
|---------|-----------------------------|--------------------------------|-------------------|---------------------------------|------------------------------------------|------------------------------------------------------|
| GW-979  | 26.3-36.3                   | 9.7                            | Slug in           | 1.44                            | 21.24                                    | 4.17E-04                                             |
|         |                             |                                | Slug out          | 1.55                            | 21.27                                    | 4.96E-04                                             |
|         |                             |                                | Average           |                                 |                                          | 4.56E-04                                             |
| GW-981  | 22.1-32.1                   | 9.7                            | Slug in           | 1.01                            | 10.96                                    | 6.39E-05                                             |
|         |                             |                                | Slug out          | 1.2                             | 11.03                                    | 4.61E-05                                             |
|         |                             |                                | Average           |                                 |                                          | 5.50E-05                                             |
| GW-983  | 79.1-89.2                   | 9.7                            | Slug in           | 0.67                            | 26.14                                    | 5.04E-03                                             |
|         |                             |                                | Slug out          | 1.28                            | 26.16                                    | 4.96E-03                                             |
|         |                             |                                | Average           |                                 |                                          | 5.00E-03                                             |
| GW-987  | 16.1–26.1                   | 9.7                            | Slug in           | 1.43                            | 19.45                                    | 9.52E-05                                             |
|         |                             |                                | Slug out          | 1.45                            | 18.84                                    | 9.75E-05                                             |
|         |                             |                                | Average           |                                 |                                          | 9.64E-05                                             |
| GW-989  | 33.6-43.6                   | 9.7                            | Slug in           | 1.35                            | 31.59                                    | 1.42E-04                                             |
|         |                             |                                | Slug out          | 1.49                            | 31.61                                    | 6.68E-05                                             |
|         |                             |                                | Geometric<br>mean |                                 |                                          | 9.74E-05                                             |
| GW-993  | 23.0-33.0                   | 9.7                            | Slug in           | 0.63                            | 28.46                                    | 5.88E-04                                             |
|         |                             |                                | Slug out          | 0.68                            | 28.51                                    | 6.98E-04                                             |
|         |                             |                                | Average           |                                 |                                          | 6.43E-04                                             |
| GW-995  | 22.1-32.1                   | 9.8                            | Slug in           | 1.44                            | 24.05                                    | 1.85E-04                                             |
|         |                             |                                | Slug out          | 1.45                            | 24.07                                    | 1.84E-04                                             |
|         |                             |                                | Average           |                                 |                                          | 1.85E-04                                             |
| GW-999  | 10.3-20.3                   | 9.7                            | Slug in           | 1.31                            | 18.3                                     | 5.14E-04                                             |
|         |                             |                                | Slug out          | 1.43                            | 18.33                                    | 4.54E-04                                             |
|         |                             |                                | Average           |                                 |                                          | 4.84E-04                                             |

bgs = below ground surface.

CBCV = Central Bear Creek Valley.

ID = identification.

Water-level data were collected during the slug tests using a pressure transducer data logger. Static water levels were measured manually and recorded prior to setting the transducer into the piezometer. The pressure transducer was then lowered into the well. The transducer was set at a depth below the water table appropriate for the pressure range of the transducer and deep enough to be below the inserted slug bar during the test. After setting the transducer, the water level was allowed to equilibrate to static conditions prior to starting the test. The transducer was set to logarithmic data collection mode so that rapid water-level changes in the early part of the slug test could be monitored accurately. The slug bar, transducer, cable, and water-level tape were decontaminated using a non-phosphate detergent solution followed by a distilled water wash, prior to insertion in each well.

#### 6.2 PHASE 1 PIEZOMETERS

Eight pairs of piezometers were installed to monitor the shallow and intermediate groundwater within the cell boundary (Fig. 6.1). Piezometers were installed in each designated borehole by Tennessee qualified monitoring well drillers in accordance with ORR requirements as described in Appendix B, Sect. B.3, of the FSP (DOE 2018a). Depths and testing requirements for each piezometer are provided in Table 6.2. Piezometers were developed no sooner than 24 hr after installation, and development continued until the piezometer responded to water-level changes and produced clear, sediment-free water to the extent possible.

Boreholes were drilled and sampled using split-spoon samplers from the surface through the complete soil column to obtain soil samples and geotechnical data, and once rock was encountered, the boreholes were cored to the total depth to obtain representative lithologic data from across the site and in representative formations. The cores were described and logged at the drillsite. The borehole logs are provided in Appendix B. The boreholes were placed to obtain representative lithologic and groundwater data from across the site and in representative formations. Because these piezometers could be preferential pathways to groundwater, all piezometers within the footprint of the disposal cells will be plugged and abandoned as per UCOR procedures prior to construction of the EMDF (DOE 2018a).

Monitoring wells were constructed with 2-in.-diameter, 0.010-in. slot, schedule 40 polyvinyl chloride (PVC) screen and schedule 40 flush-threaded PVC riser pipe. The installed screen sections were either 5 or 10 ft in length depending on the length of the target interval. The installed intermediate piezometer screen sections were 10-ft lengths with the exception of GW-986 and GW-992R, which were completed with 5-ft screen sections (Table 6.2). All shallow piezometers were constructed with 10-ft screens. Screen caps were constructed of schedule 40 PVC threaded end caps along with a 1-ft section of blank schedule 40 PVC riser pipe. The screen and riser sections are Silver-Line Plastics, Enviro Pure brand and arrived at the site in factory packaging. Packaging was only removed immediately prior to well installation, and casing and screen sections were handled while wearing clean, disposable, nitrile gloves during installation. All well screen and riser components were measured to the nearest 0.01 in., assembled, and lowered into the borehole. The length of casing extending above ground level relative to total screen and casing riser length was calculated to properly position the monitoring well screen. The sand pack consisted of DSI "GP#2" gravel pack specifically packaged for use in the environmental industry. The sand pack was gravity placed into the annular space between the piezometer screen and the borehole wall from the bottom of the well screen to a minimum of 2 ft and a maximum of 5 ft above the top of the screen.

Following sand-pack installation, at least 2 ft of coated bentonite pellets were added as a seal above the sand pack. In the boreholes that required centralizers, the pellets also were installed and measured through the 1-in. tremie pipe, as described above for the sand pack. In the auger boreholes, augers were pulled back exposing the borehole wall as the bentonite pellets were added. The depth to the sand pack and bentonite pellet seal was periodically checked with a sounding tape to verify proper placement. Per application instructions, the bentonite pellet seal requires a minimum of 8 hr to hydrate prior to grouting. In the field, the bentonite pellet seal was given 16 to 24 hr to hydrate, exceeding this requirement. The remainder of the annular space was sealed with a cement-bentonite grout mixed to specifications outlined in the statement of work.

| Location ID          | Date well<br>development<br>completed | Drilling<br>method <sup>1</sup> | Location of Northing | coordinates<br>Easting | Boring<br>depth<br>(ft) | Ground<br>elev.<br>(ft-amsl) | Casing<br>ID<br>(in.) | Elevation<br>at top of<br>casing<br>(ft-amsl) | Elevation at<br>bottom of<br>casing<br>(ft-amsl) | Casing<br>stick-up<br>(ft) | Depth of<br>screened<br>interval<br>(ft-bgs) | Top of<br>screen<br>elev.<br>(ft-amsl) | Bottom of<br>screen<br>elev.<br>(ft-amsl) | Sand<br>pack<br>interval<br>(ft-bgs) | Bentonite<br>pellet seal<br>interval<br>(ft-bgs) | Grout<br>interval<br>(ft-bgs) | Total<br>depth of<br>well<br>(ft-TOC) | Depth of<br>water at<br>completion<br>(ft-TOC) |
|----------------------|---------------------------------------|---------------------------------|----------------------|------------------------|-------------------------|------------------------------|-----------------------|-----------------------------------------------|--------------------------------------------------|----------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------------------|-------------------------------|---------------------------------------|------------------------------------------------|
|                      |                                       |                                 |                      |                        |                         |                              |                       |                                               | Inter                                            | mediate Piezo              | ometers                                      |                                        |                                           |                                      |                                                  |                               |                                       |                                                |
| GW-978               | 2/27/2018                             | HSA/HQ/R                        | 30656.68             | 38643.59               | 80.0                    | 953.5                        | 2.0                   | 955.97                                        | 882.6                                            | 2.5                        | 59.5 - 69.6                                  | 894.0                                  | 883.9                                     | 56.1 - 71.5                          | 53.0 - 56.1                                      | 0.5 - 53.0                    | 73.37                                 | 10.63                                          |
| GW-980R <sup>2</sup> | 3/5/2018                              | R                               | 30379.90             | 38138.34               | 74.4                    | 963.5                        | 2.0                   | 965.63                                        | 892.2                                            | 2.1                        | 59.9 - 70.0                                  | 903.6                                  | 893.5                                     | 55.0 - 72.3                          | 51.5 - 54.9                                      | 0.5 - 51.5                    | 73.43                                 | 28.27                                          |
| GW-982               | 3/5/2018                              | HSA/HQ/R                        | 30317.82             | 38617.04               | 126.5                   | 1015.6                       | 2.0                   | 1018.02                                       | 902.2                                            | 2.4                        | 102.1 - 112.1                                | 913.5                                  | 903.5                                     | 99.2 - 114.5                         | 95.9 - 99.2                                      | 0.5 – 95.9                    | 115.82                                | 66.39                                          |
| GW-986               | 3/1/2018                              | HSA/HQ/R                        | 30130.30             | 38191.80               | 59.6                    | 930.2                        | 2.0                   | 932.37                                        | 882.7                                            | 2.2                        | 41.0 - 46.0                                  | 889.2                                  | 884.2                                     | 38.6 - 48.0                          | 35.8 - 38.6                                      | 0.5 - 35.8                    | 49.67                                 | 6.38                                           |
| GW-988               | 3/1/2018                              | HSA/HQ/R                        | 29952.47             | 38091.14               | 78.5                    | 957.0                        | 2.0                   | 958.95                                        | 883.8                                            | 2.0                        | 61.9 – 71.9                                  | 895.1                                  | 885.1                                     | 59.6 - 74.0                          | 55.1 - 59.6                                      | 0.5 - 55.1                    | 75.15                                 | 13.56                                          |
| GW-992R <sup>2</sup> | 3/3/2018                              | R                               | 29698.29             | 38737.35               | 55.5                    | 908.9                        | 2.0                   | 911.40                                        | 863.2                                            | 2.5                        | 39.3 - 44.4                                  | 869.6                                  | 864.5                                     | 37.2 - 48.2                          | 33.8 - 37.2                                      | 0.5 - 33.8                    | 48.20                                 | 4.88                                           |
| GW-994               | 3/1/2018                              | HSA/HQ/R                        | 29644.99             | 38051.04               | 55.0                    | 916.7                        | 2.0                   | 918.89                                        | 863.4                                            | 2.2                        | 42.0 - 52.0                                  | 874.7                                  | 864.7                                     | 37.0 - 54.6                          | 32.3 - 37.0                                      | 0.5 - 32.3                    | 55.549                                | 6.98                                           |
| GW-998               | 2/27/2018                             | HSA/HQ/R                        | 29021.82             | 37742.36               | 45.0                    | 877.7                        | 2.0                   | 880.18                                        | 839.8                                            | 2.5                        | 26.6 - 36.6                                  | 851.1                                  | 841.1                                     | 24.0 - 40.0                          | 21.7 - 24.0                                      | 0.5 - 21.7                    | 40.38                                 | 4.55                                           |
|                      |                                       |                                 |                      |                        |                         |                              |                       |                                               | Shallo                                           | ow Piezomete               | rs                                           |                                        |                                           |                                      |                                                  |                               |                                       |                                                |
| GW-979               | 2/27/2018                             | HSA/HQ/R                        | 30656.61             | 38653.90               | 37.8                    | 953.7                        | 2.0                   | 955.99                                        | 916.1                                            | 2.3                        | 26.3 - 36.3                                  | 927.4                                  | 917.4                                     | 21.2 - 37.8                          | 19.0 - 21.2                                      | 0.5 - 19.0                    | 39.89                                 | 14.70                                          |
| GW-981               | 3/6/2018                              | HSA/HQ                          | 30396.70             | 38148.33               | 34.0                    | 963.2                        | 2.0                   | 965.74                                        | 929.8                                            | 2.5                        | 22.1 - 32.1                                  | 941.1                                  | 931.1                                     | 20.0 - 34.0                          | 17.9 - 20.0                                      | 0.5 - 17.9                    | 35.94                                 | 22.20                                          |
| GW-983               | 3/6/2018                              | HSA/HQ                          | 30325.62             | 38606.49               | 92.2                    | 1015.6                       | 2.0                   | 1018.07                                       | 925.1                                            | 2.5                        | 79.1 - 89.2                                  | 936.5                                  | 926.4                                     | 74.1 - 91.5                          | 70.2 - 74.1                                      | 0.5 - 70.2                    | 92.97                                 | 65.92                                          |
| GW-987               | 3/3/2018                              | HSA/HQ                          | 30138.34             | 38194.40               | 27.9                    | 930.5                        | 2.0                   | 932.94                                        | 903.1                                            | 2.4                        | 16.1 – 26.1                                  | 914.4                                  | 904.4                                     | 13.3 - 27.9                          | 10.9 - 13.3                                      | 0.5 - 10.9                    | 29.84                                 | 9.49                                           |
| GW-989               | 3/6/2018                              | HSA/HQ                          | 29950.44             | 38082.67               | 45.0                    | 955.7                        | 2.0                   | 957.86                                        | 910.8                                            | 2.3                        | 33.6 - 43.6                                  | 922.1                                  | 912.1                                     | 30.0 - 45.0                          | 25.7 - 30.0                                      | 0.5 - 25.7                    | 47.06                                 | 14.03                                          |
| GW-993               | 3/3/2018                              | HSA/HQ/R                        | 29690.50             | 38724.90               | 35.5                    | 909.7                        | 2.0                   | 911.76                                        | 875.4                                            | 2.1                        | 23.0 - 33.0                                  | 886.7                                  | 876.7                                     | 19.8 - 35.5                          | 14.5 – 19.8                                      | 0.5 - 14.5                    | 36.36                                 | 5.45                                           |
| GW-995               | 3/3/2018                              | HSA/HQ                          | 29646.82             | 38039.32               | 34.0                    | 916.3                        | 2.0                   | 918.76                                        | 882.9                                            | 2.5                        | 22.1 - 32.1                                  | 894.2                                  | 884.2                                     | 19.2 - 34.0                          | 17.0 - 19.2                                      | 0.5 - 17.0                    | 35.86                                 | 11.93                                          |
| GW-999               | 3/5/2018                              | HSA/HQ                          | 29025.01             | 37750.58               | 22.0                    | 877.6                        | 2.0                   | 880.11                                        | 856.0                                            | 2.5                        | 10.3 - 20.3                                  | 867.3                                  | 857.3                                     | 8.3 - 21.6                           | 1.0 - 8.3                                        |                               | 24.11                                 | 3.41                                           |

## Table 6.2. CBCV site piezometer construction summary

<sup>1</sup> HSA = Hollow Stem Augers; HQ = HQ Rock Core; and R = Rotary. <sup>2</sup> Replacement borehole - original borehole abandoned and sealed.

amsl = above mean sea level. bgs = below ground surface. CBCV = Central Bear Creek Valley. ID = identification. TOC = top of casing.

19-009(E)/052819

This page intentionally left blank.

## 6.3 HYDRAULIC CONDUCTIVITY FINDINGS

Hydraulic conductivity tests were performed in both the shallow and intermediate piezometers. FLUTe<sup>TM</sup> testing was performed within the open, uncased boreholes in each of the intermediate piezometer pairs and slug testing was performed in the shallow piezometers following piezometer installation.

#### 6.3.1 FLUTe<sup>TM</sup> Test Results

FLUTe<sup>TM</sup> testing was performed within the open, uncased boreholes in each of the intermediate piezometer pairs (GW-978, GW-980R, GW-982, GW-986, GW-988, GW-992R, GW-994, and GW-998) to determine T (and/or hydraulic conductivity) values within the bedrock (Table 6.3). See Appendix D for a summary of FLUTe<sup>TM</sup> testing results. It should be noted that GW-982 was nearly impermeable below 54 ft below ground surface (bgs), and GW-980R had permeability too low to conduct profiling.

The liner descent-rate or velocity is a measure of T of the entire borehole. As the liner continues down the borehole and seals each permeable feature, changes in the liner velocity indicate the position of each feature and an estimate of T is provided using the Thiem equation (Wenzel and Fishel 1942) for steady radial flow. After the liner reaches the bottom of the hole, the liner acts as a seal preventing borehole cross-connection between transmissive features at different depths.

FLUTe<sup>TM</sup> testing results indicate that the total borehole transmissivity ranged from 0.052 cm<sup>2</sup>/sec to 0.198 cm<sup>2</sup>/sec with the average for the seven tested boreholes being 0.118 cm<sup>2</sup>/sec. The flow rate per unit driving pressure measured during the FLUTe<sup>TM</sup> tests ranged from 0.0022 gal/min/ft to 0.0335 gal/min/ft with an average of 0.0195 gal/min/ft. These results show decreasing hydraulic conductivity with depth.

#### 6.3.2 Slug Test Results

Slug tests were performed in shallow piezometers GW-979, GW-981, GW-983, GW-987, GW-989, GW-993, GW-995, and GW-999 (Table 6.1). Slug-test data were analyzed using the Bouwer-Rice method (Bouwer and Rice 1976; Bouwer 1989) within the AQTESOLV software.<sup>2</sup> Water-level recovery data are plotted semi-logarithmically versus time. The slope of a line defined by the recovery data is then used, along with data on well geometry, to calculate hydraulic conductivity.

The results shown in Table 6.1 indicate that hydraulic conductivity ranged from 4.6E-05 to 5.0E-03 cm/sec in the shallow piezometers. The average/mean hydraulic conductivity determined for the two individual tests for each piezometer ranged from 5.5E-05 to 5.0E-03 cm/sec.

<sup>&</sup>lt;sup>2</sup> AQTESOLV (AQuifer TEst SOLVer) is a software used for the design and analysis of aquifer tests (pumping tests, slug tests, constant-head tests, groundwater mounding, etc.) in confined, leaky, unconfined, and fractured aquifers.

| Well ID | Depth<br>to<br>water<br>(ft) | Borehole<br>depth<br>(ft bgs) | Casing<br>depth<br>(ft bgs) | Depth of<br>FLUTe <sup>™</sup><br>profile<br>(ft bgs) | Flow rate<br>per unit<br>driving<br>pressure<br>(gal/min/ft) | Length of<br>borehole<br>remaining<br>(ft) | Transmissivity<br>of remaining<br>borehole<br>(cm²/sec) | Average<br>hydraulic<br>conductivity<br>for remaining<br>borehole<br>(cm/sec) | Total borehole<br>transmissivity<br>(cm²/sec) |
|---------|------------------------------|-------------------------------|-----------------------------|-------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------|
| GW-978  | 10.75                        | 80.0                          | 27                          | 76.85                                                 | 0.01                                                         | 5.24                                       | 0.02705                                                 | 1.30E-04                                                                      | 0.16164                                       |
| GW-980R | 28.27                        | 74.4                          | 27                          |                                                       |                                                              |                                            |                                                         |                                                                               |                                               |
| GW-982  | 52.38                        | 126.5                         | 50                          | 53.74                                                 | 0.00217                                                      | 71.56                                      | 0.0045                                                  | 2.06E-06                                                                      | 0.05181                                       |
| GW-986  | 5.00                         | 59.6                          | 20                          | 49.17                                                 | 0.01538                                                      | 10.25                                      | 0.01538                                                 | 1.02E-04                                                                      | 0.09862                                       |
| GW-988  | 13.9                         | 78.5                          | 36.5                        | 75.37                                                 | 0.02739                                                      | 3.64                                       | 0.056714                                                | 5.12E-04                                                                      | 0.10648                                       |
| GW-992R | 1.5                          | 55.5                          | 31                          | 51.12                                                 | 0.02047                                                      | 3.71                                       | 0.04239                                                 | 3.75E-04                                                                      | 0.10757                                       |
| GW-994  | 7.06                         | 55                            | 35                          | 52.02                                                 | 0.03347                                                      | 2.73                                       | 0.06932                                                 | 8.34E-04                                                                      | 0.09845                                       |
| GW-998  | 1.45                         | 45.0                          | 20                          | 39.92                                                 | 0.02745                                                      | 5.16                                       | 0.05684                                                 | 3.62E-04                                                                      | 0.19806                                       |

Note: Permeabilty of the GW-980R borehole was too low to adequately measure flow into the bedrock using the FLUTe<sup>™</sup> technology. bgs = below ground surface.

CBCV = Central Bear Creek Valley.

FLUTe<sup>TM</sup> = Flexible Liner Underground Technologies, LLC.

ID = identification.

R = replacement borehole.

-- = not available/applicable.

Table 6.3. FLUTe<sup>™</sup> test result summary for the CBCV site piezometers

# 7. LONG-TERM MONITORING RESULTS FROM PHASE 1 WELLS – THROUGH APRIL 2019

Understanding the expected seasonal high groundwater levels is a key element to designing a landfill. The FS phase (DOE 2017) provided conceptual landfill base elevations that would ensure long-term protection from groundwater intrusion based on informed assumptions regarding local conditions at the CBCV site. The purpose of the FS was to determine the plausibility of constructing an on-site disposal facility, based on meeting CERCLA criteria.

The intent of the engineering design will be to establish the lowest allowable elevation of the CBCV site landfill bottom and still maintain a minimum 10-ft buffer between the bottom of the liner system and the estimated seasonal high piezometric surface. It is anticipated that the post-construction piezometric surface will be lower than the current lowest piezometric surface observed in the shallow piezometers due to the elimination of groundwater recharge over the footprint of the landfill because of the placement of the impermeable barriers in the bottom of the landfill. This lack of recharge will also reduce the degree of response in the piezometric surface to precipitation events and seasonal fluctuations from what is currently observed at the site.

Cut and fill will be required for site construction. Fill is necessary to raise the bottom of the waste to maintain the appropriate minimum buffer between the waste and the potentiometric surface, and provide a level footprint, while cuts are necessary in some areas to also provide a level footprint.

## 7.1 DESCRIPTION OF DOWNHOLE MONITOR ISSUES

Several of the downhole monitors installed to continuously measure depth to water (DTW), temperature, pH, and conductivity experienced problems over the monitoring period, resulting in several data gaps. The manufacturer was consulted and downhole monitors were repaired or replaced. The manufacturer also visited the project site to view how the monitors were installed, and verified that these were appropriately installed.

In a few instances, less complicated downhole monitors were installed to collect DTW and temperature data while the original downhole monitors were evaluated and replaced or repaired to bridge data gaps. In addition, overlapping data from the paired piezometers have been used to aid interpretation of water levels during periods when limited data were available. Table 7.1 provides a summary of the groundwater monitoring data gaps during the year-long monitoring period.

## 7.2 POTENTIOMETRIC SURFACE FLUCTUATIONS OVER TIME

Existing condition profiles based on the CBCV site boreholes have been constructed at the locations shown on Fig. 7.1 based on the piezometer data. The existing conditions profiles are provided in Figs. 7.2 through 7.4. The profiles include the geology, completed screen depths for the piezometers, and the peak high potentiometric surface measured on February 24, 2019, the average seasonal high potentiometric surface (February 2019), and the average seasonal low potentiometric surface (late August to early September 2018). These profiles demonstrate the potentiometric surfaces are influenced by topography and local recharge from precipitation. Groundwater flow is both toward Bear Creek, and laterally toward the adjacent drainages. As projected onto the profiles from other BCV sources, the deep groundwater (greater than 400 ft bgs) has a lateral flow component along strike of the bedding, but ultimately discharges to the Maynardville Limestone and Bear Creek.

|                | Data gap dates    |            | Affected                          |                                                                  |
|----------------|-------------------|------------|-----------------------------------|------------------------------------------------------------------|
| Location       | Start             | End        | parameter(s)                      | Explanation                                                      |
| GW-979         | 6/13/2018         | 7/17/2018  | All                               | Downhole monitor failure                                         |
| GW-981         | 7/10/2018         | 7/17/2018  | Conductivity                      | Conductivity probe calibration error                             |
| GW-982         | 7/10/2018         | 7/17/2018  | Conductivity                      | Conductivity probe calibration error                             |
|                | 6/13/2018         | 7/2/2018   | All                               | Downhole monitor failure                                         |
| GW-983 7/2/201 |                   | 7/12/2018  | pH<br>Conductivity                | Replacement monitor installed measuring only DTW and temperature |
|                | 7/12/2018         | 7/17/2018  | All                               | Downhole monitor failure                                         |
| CW 097*        | 6/8/2018 8/7/2018 |            | DTW                               | Pressure sensor failure                                          |
| Gw-987*        | 8/7/2018          | 8/13/2018  | All                               | Downhole monitor failure                                         |
|                | 6/13/2018         | 7/2/2018   | All                               | Downhole monitor failure                                         |
| GW-989         | 7/2/2018          | 7/17/2018  | Temperature<br>pH<br>Conductivity | Replacement monitor installed measuring only DTW and temperature |
|                | 8/10/2018         | 8/17/2018  | pH<br>Conductivity                | Battery failure                                                  |
| GW-992R        | 8/17/2018         | 10/2/2018  | All                               | Downhole monitor could not download data                         |
|                | 10/2/2018         | 10/25/2018 | pH<br>Conductivity                | Replacement monitor installed measuring only DTW and temperature |
| GW-999         | 6/13/2018         | 10/9/2018  | All                               | Downhole monitor failure                                         |

 Table 7.1. Phase 1 groundwater monitoring data gaps

\*On November 6, 2018, a tree fell near well pair GW-986/987; however, this event did not impact the wells or data collection.

DTW = depth to water.

GW = groundwater well.

R = replacement borehole.

As indicated in TM #1, potentiometric surface elevations in the CBCV site piezometers are typical of other BCV wells in similar settings and were similar to the elevations predicted in the RI/FS. Intermediate and shallow piezometer measurements during the Phase 1 characterization confirmed that the potentiometric surface generally mirrors topography (i.e., is higher topographically beneath knolls/ridges and lower near the tributaries). Potentiometric surface measurements respond to rainfall events, indicating some recharge is occurring on the site. Table 7.2 summarizes the potentiometric surfaces measured at the Phase 1 piezometers. The minimum and maximum potentiometric surface elevations in Table 7.2 represent the minimum and maximum over the entire monitoring period for the CBCV piezometers.



Fig. 7.1. Existing conditions profile location map.



Fig. 7.2. North-south existing conditions profile 1 of the CBCV site.



Fig. 7.3. North-south existing conditions profile 2 of the CBCV site.



Fig. 7.4. West–east existing conditions profile of the CBCV site.



| Piezometer | Mid-point of<br>screen<br>(ft-bgs) | Total depth<br>(ft-bgs) | Minimum<br>potentiometric<br>surface<br>(ft-amsl) | Maximum<br>potentiometric<br>surface<br>(ft-amsl) | Difference from<br>min to max<br>(ft) |
|------------|------------------------------------|-------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------|
| GW-978     | 64.5                               | 80.0                    | 934.78                                            | 948.72                                            | 13.94                                 |
| GW-979     | 31.3                               | 37.8                    | 934.74                                            | 948.86                                            | 14.09                                 |
| GW-980R    | 64.95                              | 74.4                    | 935.55                                            | 940.81                                            | 5.21                                  |
| GW-981     | 27.1                               | 34.0                    | 942.76                                            | 951.04                                            | 8.26                                  |
| GW-982     | 107.1                              | 126.5                   | 943.41                                            | 955.90                                            | 12.49                                 |
| GW-983     | 84.2                               | 92.2                    | 943.35                                            | 956.23                                            | 12.89                                 |
| GW-986     | 43.5                               | 59.6                    | 918.75                                            | 929.76                                            | 11.01                                 |
| GW-987     | 21.1                               | 27.9                    | 918.43                                            | 929.17                                            | 10.75                                 |
| GW-988     | 66.9                               | 78.5                    | 928.78                                            | 949.16                                            | 20.38                                 |
| GW-989     | 38.6                               | 45.0                    | 929.26                                            | 951.30                                            | 22.04                                 |
| GW-992R    | 41.85                              | 55.5                    | 901.38                                            | 909.16                                            | 7.77                                  |
| GW-993     | 28.0                               | 35.5                    | 901.06                                            | 908.24                                            | 7.17                                  |
| GW-994     | 47.0                               | 55.0                    | 901.69                                            | 913.47                                            | 11.79                                 |
| GW-995     | 27.1                               | 34.0                    | 901.60                                            | 912.71                                            | 11.11                                 |
| GW-998     | 31.6                               | 45.0                    | 865.42                                            | 878.76                                            | 13.34                                 |
| GW-999     | 15.3                               | 22.0                    | 865.35                                            | 878.27                                            | 12.92                                 |

Table 7.2. Potentiometric surface variations at the CBCV site piezometers, March 2018 to April 2019

amsl = above mean sea level.

bgs = below ground surface.

CBCV = Central Bear Creek Valley.

GW = groundwater well

R = replacement borehole.

Potentiometric surface fluctuations over time in the CBCV piezometers are shown in Figs. 7.5 through 7.12. These figures show the potentiometric surfaces for the paired shallow and intermediate wells at the eight locations, the peak high potentiometric surface elevation, and the average seasonal high and average seasonal low potentiometric surfaces for the shallow well. The average seasonal high elevation is based on the average of the February 2019 potentiometric levels for the shallow well in the pair. The February 2019 data represent the period with the highest water levels recorded over the past 12 months of water level monitoring. The average seasonal low potentiometric surface is based on the average of the late August to early September water level data, which represents the period with the lowest water levels measured during the 12-month monitoring period. Depth to water measurements are recorded approximately every 30 min using downhole monitors.

The response to precipitation events is evident in the piezometer water level graphs (Figs. 7.5 through 7.12), although only a subdued response occurs at the piezometer pair of GW-982/GW-983 (Fig. 7.7). The widest fluctuations in potentiometric surface elevations occurred at the piezometer pair of GW-988 and GW-989, with changes in piezometric surface of 20.38 ft and 22.04 ft, respectively, over the period of March 2018 through April 2019. The following paragraphs provide some of the key observations from the piezometric data for each of the piezometer pairs the CBCV site.

The piezometer pair of GW-978/GW-979, located north of, and outside of, the conceptual design waste boundary, is at an elevation of approximately 954 ft above mean sea level (amsl). The piezometric surface in both the shallow and intermediate zones shows a gradual decline over the late spring, summer, and early fall months and then begins to increase during the late fall and winter months (Fig. 7.5). An overall fluctuation in the piezometric surface of approximately 14 ft has occurred over the year-long monitoring period. Piezometric surface response to precipitation events in both the shallow and intermediate zone piezometers is more subdued in the drier months of summer and early fall than in the wetter months of winter and early spring when a much greater response is evident to individual precipitation events. In general, the piezometric response in both the shallow and intermediate zones tracks closely with no significant lag in time of response between the two zones, and the slight downward vertical hydraulic gradient between the shallow and intermediate zones is maintained throughout the responses to precipitation.

The piezometer pair of GW-980R/GW-981, located at the northwest corner, just outside of the conceptual design waste boundary, is at an elevation of approximately 964 ft amsl. The piezometric surface in both the shallow and intermediate zones shows little fluctuation with only a slight overall decline in the late summer and early fall months, and then a slight increase during the late fall and winter months (Fig. 7.6). Fluctuation in the shallow piezometric surface of approximately 5.2 ft and in the intermediate piezometric surface of approximately 8.2 ft have occurred over the year-long monitoring period. The piezometric surface response to precipitation events in both the shallow and intermediate zone piezometers is more subdued in the drier months of summer and early fall than in the wetter months of winter and early spring when a more active response to individual precipitation events is evident. In general, the piezometric response in both the shallow and intermediate zones tracks closely with no significant lag in time of response between the two zones, and the significant downward vertical hydraulic gradient between the shallow and intermediate zones is maintained throughout the monitoring period.



Fig. 7.5. Water levels at paired wells GW-978 and GW-979.



Fig. 7.6. Water levels at paired wells GW-980R and GW-981.



Fig. 7.7. Water levels at paired wells GW-982 and GW-983.



Fig. 7.8. Water levels at paired wells GW-986 and GW-987.



Fig. 7.9. Water levels at paired wells GW-988 and GW-989.


Fig. 7.10. Water levels at paired wells GW-992R and GW-993.



Fig. 7.11. Water levels at paired wells GW-994 and GW-995.



Fig. 7.12. Water levels at paired wells GW-998 and GW-999.

The piezometer pair of GW-982/GW-983, located within the northeast corner of the conceptual design waste boundary and on top of the knoll, is at an elevation of approximately 1,016 ft amsl. The piezometric surface in both the shallow and intermediate zones shows an overall decline starting in the spring and continuing through the summer and early fall months, and then a relatively significant increase starting in the late fall and continuing during the winter months (Fig. 7.7). An overall fluctuation in both the shallow and intermediate piezometric surface of approximately 12.5 ft has occurred over the year-long monitoring period. The piezometric surface response to precipitation events in both the shallow and intermediate zone subdued throughout the monitoring period; however, the response is even more subdued in the drier months of summer and early fall than in the wetter months of winter and early spring, when a response to precipitation events is more evident. In general, the piezometric response in both the shallow and intermediate zones tracks closely with no significant lag in time of response between the two zones. There appears to be little to no vertical gradient between the piezometric surface increases in the winter months.

The piezometer pair of GW-986/GW-987, located in the drainage that runs to the west to NT-11, within the upper reach of the D-11E drainage, is at a ground level elevation of approximately 930 ft amsl. The piezometric surface in both the shallow and intermediate zones shows a gradual overall decline from the late spring, through the summer and early fall months, and then an increasing level during the late fall and winter months (Fig. 7.8). An overall fluctuation in both the shallow and intermediate piezometric surface of approximately 11 ft has occurred over the year-long monitoring period. The piezometric surface response to precipitation events in both the shallow and intermediate zone piezometers is more subdued in the drier months of summer and early fall than in the wetter months of winter and early spring when a more active response to individual precipitation events is evident. In general, the piezometric response in both the shallow and intermediate zones tracks closely together with no significant lag in time of response between the two zones. The vertical hydraulic gradient between the shallow and intermediate zones is generally upward as the piezometric surface returns to static conditions; however, in response to precipitation events, the vertical gradients temporarily reverse to downward from the shallow to the intermediate zone around the peak of the response.

The piezometer pair of GW-988/GW-989, located near the west-central portion of the conceptual design waste boundary, is at a ground level elevation of approximately 957 ft amsl. The piezometric surface in both the shallow and intermediate zones shows a substantial overall decline from the late spring, through the summer and early fall months, and then a corresponding significant increase in level during the late fall and winter months (Fig. 7.9). An overall fluctuation in the shallow piezometric surface of approximately 22 ft has occurred, and an overall fluctuation of approximately 20.4 ft has occurred in the intermediate zone over the year-long monitoring period. The piezometric surface response to precipitation events in both the shallow and intermediate zone piezometers is more subdued in the drier months of summer and early fall than in the wetter months of winter and early spring when a more active response to individual precipitation events is evident. In general, the piezometric response in both the shallow and intermediate zones tracks closely together with no significant lag in time of response between the two zones. The vertical hydraulic gradient between the shallow and intermediate zones is generally downward throughout the year.

The piezometer pair of GW-992R/GW-993, located near the crossing of D-10W with Haul Road, in the east-central portion of the conceptual design waste boundary, is at a ground level elevation of approximately 910 ft amsl. The piezometric surface in both the shallow and intermediate zones shows a gradual overall decline from the late spring, through the summer and early fall months, and then a gradual increase in level during the late fall and winter months (Fig. 7.10). Overall, the piezometric surface has fluctuated approximately 7 ft in the shallow piezometer, and approximately 7.8 ft in the intermediate zone over the year-long monitoring period. The piezometric surface response to precipitation events in both the shallow and intermediate zone piezometers is slightly more subdued in the drier months of summer and early fall

than in the wetter months of winter and early spring when a more active response to individual precipitation events is evident. In general, the piezometric response in both the shallow and intermediate zones tracks closely together with no significant lag in time of response between the two zones. The vertical hydraulic gradient between the shallow and intermediate zones is slightly upward from the intermediate to the shallow zone during static conditions and this upward vertical gradient is maintained during precipitation events.

The piezometer pair of GW-994/GW-995, located near Haul Road in the center of the southwestern quadrant of the conceptual design waste boundary, is at a ground level elevation of approximately 917 ft amsl. The piezometric surface in both the shallow and intermediate zones shows a gradual overall decline from the late spring, through the summer and early fall months, and then a corresponding gradual increase in level during the late fall and winter months (Fig. 7.11). An overall fluctuation in the shallow piezometric surface of approximately 11.1 ft has occurred, and an overall fluctuation of approximately 11.8 ft has occurred in the intermediate zone over the year-long monitoring period. The piezometric surface response to precipitation events in both the shallow and intermediate zone piezometers is generally more subdued in the drier months of summer and early fall than in the wetter months of winter and early spring when a more active response to individual precipitation events is evident. In general, the piezometric response in both the shallow and intermediate zones tracks closely together with no significant lag in time of response between the two zones. The vertical hydraulic gradient between the shallow and intermediate zones is upward during static conditions and throughout the response to precipitation events.

The piezometer pair of GW-998/GW-999, located southwest and outside of the conceptual design waste boundary in the lower elevation of the valley, is at a ground level elevation of approximately 878 ft amsl. The piezometric surface in both the shallow and intermediate zones, although a substantial portion of the summer and early fall data for the shallow piezometer (GW-999) are unavailable due to equipment malfunction, shows a relatively significant overall decline from the late spring, through the summer and early fall months, and then a corresponding significant increase in level during the late fall and winter months (Fig. 7.12). An overall fluctuation in the shallow piezometric surface of approximately 12.9 ft has occurred, and an overall fluctuation of approximately 113.3 ft has occurred in the intermediate zone over the year-long monitoring period. Unlike the other piezometers at the CBCV site that are located up the slope from the GW-998/GW-999 location, the piezometric surface response to precipitation events in both the shallow and intermediate zone piezometers is relatively active to individual precipitation events, even in the drier months of summer and early fall. In general, the piezometric response in both the shallow and intermediate zones tracks closely together with no significant lag in time of response between the two zones. The vertical hydraulic gradient between the shallow and intermediate zones is slightly upward during both static conditions and throughout the response to precipitation events.

Measurements of pH, temperature, and specific conductivity are also collected, in addition to water levels, at the CBCV piezometers. Groundwater temperatures from March 2018 to April 2019 ranged from 13.9°C to 19.3°C in the shallow piezometers and 13.0°C to 18.8°C in the intermediate piezometers. Measurements of pH ranged from 6.05 to 11.8 in the shallow piezometers and 6.72 to 11.47 in the intermediate piezometers. Specific conductivity measurements ranged from 106  $\mu$ S/cm to 1,266  $\mu$ S/cm in the shallow piezometers. As would be expected, the intermediate zone piezometers showed less fluctuation in specific conductivity with a range of 252  $\mu$ S/cm to 894  $\mu$ S/cm. Figures 7.13 to 7.15 provide graphs of the data for pH, temperature, and specific conductivity for all 16 of the CBCV site piezometers. In general, pH and temperature show minor fluctuations, with specific conductivity exhibiting the greatest degree of fluctuation. High initial readings of temperature, pH, and specific conductivity at some piezometers (e.g., GW-978 and GW-998) may reflect impacts from piezometer installation, as these elevated readings dropped off rapidly and have not recurred. Overall, the CBCV piezometers show typical fluctuations in specific conductivity and pH in response to precipitation events. However, of particular interest is the behavior at piezometer GW-993 (Fig. 7.15). This is the shallow piezometer paired with the intermediate piezometer GW-992R. GW-993 monitors the shallow potentiometric surface in the D-10W



Fig. 7.13. Measurements of temperature at the CBCV site piezometers.



Fig. 7.14. Measurements of pH at the CBCV site piezometers.



Fig. 7.15. Measurements of specific conductivity at the CBCV site piezometers.

drainage. The behavior of the monitored parameters at GW-993 appears to indicate that the rising groundwater from bedrock into the shallow well has higher specific conductivity and higher pH that dissipates when the shallow alluvial groundwater enters the screen during a precipitation event decline cycle. Thus, GW-993 appears to monitor exactly on the hydrogeochemical interface between bedrock and the unconsolidated alluvial zone groundwater.

The sudden increase in both pH and specific conductivity over approximately 10 days in late March and early April at GW-982 does not appear to be related to precipitation, but the initial increase does correspond to a field adjustment of the transducer. Since the second week of April, the pH at GW-982 has ranged from 7.9 to 8.9.

Rapid, large fluctuations in temperature at GW-999, located in the lower elevations near the valley floor, suggest that contributions from surface water may be impacting the observed temperatures. Spikes in pH greater than 11 at GW-981 in the wet season may indicate impacts from grout used for piezometer construction. The spikes in pH also correspond to spikes in specific conductivity at this piezometer occurring during November, December, and early January. In general, the shallow piezometers show a more flashy response of all three parameters to precipitation events than occurs in the intermediate zone piezometers.

### **Comparison of Phase 1 Piezometers with Initial Extrapolation**

Included in TM #1 were extrapolated potentiometric surfaces for the wet season (February) for the CBCV site piezometers, which were based on the water levels for wells located elsewhere in BCV (Fig. 7.16), but having similar water level response to precipitation events as the CBCV piezometers. However, with wet season data now available for the CBCV piezometers, extrapolation of water levels is no longer necessary.

The water level comparison included in TM #1 showed similar piezometric fluctuations between most of the CBCV piezometers and other wells within BCV. An example is the graph in Fig. 7.17 showing GW-994 (CBCV) and GW-078 (BCV). Although there are minor differences in the fluctuations, and magnitude of the fluctuations, there is good correlation between these two piezometers/wells, despite a distance of approximately 3,000 ft between these two locations. Figure 7.18 shows a comparison between GW-980R (CBCV) and GW-080 (BCV), which did not show a good correlation of water level responses. However, the piezometer pair of GW-980R/GW-981 exhibits significantly less response to precipitation events, with the exception of GW-982/GW-983, than the other CBCV piezometers. Thus, the extrapolated water levels for the GW-980R/GW-981 piezometers may not correlate as well with the continuing data being collected.

It should be noted that, as discussed in Sect. 1, precipitation for 2018 and early 2019 was significantly higher than the average, and water level fluctuations may vary somewhat from historical behavior.

### 7.3 POTENTIOMETRIC SURFACE MAPS, GRADIENTS, AND FLOW RATE

Figures 7.19, 7.20, and 7.21 show the piezometric surface for the peak high conditions at the CBCV site, from February 24, 2019, the average seasonal high potentiometric surface from February 2019, and the average seasonal low potentiometric surface from the period of late August to early September 2018 in the shallow CBCV site piezometers. The potentiometric surface represented in Fig. 7.19 is based on the potentiometric surface measured in the CBCV piezometers on September 24, 2018, with the exception of GW-999, which did not have data collected on that date. The potentiometric surface for GW-999 is represented by the lowest potentiometric surface measured in that piezometer which occurred on October 15, 2018.



Fig. 7.16. Bear Creek Valley well locations.

This page intentionally left blank.



Fig. 7.17. Water level comparison for GW-994 (CBCV) and GW-078 (BCV).



Fig. 7.18. Water level comparison for GW-980R (CBCV) and GW-080 (BCV).





Fig. 7.19. Piezometric surface map of the peak high conditions at the CBCV site, February 24, 2019.





Fig. 7.20. Piezometric surface map of the average seasonal high conditions at the CBCV site, February 2019.





Fig. 7.21. Piezometric surface map of the average seasonal low conditions at the CBCV site, August to September 2018.

Horizontal hydraulic gradients are variable over the site as can be seen in the potentiometric maps (Figs. 7.19 and 7.20). Using the potentiometric map in Fig. 7.20, the average hydraulic conductivity from the shallow piezometers, and an effective porosity of 0.2, a linear groundwater velocity of approximately 0.58 ft/day is obtained for the slopes in the central portion of the site between GW-989 and GW-995 based on the January 2019 water levels. A linear groundwater velocity of 0.25 ft/day is obtained for the southern portion of the site between GW-995 and GW-995 based on the January water levels.

Vertical hydraulic gradients between the shallow and intermediate zones at the CBCV site were determined based on piezometric surfaces from September 2018 and February 2019. The vertical gradients were calculated using the mid-point of the screen for both paired piezometers and determining the difference in the vertical distance between these two points. The difference between the piezometric surface for the shallow piezometer and the intermediate piezometer was then determined and the result divided by the difference between the mid-point of the screens to derive the vertical gradient (EPA 2019). The vertical gradients calculated for the CBCV piezometers indicate that five of the eight well pairs exhibited upward vertical gradients during September 2018, with the exception that the piezometric data for October 15 were used for the well pair of GW-998/GW-999 due to no September data being available for GW-999. The other three well pairs exhibited downward vertical gradients in September 2018. Vertical gradients determined for February 2019 indicate that the well pair of GW-982/GW-983 exhibited a reversal of the vertical gradient with a downward gradient instead of an upward gradient that was observed in September 2018. The remaining well pairs exhibited identical vertical gradient directions as in September 2018. The mid-point of the well screens, total depth of the well, and the vertical gradients from September 24, 2018, and February 24, 2019, are shown in Table 7.3. The September 24 date was selected as this represents the date of the lowest potentiometric surfaces at most of the CBCV site piezometers and follows a period in late August and early September of little, to no, precipitation. The February 24, 2019, date was selected as this represents a period of minimal evapotranspiration and the highest potentiometric surface recorded at the CBCV piezometers during the year-long monitoring period.

|            | Mid-point<br>of screen | Total depth | Vertical<br>gradient during<br>dry conditions,<br>September 2018 | Vertical<br>gradient<br>direction<br>during dry<br>conditions,<br>September<br>2010 | Vertical<br>gradient<br>during wet<br>conditions,<br>February 2019 | Vertical<br>gradient<br>direction<br>during wet<br>conditions,<br>February |
|------------|------------------------|-------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|
| Piezometer | (It bgs)               | (It bgs)    | (11/11)                                                          | 2018                                                                                | (II/II)                                                            | 2019                                                                       |
| GW-978     | 64.5                   | 80.0        | 0.12                                                             | Down                                                                                | <0.01                                                              | Down                                                                       |
| GW-979     | 31.3                   | 37.8        |                                                                  |                                                                                     |                                                                    |                                                                            |
| GW-980R    | 64.95                  | 74.4        | 0.19                                                             | Down                                                                                | 0.28                                                               | Down                                                                       |
| GW-981     | 27.1                   | 34.0        |                                                                  |                                                                                     |                                                                    |                                                                            |
| GW-982     | 107.1                  | 126.5       | <-0.01                                                           | Up                                                                                  | 0.03                                                               | Down                                                                       |
| GW-983     | 84.2                   | 92.2        |                                                                  |                                                                                     |                                                                    |                                                                            |
| GW-986     | 43.5                   | 59.6        | -0.01                                                            | Up                                                                                  | -0.02                                                              | Up                                                                         |
| GW-987     | 21.1                   | 27.9        |                                                                  |                                                                                     |                                                                    |                                                                            |
| GW-988     | 66.9                   | 78.5        | 0.02                                                             | Down                                                                                | 0.08                                                               | Down                                                                       |
| GW-989     | 38.6                   | 45.0        |                                                                  |                                                                                     |                                                                    |                                                                            |
| GW-992R    | 41.85                  | 55.5        | -0.02                                                            | Up                                                                                  | -0.07                                                              | Up                                                                         |
| GW-993     | 28.0                   | 35.5        |                                                                  |                                                                                     |                                                                    |                                                                            |
| GW-994     | 47.0                   | 55.0        | -0.07                                                            | Up                                                                                  | <-0.01                                                             | Up                                                                         |
| GW-995     | 27.1                   | 34.0        |                                                                  |                                                                                     |                                                                    |                                                                            |
| GW-998     | 31.6                   | 45.0        | -0.01                                                            | Up                                                                                  | -0.03                                                              | Up                                                                         |
| GW-999     | 15.3                   | 22.0        |                                                                  |                                                                                     |                                                                    |                                                                            |

Table 7.3. Vertical gradients at the CBCV site, September 2018 and February 2019

CBCV = Central Bear Creek Valley. ft bgs = feet below ground surface. GW = groundwater well.

R = replacement borehole.

### 7.4 POTENTIAL FOR UPWELLING BENEATH THE KNOLL

Hydrographs and groundwater electrical conductivity (EC) were evaluated for the four piezometer pairs constructed in the Maryville Limestone beneath the knoll area on the southern flank of Pine Ridge to determine the potential for groundwater upwelling (Fig. 6.1, GW-980R/981, GW-982/983, GW-986/987, and GW-988/989). As part of the groundwater evaluation, the piezometer data were compared to observations and measurements of the flow characteristics and EC for the adjacent CBCV site drainages.

### 7.4.1 Piezometer Pair GW-982/GW-983

This piezometer pair is located at the highest part of the knoll (Fig. 6.1). The location of this piezometer pair, along with GW-980R/981, is shown on the west/east profile section (Fig. 7.4). The section shows the elevation of the screened intervals, surface topography, slopes, and elevations of adjacent drainages.

The changes in the potentiometric surface with time and the screened intervals are shown on Fig. 7.22. The intermediate (GW-982) and shallow (GW-983) piezometers in this pair generally demonstrate a neutral to weakly downward gradient (Fig. 7.22).

Both piezometers demonstrate a slow infiltration rate after rain events, with infiltration into the intermediate piezometer slightly slower. The shallow piezometer drains more quickly than the intermediate piezometer, resulting in a slight upward gradient during the dry periods.

As expected, the EC for the intermediate piezometer is higher than the shallow piezometer, reflecting groundwater in contact with the bedrock for a longer period of time, with limited response to precipitation events. The slow infiltration of precipitation during rain events results in subdued changes in potentiometric surface. The largest changes in EC are associated with the greatest increases in potentiometric surface.

Comparison of the vertical gradient between the piezometer pairs with the lateral gradient to the nearest surface water drainage (D-10W) found that the lateral gradient to the D-10W is 5 to 10 times steeper than the vertical gradient for the piezometer pair. This steeper lateral gradient, in combination with aquifer hydraulic conductivity anisotropy caused by dipping beds having contrasting properties, indicates that beneath the knoll, there is more lateral flow toward the drainages than vertically downward and deeper into the bedrock. The very weak upward gradient, when present, is far less than the lateral gradient.

#### 7.4.2 Piezometer Pair GW-980R/GW-981

This piezometer pair is located on the northwestern side of the knoll and the ground surface drops steeply on three sides (south, west, and north) toward NT-11 (see Fig. 6.1). The changes in the potentiometric surface with time are shown on Fig. 7.23. The location of this piezometer pair, along with GW-982/983, is shown on the west/east profile section (Fig. 7.4). The section shows the elevation of the screened intervals, surface topography, slopes, and elevations of adjacent drainages. As shown in Fig. 7.23, a consistently strong downward gradient is present, consistent with the surrounding topography.

This piezometer pair shows a typically higher EC for the intermediate piezometer, reflecting more contact time with bedrock, but declining to levels more consistent to the shallow piezometer (Fig. 7.23). This change may reflect flushing of the groundwater with the increased precipitation during the 2018 very high precipitation year. The shallow piezometer potentiometric surface and EC is very responsive to precipitation, indicating a good infiltration pathway for precipitation.

The strong vertical downgradient at this location is greater than the lateral gradient toward NT-11 although the groundwater elevations in this well pair remain about 25 to about 35 ft higher than the nearby NT-11 headwater stream elevation. The gradient is influenced by the topography and nearby drainages. Therefore, precipitation that infiltrates in the subsurface tends to move downward into the bedrock and then laterally to discharge toward NT-11. This conclusion is supported by similar EC values in groundwater from both the shallow and intermediate piezometers, reflecting similar groundwater travel paths and residence time. However, the shallow piezometer is more responsive to precipitation events, indicating somewhat higher infiltration in the shallow potentiometric surface as compared to the intermediate potentiometric surface.

Grout contamination may be influencing the shallow piezometer to some extent because both pH and EC rise with the increases in the potentiometric surface.



Fig. 7.22. GW-982/983 comparisons.



Fig. 7.23. GW-980R/981 comparisons.

#### 7.4.3 Piezometer Pair GW-986/GW-987

This piezometer pair is located within the steep-sided, east-west drainage D-11E that feeds into NT-11 (Fig. 6.1). Surface flow within D-11E is not common, generally present only following heavy precipitation events.

The depths of the screened intervals and changes in the potentiometric surface with time are shown on Fig. 7.24. As shown in Fig. 7.24, the vertical gradient changed over time from primarily weakly downward during much of 2018, to neutral or weakly upward beginning around September 2018. The shallow piezometer drains more quickly than the intermediate piezometer, contributing to the upward gradient.



Fig. 7.24. GW-986/987 comparisons.

The EC measurements in this piezometer pair show changes attributed to removal and replacement of the downhole monitors, including possible small changes in the monitors' downhole positions. The EC measurements for the intermediate piezometer are slightly higher, indicating a somewhat longer residence time for groundwater in contact with bedrock and shows no response to precipitation. The shallow piezometer EC measurements do not exhibit a response to precipitation prior to October 2018. Starting around October 2018, infiltration of low EC precipitation corresponds to potentiometric surface increases. However, in the 2018 high precipitation year, higher precipitation amounts caused a shift in both the shallow and intermediate piezometer measurements toward a common EC value.

The lateral gradient toward NT-11 was calculated by comparing the potentiometric surfaces in the piezometers against the stream surface in NT-11, then dividing by the distance from the piezometers to NT-11. For both piezometers, the lateral gradient exceeds the vertical gradient in all cases, demonstrating groundwater flow is primarily lateral toward NT-11 at this location (Fig. 7.25).



Fig. 7.25. GW-986/987 gradient evaluation.

### 7.4.4 Piezometer Pair GW-988/GW-989

This piezometer pair is located along the southwestern side of the knoll and the ground surface drops steeply to the south and north (Fig. 6.1). The depths of the screened intervals and changes in the potentiometric surface with time are shown on Fig. 7.26. As shown on Fig. 7.26, there is a consistent, moderate downward gradient at this location.

The intermediate piezometer exhibits higher EC as expected, with some response to periods of higher precipitation. The shallow piezometer exhibits very muted response to precipitation that could be caused by minor influence of lower EC precipitation reaching groundwater. The step change in EC could be from the observed rise in the intermediate groundwater; however, the steep, sharp step change could also be caused by an issue with the downhole monitor.

The vertical gradient for this piezometer pair is consistently downward at values about half for less than the lateral gradient toward NT-11. These results indicate that groundwater flow is mostly lateral toward NT-11 at this location.



Fig. 7.26. GW-988/989 comparisons.

## 7.4.5 Summary and Conclusion

Groundwater EC values generally increase with depth beneath the knoll and across the CBCV site. This condition is a result of increasing groundwater residence time in contact with geologic materials subject to dissolution. In addition, EC values tend to vary in response to hydrologic stresses at the monitoring point. Shallow piezometers may exhibit rapid and significant decreases in EC following rainfall events that recharge the shallow groundwater with very low EC rainwater. In the knoll area, the intermediate piezometers in the pairs similarly exhibit recharge induce decreases in EC or no EC response to rainfall.

However, GW-982, the piezometer installed at the greatest depth, exhibits small to slight inverse response to precipitation that suggests a small upward movement of deeper groundwater or a lateral inflow of slightly higher EC groundwater from an adjacent area.

Evaluation of the hydrographs, EC, and drainages in the CBCV site knoll area determined that the primary gradients are lateral and toward the nearby drainages. Where present, upward gradients within piezometer pairs are weaker than the lateral gradients that drive water toward the streams. As a result, if upwelling of very deep groundwater were present, it would be expected to drain laterally to drainages through fractures or weathered rock zones and not rise into the intermediate or shallow knoll area.

This conclusion is supported by the surface water data that demonstrate a small groundwater flow component accounted for by lateral flow from the knoll. If upwelling into the intermediate and shallow groundwater was taking place, this deeper bedrock flow component would be reflected in increased surface water flows, and higher EC.

## 8. SUMMARY AND CONCLUSIONS

BCV has been extensively studied as part of several regional studies and the regional geology is well understood. The geologic structure of the BCV area is a fundamental aspect of the region that dictates the topographic and hydrogeologic conditions. Bedrock beneath all the stratigraphic units that underlie Pine Ridge and BCV dip at an attitude of approximately 45 degrees to the southeast with geologic strike, or the direction that individual rock beds intersect the ground surface, being northeast to southwest in a direction approximately 55 degrees east of true north.

Pine Ridge forms the northern boundary of BCV and is underlain by the erosion-resistant sandstones and siliceous shales of the Rome Formation. The CBCV site is located nearly 1,000 ft southeast of, and about 200 ft lower than, the Pine Ridge crest. A topographic saddle coincident with the outcrop area of the Rutledge Limestone separates the CBCV site from the main slope of Pine Ridge and from the knoll formed by the Maryville Limestone (Fig. 2.1).

Geologically, the CBCV site is separated from the Rome Formation by bedrock of the Pumpkin Valley Shale and the Rutledge Limestone. The Pumpkin Valley Shale consists of two locally recognized members including a lower siltstone unit and an upper siliceous shale unit. As determined by previous site investigations conducted both northeast and southwest of the CBCV site, in the BCV strike belt, the Rutledge Limestone is predominantly a calcareous shale with discontinuous, thin limestone beds. The Pumpkin Valley and Rutledge formations provide a low hydraulic conductivity separation between the sandstone of the Rome Formation and the primarily shale bedrock formations that directly underlie the CBCV site. These lower permeability shales effectively confine groundwater in the Rome Formation.

The CBCV site is located over steeply dipping siltstones, shales, and minor limestone bedrock of the Conasauga Group, including the Rogersville Shale, the Maryville Limestone, and the Nolichucky Shale. Overlying the bedrock is a highly weathered, clay-rich saprolite layer of varying thickness. The permeability of both the saprolite and the bedrock is approximately  $1 \times 10^{-3}$  to  $1 \times 10^{-5}$  cm/sec, resulting in slow groundwater movement. Fractures are present in the bedrock and decrease with depth, resulting in decreased permeability and slower groundwater movement with depth (Fig. 2.5).

In contrast to the lower, more clastic-rich rock formations in the Conasauga Group, the Maynardville Limestone is a relatively pure limestone that, due to chemical weathering and formation of karst, is much more permeable than the Conasauga Group formations. However, because of the regionally imposed southeastward dip of bedrock in BCV, the Maynardville Limestone is not present under the CBCV site. The EMDF design planning approach will maintain a separation of at least 350 ft between the southernmost landfill footprint and the Maynardville Limestone outcrop area. The separation between the Maynardville and the proposed landfill provides adequate space for monitoring and other operational activities (Fig. 2.1). The location of Bear Creek is in part controlled by the presence of the Maynardville Limestone.

Annual precipitation in this area is approximately 55 in. per year with the area's topography and near-surface geology reflecting steep erosional channels (northern tributaries) generally aligned with bedrock cross bedding fracture system to accommodate precipitation from storm events. As shown in the (Fig. 2.4), evapotranspiration returns about 50 percent (27.5 in.) of the precipitation back into the environment as humidity, clouds, and/or precipitation. Based on conditions in clastic formations along Bear Creek, 30 to 40 percent of the precipitation exits as stormwater and stormflow zone runoff (equivalent to 17 to 22 in.) and immediately exits to surface water through the abundant macropores and other shallow subsurface features (decayed roots, trees, animal burrows, and the like). An additional 10 to 20 percent (4.5 to 10.5 in.) of the precipitation enters into the shallow groundwater and discharges to the surface water

streams and Bear Creek. An estimated less than 1 percent (less than 0.5 to 0.6 in.) of the precipitation enters the deeper groundwater system.

At the CBCV site, as with most other areas studied on the ORR, there is one interconnected groundwater zone at shallow and intermediate depths, not distinct aquifers separated by unsaturated bedrock zones. The distinction between shallow and intermediate groundwater is largely subjective and is based primarily on the consideration of the physical characteristics of the groundwater host materials (e.g., degree of weathering and unconsolidated materials versus competent bedrock). The higher the degree of rock weathering, or the more fractures that are present, the more similar to a porous media the matrix material becomes with observed groundwater flow similar to porous media flow (Darcy flow).

In zones with less weathering, or where interbedded bedrock layers have a significant contrast in permeability such as Rome Sandstone contact with the Pumpkin Valley Shale, the saturated zone retains anisotropy that "steers" groundwater flow parallel to the beds. In competent, shale-rich bedrock zones, groundwater flow occurs primarily through fractures because the rock matrix has extremely low permeability. Fractures in competent bedrock tend to form within individual beds at varying orientation with sparse through cutting fractures at orientations caused by the tectonic evolution of the region. Groundwater migration in competent bedrock beneath the CBCV site would be expected to occur through the fracture network and exhibits a low degree of interconnections compared to the highly connected fracture and weathering porosity in the overlying unconsolidated aquifer zone.

As described in Sect. 2, BCV shallow potentiometric surface generally mimics topography. The potentiometric surface demonstrates a general gradient from higher elevations on Pine Ridge toward Bear Creek and the Maynardville Limestone outcrop band. The potentiometric gradients also demonstrate local groundwater movement down slopes toward the northern tributaries that dissect the mid-valley topography at fairly regular intervals. There is a slight, western offset in the potentiometric surface caused by groundwater exiting at the northern tributaries. The intermediate bedrock flow is similar but demonstrates a more subdued topographic influence and greater southwest orientation due to decreased number of fractures for flow and alignment. Shallow and bedrock groundwater shows a strong, westward component in the Maynardville Limestone, the dominant groundwater drain for the valley (Fig. 2.6).

The distribution of contaminant plumes resulting from previous disposal practices reflects the groundwater flow within BCV. The plume associated with the nearby Bear Creek Burial Grounds shows the primary groundwater flow direction to the south, with minor westerly flow into the northern tributaries. In contrast, plumes from the S-3 Ponds and other up-valley sources closer to Bear Creek, show a primarily westerly groundwater flow direction associated with the Maynardville Limestone and Bear Creek (Fig. 2.7).

The Phase 1 hydrogeological investigation was conducted to validate and refine the original key assumptions, and to provide hydrogeological data supporting the engineering design. The investigation included installing eight shallow and intermediate depth pairs of piezometers, six surface water flumes, and conducting seven walkdowns (both wet and dry season) of surface water drainages within the CBCV site. In addition, the location of the Maynardville contact was field identified to confirm the separation from the planned landfill. The piezometers and surface water flumes were equipped with continuous monitoring equipment that measured pH, electrical conductivity, and temperature along with water levels (piezometers only) and flow rates (surface water flumes only). Piezometers and flumes were monitored for a year following installation (February/April 2018 through February/April 2019), a high precipitation year. Precipitation in 2018 was 64.73 in., about 10 in. above the average annual precipitation. For the monitored year March 2018 through February 2019, 73 in. of precipitation fell, almost 20 in. above the average annual amount. The higher-than-average precipitation resulted in monitoring over a very wet period.

Bedrock and saprolite cores were collected during piezometer installation that confirmed the presence of primarily siltstones and shales with minor limestone interbeds and the lack of major karst features (Sect. 2). As expected, fractures were present, particularly in the shallow bedrock core. Testing was performed and confirmed the presence of low-permeability bedrock, with permeability decreasing with depth.

The piezometer monitoring results showed that the potentiometric surfaces are primarily influenced by topography and local recharge. There is subdued mounding of the potentiometric surface under the knoll. Generally, piezometer measurements respond quickly during precipitation events then decrease rapidly to average conditions within days. A seasonal variation was also noted, with higher potentiometric surfaces in February 2019 when abundant precipitation occurred and vegetation was dormant. The lowest potentiometric surface elevations were measured in September 2018 when precipitation was low and plants were growing. Comparison of the shallow and intermediate piezometer pairs (Figs. 7.5 through 7.12) demonstrates a downward-to-flat gradient in the knoll area, and slight upward gradients in areas away from the knoll. These gradients and the immediate response to precipitation show that the shallow groundwater on the knoll is locally recharged by infiltration of precipitation.

The monitoring also confirmed the overall groundwater flow direction from Pine Ridge toward Bear Creek and the Maynardville limestone, with lateral flow to the NT-10, D-10W, and NT-11 drainages (Fig. 7.18). Figure 7.2 provides the low and high potentiometric surfaces, showing seasonal variation in potentiometric surfaces and the overall flow direction from Pine Ridge toward Bear Creek. While not observed during the investigation, other investigations in BCV indicate deep groundwater flow from Pine Ridge to Bear Creek and the Maynardville Limestone across bedding planes and geologic contacts, and may have higher potentiometric surfaces (upward gradients) at greater depths (below the investigation depths). However, flow conditions at depth discharge primarily to the Maynardville Limestone and are not found at elevations corresponding to the proposed landfill.

As noted in Sect. 5, the higher surface water flow rates are associated with precipitation events, declining rapidly afterward. Lower flow rates result from the contributions from shallow groundwater. Some surface water flow likely bypasses the upper flumes, through macropores. However, flumes at SF-2, SF-4, and SF-6 are located at the downstream end of culverts under the Haul Road with most, if not all, surface water flow captured. D-10W has less flow than NT-10 or NT-11, and exhibits no flow approximately 25 percent of the year. However, all drainages had periods of no flow during the dry season.

As demonstrated by the pH and EC measured at the flumes (Sect. 5) and during the seven surface water walkovers (Sect. 3), shallow groundwater locally discharges to adjacent NT-10, NT-11, and seasonally to D-10W, demonstrating some lateral flow into these drainages. The shallow groundwater chemistry contribution to surface flow is relatively unnoticed during wet periods when the groundwater contribution is masked by the greater surface water flow, but can be observed during dry times of the year. These measurements support the conclusion that shallow groundwater is recharged locally and discharges laterally into drainages as indicated by the potentiometric surfaces (Sect. 7.3).

The Phase 1 monitoring confirmed that upward gradients found in the deeper bedrock 100 to 400 ft bgs were not observed in the shallow and intermediate potentiometric surfaces at the CBCV site, and therefore are not responsible for the mounding observed in the knoll area. If significant upward groundwater gradients were present, continuous surface water flow would be expected in NT-10, NT-11, and D-10W even during dry seasons, and the surface water base flow water chemistry would be similar to deep groundwater. The quality of deep groundwater has been characterized in other Bear Creek Valley wells with total dissolved solids (TDS) greater than 400 mg/L and pH up to 9. However, the shallow groundwater in Bear Creek Valley generally has TDS concentrations less than 300 mg/L and lower pH values. The higher TDS and pH in the deeper groundwater is a result of the longer groundwater travel distances, and the longer duration for groundwater to interact with bedrock.

In contrast, the water chemistry observed during low flow conditions in the adjacent streams demonstrates that the base flow in the tributaries is from shallow groundwater (Sect. 7.4). As noted above and in Sect. 7.4, mounding of the potentiometric surface under the knoll is due to recharge from precipitation rather than from deep groundwater flowing up into knoll area (Sect. 7.4).

## 9. **REFERENCES**

- Bouwer, H. 1989. The Bouwer and Rice Slug Test An Update, *Groundwater*, Vol. 27, Issue 3, pp. 304–309.
- Bouwer and Rice 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, Vol. 12, No. 3, pp. 423–428.
- Clapp, R. B. 1997. Estimating groundwater recharge to the shale aquifers in Eastern Tennessee using a topography-based, water-budget model (in) Extended Abstracts from Seventh Tennessee Water Resources Symposium, Nashville, Tennessee, February 24–26, pp. 151–153.
- DOE 1997. Report on the Remedial Investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1455/V2&D2, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- DOE 2014. Groundwater Strategy for the U.S. Department of Energy, Oak Ridge Reservation, Oak Ridge, Tennessee, DOE/OR/01-2628/V1&D2, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- DOE 2016. 2016 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee, DOE/OR/01-2707&D2, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- DOE 2017. Remedial Investigation/Feasibility Study for the Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee, DOE/OR/01-2535&D5, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- DOE 2018a. Phase 1 Field Sampling Plan for the Proposed Environmental Management Disposal Facility for Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee, DOE/OR/01-2739&D2, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- DOE 2018b. Technical Memorandum #1, Environmental Management Disposal Facility Phase 1 Field Sampling Results Oak Ridge, Tennessee, DOE/OR/01-2785, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN.
- EPA 2019. EPA On-line Tools for Site Assessment Calculation (available online at: https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/vgradient02.html), Ecosystems Research, Athens, GA.
- Hatcher, R. D., Jr., Lemiszki, P. J., Dreier, R. B., Ketelle, R. H., Lee, R. R., Leitzke, D. A., McMaster, W. M., Foreman, J. L, and Lee, S. Y. 1992. *Status Report on the Geology of the Oak Ridge Reservation*, ORNL/TM-12074, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Kamp, G. E. 1985. The Relation of Groundwater to Mercury Migration at the Y-12 Plant and the Hydraulic Effect of Proposed Clean-up Measures, Y/SUB/85-00206c/5, Martin Marietta Energy Systems, Inc., Y-12 Plant, Oak Ridge, TN.

- Moore, G. K., and Toran, L. E. 1992. Supplement to a Hydrologic Framework for the Oak Ridge Reservation, Oak Ridge, Tennessee, ORNL/TM-12191, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- ORNL 1989. *Geology of the West Bear Creek Site*, ORNL/TM-10887, R. R. Lee and R. H. Ketelle, Oak Ridge National Laboratory, Oak Ridge, TN, January.
- ORNL 2006. Oak Ridge Reservation Physical Characteristics and Natural Resources, ORNL/TM-2006/110, P. D. Parr and J. F. Hughes, Oak Ridge National Laboratory, Oak Ridge, TN, September.
- Rosensteel, B. A. and Trettin, C. C. 1993. *Identification and Characterization of Wetlands in the Bear Creek Watershed*, Y/TS-106, Martin Marietta Energy Systems, Inc., Y-12 Plant, Oak Ridge, TN.
- Solomon, D. K., Moore, G. K., Toran, L. E., Dreir, R. B., and McMaster, W. M. 1992. Status Report, A Hydrologic Framework for the Oak Ridge Reservation, ORNL/TM-12026, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Wenzel, L. K., and Fishel, V. C. 1942. Methods for Determining Permeability of Water-Bearing Materials, with Special Reference to Discharging-Well Methods, with a Section on Direct Laboratory Methods and Bibliography on Permeability and Laminar Flow, U. S. Geological Survey, Water Supply Paper 887, Washington, D.C.

# APPENDIX A

# SURFACE WATER WALKDOWN RESULTS

This page intentionally left blank.

# CONTENTS

| FIGURES                         | A-5  |
|---------------------------------|------|
| ACRONYMS                        | A-7  |
| WALKDOWN #1: JANUARY 30, 2018   | A-10 |
| WALKDOWN #2: FEBRUARY 27, 2018  | A-12 |
| WALKDOWN #3: MAY 1, 2018        | A-14 |
| WALKDOWN #4: JUNE 4, 2018       | A-16 |
| WALKDOWN #5: SEPTEMBER 12, 2018 | A-18 |
| WALKDOWN #6: OCTOBER 10, 2018   | A-20 |
| CONCLUSIONS                     | A-23 |
| REFERENCES                      | A-39 |

This page intentionally left blank.

## **FIGURES**

| Fig. A.1.  | Confluence of NT-11 and D-11E                                      | A-11 |
|------------|--------------------------------------------------------------------|------|
| Fig. A.2.  | Poorly defined channels in D-10W                                   | A-11 |
| Fig. A.3.  | Collecting measurements along the southern portion of NT-11        | A-13 |
| Fig. A.4.  | Presence of groundwater at the D11E-1 macropore                    | A-13 |
| Fig. A.5.  | Dense vegetation surrounding NT-11                                 | A-15 |
| Fig. A.6.  | Iron staining along the east fork of NT-11                         | A-15 |
| Fig. A.7.  | Dense vegetation along D-10W                                       | A-17 |
| Fig. A.8.  | Dry stream channel at D10W-22                                      | A-17 |
| Fig. A.9.  | Logs and other vegetation located in the northern portion of D-10W | A-19 |
| Fig. A.10. | Dry stream channel at NT11-EF2                                     | A-21 |
| Fig. A.11. | Low flow at D10W-5                                                 | A-22 |
| Fig. A.12. | Temperature comparison along NT-11                                 | A-24 |
| Fig. A.13. | Temperature comparison along D-10W                                 | A-25 |
| Fig. A.14. | Temperature comparison along NT-10                                 | A-26 |
| Fig. A.15. | pH comparison along NT-11                                          | A-27 |
| Fig. A.16. | pH comparison along D-10W                                          | A-28 |
| Fig. A.17. | pH comparison along NT-10                                          | A-29 |
| Fig. A.18. | Conductivity comparison along NT-11                                | A-30 |
| Fig. A.19. | Conductivity comparison along D-10W                                | A-31 |
| Fig. A.20. | Conductivity comparison along NT-10                                | A-32 |
| Fig. A.21. | January 30, 2018, walkdown results                                 | A-33 |
| Fig. A.22. | February 27, 2018, walkdown results                                | A-34 |
| Fig. A.23. | May 1, 2018, walkdown results                                      | A-35 |
| Fig. A.24. | June 4, 2018, walkdown results                                     | A-36 |
| Fig. A.25. | September 12, 2018, walkdown results                               | A-37 |
| Fig. A.26. | October 10, 2018, walkdown results                                 | A-38 |

This page intentionally left blank.

# ACRONYMS

| CBCV | Central Bear Creek Valley                            |
|------|------------------------------------------------------|
| D    | Drainage                                             |
| DOE  | U.S. Department of Energy                            |
| Е    | East                                                 |
| EMDF | Environmental Management Disposal Facility           |
| EPA  | U.S. Environmental Protection Agency                 |
| FSP  | Field Sampling Plan                                  |
| GPS  | Global Positioning System                            |
| NT   | North Tributary                                      |
| ORNL | Oak Ridge National Laboratory                        |
| SOW  | Statement of Work                                    |
| TDEC | Tennessee Department of Environment and Conservation |
| W    | West                                                 |
This page intentionally left blank.

Beginning in January 2018, a series of surface water walkdowns were conducted to characterize stream flow at the Environmental Management Disposal Facility (EMDF) Central Bear Creek Valley (CBCV) site and address a requirement in the August 2017 U.S. Environmental Protection Agency (EPA)/Tennessee Department of Environment and Conservation (TDEC) Statement of Work (SOW) for Phase 1 sampling. As part of the December 2017 Dispute Resolution Agreement, a TDEC/EPA-approved Field Sampling Plan (FSP) reflecting data collection identified in the SOW was to be presented in the Proposed Plan. The FSP, *Phase 1 Field Sampling Plan for the Proposed Environmental Management Disposal Facility for Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee* (U.S. Department of Energy [DOE] 2018), was approved in May of 2018.

The primary objectives of the surface water walkdowns were to locate seeps and springs during the wet season within the disposal area and buffer zone. Streams and drainages within the area included North Tributary (NT)-10, Drainage (D)-10 West (W), NT-11, and D-11 East (E). Sampling locations were established approximately every 50 ft along each of the streams and drainages, with pH, conductivity, and temperature measured at each of the sampling locations during both the wet and dry seasons. The spacing was adjusted as necessary, based on low flow and stagnant water in some areas; however, sampling locations were established within the 50-ft range.

The initial wet season walkdown to establish sampling locations and identify wet season seeps and springs occurred on January 30, 2018, followed by a second wet season walkdown on February 27, 2018. Intermediate walkdowns were performed on May 1, 2018, and on June 4, 2018, during the transitional period between the wet and dry seasons. Dry season walkdowns were completed on September 12, 2018, and October 10, 2018.

Participants in the walkdowns included members of the DOE; UCOR, an AECOM-led partnership with Jacobs; the Oak Ridge National Laboratory (ORNL); and TDEC.

#### WALKDOWN #1: JANUARY 30, 2018

On January 30, 2018, members of UCOR, ORNL, and TDEC met to perform a wet season walkdown of the EMDF site to identify seeps and springs while establishing sampling points along NT-10, D-10W, NT-11, and D-11E. In addition, flume locations were established, and the contact between the Maynardville and Nolichucky formations was identified.

Once established, measurements of pH, temperature, and conductivity were taken at each sampling location, and Global Positioning System (GPS) coordinates were collected. The weather was cold and sunny, with sparse vegetation present along the drainages. While no precipitation occurred during the walkdown, almost an inch of precipitation occurred during the prior week. Participants in the walkdown included:

- UCOR: Annette Primrose, Dick Ketelle, Eddie Arnold, and Tim Herrell
- ORNL: Trent Jett
- TDEC: Brad Stephenson and Don Gilmore

After meeting at the Environmental Management Waste Management Facility (EMWMF), the team proceeded to the first assessment point on NT-11, which was also identified as a likely flume location (SF-1) for the lower end of NT-11. Measurements were recorded approximately every 50 ft upstream of the potential flume site, from NT11-PF1 to NT11-11, before crossing the Haul Road. Another likely flume location (SF-2) was identified at NT11-11 below the Haul Road culvert, and seep NT11-SEEP1 was identified just south of the Haul Road. This seep is in the same area as a historically identified seep.

Upon crossing the Haul Road, the team continued upstream, marking sampling locations and collecting data from NT11-12 through NT11-24. No surface flow was present in D-11E; however, groundwater was visible within a soil macropore, D11E-1, that was established as a sampling location. Standing water was present in the area, indicating that at that time, surface water was equivalent to shallow groundwater. No other surface water locations could be established in D-11E due to lack of surface water flow.

Sampling locations NT11-16a and NT11-16b were established at the confluence of NT-11 and D-11E, shown in Fig. A.1. A likely flume location (SF-3), known as NT11-HW STATION, was identified between NT11-20 and NT11-21 at the headwaters of NT-11. In addition, iron staining was present along the east fork of the tributary (sampling locations NT11-EF1 and NT11-EF2), indicating a possible change from reduced conditions in groundwater to oxidized conditions where the groundwater daylighted.

The team then continued across the saddle to D-10W. A likely upgradient D-10W flume location (SF-4) was identified on the portion of the tributary downstream of the Haul Road above sampling location D10W-14; however, no flume locations were identified north of the Haul Road due to poorly defined stream channels, as shown in Fig. A.2, caused by macropores in the area.

The team proceeded to the southern portion of D-10W below the Haul Road. The likely flume location for the upgradient D-10W flume (SF-5) was identified above D10W-20.

Measurements were then taken along NT-10 located east of D-10W. The Maynardville/Nolichucky contact was approximated near NT10-1 and NT10-2 on the southern portion of the tributary. South of the Haul Road near NT10-11, another likely upgradient NT-10 flume location was identified. The walkdown concluded at NT10-15.



Fig. A.1. Confluence of NT-11 and D-11E.



Fig. A.2. Poorly defined channels in D-10W.

#### WALKDOWN #2: FEBRUARY 27, 2018

The second wet season surface water walkdown was performed on February 27, 2018. Measurements of pH, temperature, and conductivity were taken at the previously established sampling points along NT-10, D-10W, NT-11, and D-11E. GPS coordinates were also recorded for sampling locations for which GPS coordinates could not be established in the January walkdown. The weather was cold and sunny, and vegetation was sparsely distributed. Although there was no precipitation during the walkdown, a little over 2 in. of precipitation occurred in the previous week. Participants in the walkdown included:

- UCOR: Annette Primrose, Eddie Arnold, Daniel Craze, and Chelsea West
- TDEC: Don Gilmore and Rebecca Lenz

The group traveled to NT-11 and began the assessment. Measurements were taken along the southern portion of the tributary from sampling location NT11-PF1 to NT11-11, shown in Fig. A.3. No measurements were taken at NT11-SEEP1.

After crossing the Haul Road, samples were taken from the northern portion of the tributary (NT11-12 through NT11-24). NT11-SEEP2 and NT11-16 could not be measured; however, sufficient water was available for the measurement at macropore D11E-1, shown in Fig. A.4.

Measurements were then taken along D-10W across the saddle. All sampling locations (D10W-1 through D10W-14) were sufficiently sampled.

The team then proceeded east toward NT-10 to collect samples at NT10-15 toward NT10-1 on the south side of Bear Creek Road. The pin flag at sampling location NT10-2 had been transported downstream in the precipitation event prior to the walkdown; therefore, the flag was placed approximately in the original sampling location, and coordinates were taken with a GPS.

Sampling locations along the southern portion of D-10W, D10W-22 through D10W-15, were then measured. The walkdown concluded at D10W-15, located adjacent to the constructed wetland north of Bear Creek Road.



Fig. A.3. Collecting measurements along the southern portion of NT-11.



Fig. A.4. Presence of groundwater at the D11E-1 macropore.

#### WALKDOWN #3: MAY 1, 2018

The third surface water walkdown was performed on May 1, 2018, during the transitional period between the wet and dry seasons. Measurements of pH, temperature, and conductivity were taken at the previously established sampling points along NT-10, D-10W, and NT-11; however, D-11E was too shallow for measurement collection. GPS coordinates were also taken at sites where coordinates were not previously identified. The weather was warm and sunny, with vegetation becoming increasingly denser in the spring climate, as shown in Fig. A.5. Approximately 1 in. of precipitation occurred during the week prior to the walkdown. Participants in the walkdown included:

- UCOR: Annette Primrose, Daniel Craze, Chelsea West, Stacey Goss, and Michael Fleming
- DOE: Aaron White
- TDEC: Don Gilmore and Rebecca Lenz

The surface water walkdown began with NT-11. Measurements were recorded at NT11-PF1 through NT11-11 along the southern portion of the tributary; however, no measurements were taken at NT11-SEEP1 due to insufficient water depth.

Next, the team continued across the Haul Road to the northern portion of the tributary to collect measurements at NT11-12 through NT11-24. Measurements could not be taken at NT11-18b and NT11-SEEP2 due to lack of water; however, all other locations were sufficiently measured. Locations along the east fork of the tributary (NT11-18b, NT11-EF1, and NT11-EF2) exhibited iron staining, shown in Fig. A.6.

Measurements were collected across the saddle along D-10W at D10W-1 through D10W-14. All sites were measured; however, D10W-SEEP1 was very shallow with low flow.

The team continued east toward NT-10. Samples were collected at NT10-15 through NT10-12 on the north side of the Haul Road, then continued south toward NT10-11 through NT10-8, crossing Bear Creek Road to collect measurements at NT10-7 through NT10-1.

The assessment continued east toward the southern portion of D-10W, with measurements taken at D10W-22 through D10W-15. The walkdown concluded at D10W-15 located below the constructed wetland north of Bear Creek Road.



Fig. A.5. Dense vegetation surrounding NT-11.



Fig. A.6. Iron staining along the east fork of NT-11.

#### WALKDOWN #4: JUNE 4, 2018

The first dry season surface water walkdown was performed on June 4, 2018. Measurements of pH, temperature, and conductivity were taken at the previously established sampling points along NT-10, D-10W, NT-11, and D-11E. The weather was very warm and sunny, and vegetation was extremely dense, making it hard to locate sampling locations, which were marked with pin flags, in some areas. Less than an inch of rain occurred the weekend prior to the walkdown. Participants in the walkdown included:

- UCOR: Annette Primrose, Chelsea West, and Michael Fleming
- DOE: Jim Daffron
- TDEC: Hannah Klein and Heather Lutz

The team proceeded to the first assessment point on NT-11. Measurements were taken along the portion of NT-11 below the Haul Road from NT11-PF1 through NT11-11; however, there was no flow at NT11-SEEP1.

After completing the southern portion of NT-11, team members continued across the Haul Road to collect measurements from NT11-12 through NT11-24. Of these locations, measurements were not able to be collected at NT11-SEEP2 and NT11-16. Although lack of flow at NT11-18b only allowed about 50% coverage of the YSI probe, measurements were still recorded. Both NT11-EF1 and NT11-EF2 exhibited iron staining. At macropore D11E-1, the probe was about 25% covered; however, measurements were taken despite the lack of water at the collection point.

Next, measurement collection along D-10W across the saddle began, with measurement collection occurring every 50 ft from D10W-1 through D10W-14 located south of the Haul Road. Vegetation was very dense, as shown in Fig. A.7, making it hard to follow the channel. No flow was present at D10W-SEEP1.

The group continued east to NT-10, beginning with NT10-15 north of the Haul Road and continuing to NT10-1 south of Bear Creek Road. Fish surveys were being conducted upstream of the assessment points, causing increased turbidity in the stream from NT10-15 to NT10-12.

Measurements were then taken along D-10W, located west of NT-10, at D10W-22 through D10W-15. No flow was present at D10W-22, as shown in Fig. A.8; however, all other sampling locations were sufficiently measured. The walkdown concluded at D10W-15 south of the constructed wetland on the north side of Bear Creek Road.



Fig. A.7. Dense vegetation along D-10W.



Fig. A.8. Dry stream channel at D10W-22.

#### WALKDOWN #5: SEPTEMBER 12, 2018

The second dry season surface water walkdown occurred on September 12, 2018. Measurements of pH, temperature, and conductivity were taken at the previously established sampling points along NT-10, D-10W, and NT-11. D-11E was dry; therefore, no measurements were taken at the macropore. The weather was warm and sunny, and the dense vegetation often made it hard to locate pin flags at the designated sampling locations. There was less than half an inch of rain during the previous week, so conditions were very dry. Participants in the walkdown included:

- UCOR: Chelsea West and Michael Fleming
- TDEC: Don Gilmore, Courtney Thomason, and Dana Wright

The team began the walkdown with NT-11. Samples were collected along the portion of the tributary south of the Haul Road from NT11-PF1 to NT11-11; however, NT11-SEEP1 could not be sampled.

After proceeding across the Haul Road to the northern portion of the tributary, samples were collected at NT11-12 through NT11-24. Of these locations, NT11-13 and NT11-18b were too shallow for measurement collection, and NT11-SEEP2 and NT11-EF2 were dry.

Most of the northern portion of D-10W across the saddle was either dry or too shallow for measurement collection. D10W-10 and D10W-14 were the only locations that could be sufficiently measured. Figure A.9 is representative of the debris present in most of the northern portion of the drainage channel where little to no flow was present.

East along NT-10, NT10-13 through NT10-10 and NT10-4 through NT10-1 were dry. Both NT10-14 and NT10-6 had very little water present; however, measurements were still collected.

West toward the southern portion of D-10W below Bear Creek Road, D10W-22 through D10W-16 were all dry. The assessment concluded with sufficient measurement collection at D10W-15 below the constructed wetland north of Bear Creek Road.



Fig. A.9. Logs and other vegetation located in the northern portion of D-10W.

#### WALKDOWN #6: OCTOBER 10, 2018

The final dry season surface water walkdown was conducted on October 10, 2018. Measurements of pH, temperature, and conductivity were taken at the previously established sampling points along NT-10, D-10W, and NT-11, as the D-11E macropore was dry. The weather was warm and sunny, and the vegetation was dense, but slightly thinning, in the transition from summer to fall. There was less than half an inch of rain during the prior week. Participants in the walkdown included:

- UCOR: Chelsea West and Michael Fleming
- TDEC: Don Gilmore

The assessment began at sampling location NT11-PF1 along NT-11. Measurements were collected approximately every 50 ft from the flume through NT-11. No water was observed at NT11-SEEP1.

After crossing the Haul Road, measurements were collected along the remaining portion of NT-11 from NT11-12 through NT11-24. NT11-SEEP2 and NT11-EF2, shown in Fig. A.10, on the east fork were dry, while NT11-18b, located at a fork in the stream, was too shallow to sample.

The team then continued across the saddle to the head of D-10W. Samples were collected at the previously established downstream sampling locations from D10W-1 to D10W-13 and across the Haul Road to D10W-14. Of these locations, D10W-1, D10W-SEEP1, and D10W-12 were dry, and D10W-5 was too shallow to sample, shown in Fig. A.11.

After returning to the Haul Road, the team traveled east toward the Cemetery Road to NT-10. Measurements were taken from NT10-15 through NT10-12 north of the Haul Road then continued south of the Haul Road to NT10-11 through NT10-8. Once reaching Bear Creek Road, the team continued south to collect measurements from NT10-7 through NT10-1. Measurements were collected at all sampling locations along this tributary as flow was sufficient.

Once completing measurements along NT-10, the team traveled west through a pine stand toward the final stretch of D-10W (D10W-22 through D10W-15), moving north toward Bear Creek Road from D10W-22. D10W-21 and D10W-22 were dry, and D10W-19 was too shallow for measurement collection with the YSI probe; however, all other locations were sufficiently measured. The trip concluded with the measurement of D10W-15 below the constructed wetland along Bear Creek Road.



Fig. A.10. Dry stream channel at NT11-EF2.



Fig. A.11. Low flow at D10W-5.

#### CONCLUSIONS

Summary data for each drainage is provided in Figs. A.12 through A.20. Figures A.21 through A.26 provide the measurements obtained during each of the six walkdowns conducted at the CBCV site. As a result of the walkdowns, several conclusions can be drawn in terms of groundwater influence and seasonal fluctuations. Based on the number of dry data points or areas of low flow observed during the dry season walkdowns, it can be concluded that groundwater influence is minimal in many of the tributaries and drainages, especially in D-10W and NT-10 along the eastern side of the site. Flow in NT-11, which has a broader, more defined stream channel than many of the other locations, was more consistent year round; however, NT11-SEEP1 and NT11-SEEP2 were dry during all six walkdowns, suggesting the stream relies primarily on surface water for recharge. The D-11E macropore, which feeds into NT-11, also had less water when conditions were dry.

Downstream sampling locations showed more consistency in pH values than those located further upstream, suggesting that more carbonate is present nearer to the Maynardville contact.

These walkdowns should be interpreted as trend data and used to set a baseline for what can be expected seasonally. The data fluctuated seasonally, as expected. Conductivity was highest and showed the most variability during the dry season due to the number of low to no flow locations. Temperature also fluctuated seasonally, with water temperatures increasing as the year progressed. Values for pH were highest during the May transitional walkdown when stream conditions were shifting from spring to summer, causing more particulate matter to be present in the system. It is expected that designers use the data to predict surface water patterns that may be encountered both during and after construction.



Fig. A.12. Temperature comparison along NT-11.





Fig. A.13. Temperature comparison along D-10W.



Fig. A.14. Temperature comparison along NT-10.



Fig. A.15. pH comparison along NT-11.



Fig. A.16. pH comparison along D-10W.



Fig. A.17. pH comparison along NT-10.



Fig. A.18. Conductivity comparison along NT-11.





Fig. A.19. Conductivity comparison along D-10W.



Fig. A.20. Conductivity comparison along NT-10.



Fig. A.21. January 30, 2018, walkdown results.



Fig. A.22. February 27, 2018, walkdown results.



Fig. A.23. May 1, 2018, walkdown results.



Fig. A.24. June 4, 2018, walkdown results.



Fig. A.25. September 12, 2018, walkdown results.



Fig. A.26. October 10, 2018, walkdown results.

### REFERENCES

DOE 2018. Phase 1 Field Sampling Plan for the Proposed Environmental Management Disposal Facility for Comprehensive Environmental Response, Compensation, and Liability Act Oak Ridge Reservation Waste Disposal, Oak Ridge, Tennessee, DOE/OR/01-2739&D2, U.S. Department of Energy, Office of Environmental Management, Oak Ridge, TN. This page intentionally left blank.

## **APPENDIX B**

## **BORING LOGS**

This page intentionally left blank.

# Eagon & Associates, Inc.

| BOREHOLE LOG                      |                  |                                   |                         |                                                                                                                                                    |                                                                                 |                      |                           |                                                                         |                          |                |
|-----------------------------------|------------------|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|---------------------------|-------------------------------------------------------------------------|--------------------------|----------------|
| Site Nar<br>and Loc               | me<br>ation:     | E                                 | MDF Ch                  | aracterization Project                                                                                                                             | Drilling Methods:<br>2 1/4" HSA, HQ3 Core w/water, 10" hammer bit w/air, 5 7/8" |                      |                           |                                                                         | Boring Number:           |                |
| Drilling Firm: Tri-State Drilling |                  |                                   |                         |                                                                                                                                                    | tricone bit<br>DATE                                                             | w/water/air.<br>TIME | DEPTH<br>DRILLED (ft)     | WATER<br>LEVEL (ft)                                                     | GW-9/8                   |                |
| Driller /                         | Rig: <i>Fr</i>   | ed Reyno                          | lds/Mobil               | e 42C                                                                                                                                              | 2/12/18                                                                         | 0910                 | 18.3                      | 9.81                                                                    | Page 1                   | of 4           |
| Logged                            | by: <i>Ry</i>    | an Hanse                          | 1                       |                                                                                                                                                    | ST = Shelby Tul                                                                 | <u>Sampling N</u>    | <u>Methods:</u><br>ss = s | <u>ls:</u><br>SS = Split Spoon                                          |                          |                |
| Coordinates: 30656.68N 38643.59E  |                  |                                   |                         |                                                                                                                                                    | WS = Waxed Sa                                                                   | mple                 | CS = C<br>CS = C<br>C = C | CS = Continuous Sampler<br>C = Coring<br>NS = Not Sampled<br>B = Bailer |                          | Finish<br>Time |
| Surface Elevation: 953.5 ft/MSL   |                  |                                   |                         |                                                                                                                                                    | GP or DP = Dire<br>CT = Cuttings                                                | ct Push              | NS = N<br>B = Ba          |                                                                         |                          | 1658           |
| Surface                           | Conditi          | ons / Wea                         | ather: Gr               | avel road base, wet / 45°F, Cloudy, o                                                                                                              | calm                                                                            |                      |                           | Date<br>2/10/18                                                         | Date<br>2/18/18          |                |
| Remarks:                          |                  |                                   |                         |                                                                                                                                                    |                                                                                 |                      |                           |                                                                         |                          |                |
| Depth<br>(feet)                   | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                                                                 |                                                                                 |                      |                           |                                                                         | arks                     | USCS           |
|                                   |                  |                                   |                         | ROAD BASE.                                                                                                                                         |                                                                                 |                      |                           | Ran 2 1/4" HSA (7" OD)                                                  |                          |                |
| 1-                                | NS               |                                   |                         | Wicenter plug while augering.<br>Continuous 2" OD, 2' drive spl<br>spoons, 140 lb hydraulic                                                        |                                                                                 |                      |                           |                                                                         |                          |                |
| 2—<br><br>3—                      | SS-1             | 1.0'<br>66.7%                     | 2                       | Yellowish brown to dark yellowish brown (10YR 5/6 - 4/6) CLAYEY SILT.<br>Trace fine grained sand. Trace angular shale clasts, 1" - 1/2" diameter.  |                                                                                 |                      | SILT.<br>ter.             | OD) w/water.                                                            |                          | CL             |
|                                   |                  |                                   | 3                       | Medium to high plasticity. Cohesive. Mottled appearance. Stiff to very stiff. High dry strength. No dilatancy. Weathering present with iron oxide  |                                                                                 |                      |                           | Content (MC) 21.                                                        | 8%.                      |                |
|                                   |                  |                                   | 3                       | and manganese oxide on surfaces of shale clasts. No reaction with HCl. Moist. RESIDUAL SOIL.                                                       |                                                                                 |                      |                           |                                                                         |                          |                |
| 4                                 | SS-2             | 1.9'<br>95%                       | 5                       | On 2/15/18, u<br>Ingersoll-Ran                                                                                                                     |                                                                                 |                      |                           |                                                                         | 3W rotary rig            |                |
| _                                 |                  | 0070                              | о<br>7                  |                                                                                                                                                    |                                                                                 |                      |                           | to ream borehole to 26.5' usi<br>10" air hammer bit and set             |                          |                |
| 5                                 |                  |                                   | 5                       | Below 5' roots (trace). Siltstone clasts present, trace, up to 1" diameter.<br>Clay content increasing with depth.                                 |                                                                                 |                      | eter.                     | permanent 6" ID I<br>Casing sealed wit                                  | PVC casing.<br>th cement |                |
| 6—                                | 6- SS-3 2        |                                   | 7<br>9                  |                                                                                                                                                    |                                                                                 |                      |                           | SS-3 Lab results: MC 19.3%.                                             |                          |                |
| _                                 |                  |                                   | 11                      | Underlying contact is transitional.                                                                                                                |                                                                                 |                      |                           |                                                                         |                          |                |
| /-                                |                  |                                   | 4                       | Change at 7.4'.                                                                                                                                    |                                                                                 |                      |                           |                                                                         |                          |                |
| 8                                 | SS-4             | 1.9'<br>95%                       | 7                       | Pale yellow to pale gray (5Y 8/2 - 7/2) to strong brown (7.5YR 5/6 - 4/6)<br>SILTY CLAY. Trace fine grained sand. Trace angular shale and siltston |                                                                                 |                      | tstone                    | SS-4 Lab results: MC 2<br>0.5% Gravel; 34.2% Sat<br>65.3% Fines         |                          | CL             |
|                                   |                  |                                   | 9<br>11                 | clasts. Medium to high plasticity. Cohesive. Color gives mottled<br>appearance. Very stiff. High dry strength. Weathered. Iron and/or              |                                                                                 |                      |                           |                                                                         |                          |                |
| 9—                                | 9                |                                   | 4                       | becoming oriented in same direction. Moist. COLLUVIUM.                                                                                             |                                                                                 |                      |                           |                                                                         |                          |                |
| 10-                               | SS-5             | 2.0'                              | 8                       | Change at 9.9'.<br>Grav to dark grav (10YR 5/1 - 4/1)                                                                                              | ) completely wear                                                               | thered SHALE         |                           | SS 5 Lab regulter                                                       | MC 219/                  | CI             |
| _                                 |                  | 100 %                             | 16<br>19                | (SAPROLITE). Trace fine grained sand. Laminated to thinly bedded.<br>Shale clasts are comprised mostly of silt and clay. Some shale broken         |                                                                                 |                      |                           | 33-5 Lab results.                                                       | WIC 2170.                |                |
| 11                                |                  |                                   | 9                       | into angular/subangular gravel-sized pieces with iron oxide and manganese oxide on shale surface. Shale bedding is at $\sim 10^{\circ}$ -50° and   |                                                                                 |                      | ngle                      |                                                                         |                          |                |
| 12 - SS-6                         |                  | 1.7'                              | 20                      | Very stiff to hard. Cohesive. High                                                                                                                 | plasticity. Highly decomposed. No                                               |                      |                           |                                                                         |                          |                |
| -                                 |                  | 85%                               | 34                      |                                                                                                                                                    |                                                                                 |                      |                           |                                                                         |                          |                |
| 13                                |                  | 0.9'                              | 40                      | Below 12.1 some slit beds and partings present.                                                                                                    |                                                                                 |                      |                           |                                                                         |                          |                |
| -                                 | SS-7             | 100%                              | 50/5                    | 13 7' - 13 9' Color is alive gray to alive (5Y 5/2 - 4/3)                                                                                          |                                                                                 |                      |                           |                                                                         |                          |                |
| 14                                | NS               |                                   |                         | Below 13.7' becomes moderately                                                                                                                     | to highly decomposed. Shale is                                                  |                      |                           |                                                                         |                          |                |
| 15 —                              |                  | 4.01                              | 46                      | becoming more intact. Slickensided features along shale bedding planes<br>Drv to moist.                                                            |                                                                                 |                      | lanes                     | SS 9 Lab results:                                                       | MC 11 5%                 |                |
| -                                 | - SS-8           | 1.0*                              | 50/6                    |                                                                                                                                                    |                                                                                 |                      |                           | 00-0 Lad 1650115. 1910 11.3%.                                           |                          |                |
| 16 -                              | NS               |                                   |                         |                                                                                                                                                    | th                                                                              |                      |                           |                                                                         |                          |                |
| 17 —                              |                  |                                   | 24                      | becoming less weathered with de                                                                                                                    | րտ.                                                                             |                      |                           | SS-9 Lab results:                                                       | MC 11.7%.                |                |
| -                                 | SS-9             | 1.3'<br>100%                      | 45                      |                                                                                                                                                    |                                                                                 |                      |                           |                                                                         |                          |                |
| ۲۵<br>                            | NQ               |                                   |                         |                                                                                                                                                    |                                                                                 |                      |                           | 2/12/18 at 0910 E<br>BGS.                                               | 0TW=9.81                 |                |
| 19—                               | UN               | 0.7'                              | 40                      | No reaction with HCI.                                                                                                                              |                                                                                 |                      |                           | SS-10 Lab results                                                       | : MC 11.1%               |                |
| -                                 | SS-10            | 100%                              | 50/2                    |                                                                                                                                                    |                                                                                 |                      | <u>t</u> ]                |                                                                         |                          |                |
# Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-978

| Remar           | ks:              |                                   |                         |                                                                                                                                                                                                                                                                                                                                        |                |                                                                                                                          |      |
|-----------------|------------------|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                     | Graphic<br>Log | Remarks                                                                                                                  | nscs |
| -               | NS               |                                   |                         | Gray to dark gray (10YR 5/1 - 4/1) completely weathered SHALE (SAPROLITE). (Cont'd.)                                                                                                                                                                                                                                                   |                | Water on AW rods when pulling SS-10. Water in hole                                                                       | CL   |
| 21-             | SS-11            | 0.2'<br>100%                      | <u> </u>                | Below 21.0' shale is mostly intact. Iron oxide and manganese oxide become trace. Sample is mostly oulverized due to sample technique and                                                                                                                                                                                               |                | over weekend.                                                                                                            |      |
| 22-             | NS               |                                   |                         | high blow counts. Color becomes gray to dark gray (N 5/ - 4/). Shale                                                                                                                                                                                                                                                                   |                | SS-12 No return. Very hard                                                                                               |      |
| 23-             | SS-12            |                                   | 50/2                    | -                                                                                                                                                                                                                                                                                                                                      |                | sampling and degening.                                                                                                   |      |
| 24 —            | NS               |                                   |                         | -                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                          |      |
| - 25-           | <u>ee 12</u>     | 0                                 | 50/0                    | Underlying contact may be as high as 17.0'.<br>_ Change at 25.1'                                                                                                                                                                                                                                                                       |                |                                                                                                                          |      |
| 26-             | C-1              | 0.9'<br>100%                      | <u>50/2</u><br>0%       | Overall structure is a laminated to thinly INTERBEDDED LIMESTONE and SHALE. The shale is very dusky red (10R 2/2). The limestone is dark reddish gray (10GY 4/1). The shale is laminated to thinly bedded.                                                                                                                             |                | SS-13 No return. Switching to<br>core to attempt better sample<br>recovery. DTW = 17.85' BGS                             |      |
| 20 -            | -                |                                   |                         | Abundant with slickensides, most along bedding plane. Strong field strength. The limestone is laminated in parts with glauconite grains. Has a strong reaction with HCI. The overall structure is fresh to slightly decomposed. Slightly disintegrated Interset to yerv intenset fractured                                             |                | on 2/12/18 at 1055. Added 1/2<br>bag 3/8" bentonite chips to<br>hole. Lowered 4" ID temporary<br>surface casing to 25 0' |      |
| 28-             | - C-2            | 3.1'                              | 0%                      | Most fractures are along the 45° bedding plane and mechanically<br>induced. Some fractures are completely healed with white to pink/orange _<br>calcite and dusky red mudstone. Soft sediment deformation and                                                                                                                          |                | C-1 25.1' - 26.0' 1256-1311.                                                                                             |      |
| 29-             |                  | 62%                               | 070                     | contact                                                                                                                                                                                                                                                                                                                                |                | C-2 26.0' - 31.0' 1326-1429.<br>(Stopped run from 1340 - 1345                                                            |      |
| 30-             | _                |                                   |                         | At 27.3, iron oxide on fracture perpendicular to the bedding plane<br>Below 27.3' sample is very intensely fractured (pulverized). Probably<br>mechanically induced.                                                                                                                                                                   |                | to switch water tanks.)                                                                                                  |      |
| 31-             | -                |                                   |                         | Dusky red to very dusky red (10R 3/2 - 2.5/2) SHALE. Laminated to thinly bedded. Strong field strength. Trace limestone beds and partings.                                                                                                                                                                                             |                | C-3 31.0' - 34.6' 1442-1550.<br>1526-1540 Change<br>water/break                                                          |      |
| 32-             | C-3              | 3.6'<br>100%                      | 28.9%                   | Trace glauconite grains and stringers. Fresh. Slightly disintegrated.<br>Moderately to intensely fractured. Most breaks/fractures are mechanically<br>induced. Trace to little fractures are healed with calcite. No reaction with                                                                                                     |                | 33.0' Fracture perpendicular to bedding plane.                                                                           |      |
| 34 —            | -                |                                   |                         | <ul> <li>HCl in shale. Strong reaction on limestone beds and calcite veins.</li> <li>31.6', 31.85' - 32.0' Fracture perpendicular to bedding plane.</li> <li>32.3' Fracture along bedding plane with slickensides and brittle calcite.</li> <li>32.5' - 33.0' Very intensely fractured. Multiple fractures/breaks along and</li> </ul> |                | 35.6' Fracture along bedding<br>plane healed with calcite.<br>33.6' - 33.8' Vertical fracture.                           |      |
|                 | C-4              | 1.4'<br>100%                      | 38.6%                   | perpendicular to bedding planes.<br>37.5' - 37.6' Dark greenish gray limestone parting. Limestone contains<br>angular clasts of limestone (interclasting limestone).                                                                                                                                                                   |                | C-4 34.6' - 36.0' 1608-1627.                                                                                             |      |
| ц<br>36-        |                  |                                   |                         | 37.6' - 38.8' Shale is pulverized. Dark greenish gray in color.                                                                                                                                                                                                                                                                        |                | C-5 36.0' - 38.8' 1640-1714.<br>1649-1655 Change water.                                                                  |      |
| 37-             | C-5              | 2.6'<br>93%                       | 29.6%                   | <ul> <li>38.9' - 39.1' Calcite healed fracture perpendicular to bedding.</li> <li>39.1' - 39.4' Fracture along bedding plane, slickensided with thin calcite</li> </ul>                                                                                                                                                                |                |                                                                                                                          |      |
| - 38 -<br>      | 1                |                                   |                         | precipitate 39.4' - 40.2' Trace siltstone/mudstone partings. Irregular breaks in core.                                                                                                                                                                                                                                                 |                | 2/12/18 at 1719 DTW = 5.65'                                                                                              |      |
| 39              |                  | 2.1'                              | AE 50/                  | Horizontal to core axis. Same color as shale. Strong to moderate – reaction with HCl.<br>40.2' - 40.4' Fracture along bedding plane with thin calcite precipitate.                                                                                                                                                                     |                | вGS. 2/13/18 at 0810 DTW =<br>9.19' BGS.                                                                                 |      |
| - 40 -          | - U-0            | 95.5%                             | 40.0%                   | Below 41.0' limestone beds and partings become trace to little.                                                                                                                                                                                                                                                                        |                | C-6 38.8' - 41.0' 0830-0856.                                                                                             |      |
| 41-<br>-        |                  |                                   |                         | 41.7' Fracture horizontal to core axis with brittle calcite.                                                                                                                                                                                                                                                                           |                |                                                                                                                          |      |
| 42-             | -                |                                   |                         | Below 42.6' shale becomes very dark greenish gray (10Y 3/1). Limestone beds and partings increasing with depth. Limestone beds present with                                                                                                                                                                                            |                | 42.0' Water circulation becomes light gray.                                                                              |      |
| 43-             | C-7              | 5.0'<br>100%                      | 33.8%                   | bioturbidation.<br>\ 42.6' - 42.9 Fracture perpendicular to bedding plane with calcite.<br>\Change at 42.7'. (Transitional).                                                                                                                                                                                                           |                | C-7 41.0' - 46.0' 0905-0956.<br>0914-0919 Change water.                                                                  |      |
|                 | -                |                                   |                         | Laminated to thinly INTERBEDDED SHALE and LIMESTONE. The shale _ is dark reddish gray to reddish black (2.5YR 3/1 - 2.5/1). Laminated to thinly bedded. Strong field strength. Abundant slickensides. The limestone is grav to dark grav (N 5/ - 4/). Bioturbidation and soft sediment                                                 |                |                                                                                                                          |      |

**B-4** 

EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-978

Remarks: Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method USCS Depth (feet) SAMPLE DESCRIPTION Remarks deformation. Strong field strength. Trace glauconite grains. The contact between the shale and limestone is in most part deformed. Trace At ~45' water circulation turned 5.0' C-7 33.8% brown 100% glauconite veins/stringers. Fresh to slightly decomposed. Intensely to 46 moderately fractured. Most fractures are along bedding planes and ~45.5' Water circulation dark to probably mechanically induced. Trace to some fractures are completely light gray. healed with calcite. 47 44.6' - 45.1' Multiple fractures with and against bedding plane. Iron oxide C-8 46.0' - 51.0' 1020-1200. and manganese oxide present on all fracture surfaces. Iron oxide halo 46 5' Water brown 47 0' from 44.6' - 44.9'. 48 Water light gray. 45.0' - 45.3' Multiple fracture with and against bedding plane. Iron oxide 4 9 C-8 36.6% and manganese oxide on each fracture face. Iron oxide halo ~0.01' 98% around fractures. 49 47.2' Fracture along bedding plane with Iron and manganese oxide. 49.0' and 49.2' Fracture horizontal to core axis with iron and manganese 50 oxide 51 Below 51.0' becomes moderately fractured. Most to all mechanically On C-8 ran out of water at induced. 50.8'. Finish run after lunch. Lunch 1100-1155. 52 52.2' - 53.2' Fracture perpendicular to bedding plane completely healed C-9 51.0' - 56.0' 1210-1320. with calcite. 1237-1309 Stop - out of water. 53 4.7 Below 52.5' trace to little glauconite stringers/veins/partings. Limestone C-9 35.8% 94% has fine grains of glauconite. Limestone and shale interbeds are mostly 54 wavy and deformed. There are some subrounded, reworked limestone clasts oriented with bedding (40° - 50°). Below 54.0' bedding becomes mostly planar with some soft sediment 55 deformation. Shale has a very dark greenish gray color (10GY 3/1). Below 56.0' becomes intensely fractured to very intensely fractured. 56 Multiple fracture/breaks are along calcite healed fractures or bedding planes. Shale becomes dark reddish brown (5YR 3/2). 56.2' - 56.4' Fracture perpendicular to bedding plane healed with calcite. 57 2.7' 57.2' - 59.0' Very intensely fractured. Most/all are mechanical breaks C-10 56.0' - 59.0' 1330-1424. C-10 ٥% 90% along bedding planes/calcite healed fractures. 1356-1413 Change water. 58 59.0' - 59.2' Vertical fracture (mechanical break) healed with calcite. 59.0' - 59.6' Shale is very dark greenish gray (10GY 3/1). 59 Below 59.6' soft sediment deformation becomes trace to little. At 59.0' driller noted spike in water pressure. Stopped run 1.9' at 59.0'. 0% 60 C-11 95% 61.4' - 61.6' Shale is very dark greenish gray (10GY 3/1). Shale beds C-11 59.0' - 61.0' 1435-1450. becoming dominant. 61 61.8' - 62.0' Fracture along bedding plane healed with calcite. 62.6' Mechanical break perpendicular to bedding. C-12 61.0' - 65.6' 1502-1536. 62 63.0' - Mechanical break perpendicular to bedding. Below 63.6' shale becomes dark greenish gray (10GY 3/1). Shale and 3.4' 63 C-12 0% limestone beds become 50/50. Soft sediment deformation becomes few 74% to little. 64 65.0' Driller noted spike in 64.1' - 64.2' Fracture perpendicular to bedding plane healed with calcite. water pressure. Pulled run, thinks lost from bottom of 65 Below 65.1' shale becomes dark reddish brown (5YR 3/2). Fractures C-12 0.7 37.8% C-13 healed with calcite become trace to rare. 77.8% C-13 65.6' - 66.0' 1545-1557. 66 66.6' Horizontal fracture healed with calcite. 1.3' C-14 0% 81.3% 67 67.9' Horizontal fracture with calcite. C-14 66.0' - 67.6' 1608-1628. Multiple fractures along bedding plane are mechanically induced. Spike in water pressure blocked tip. Pulled run at 68 67.6'. Lost from bottom of run. 3.2 69.9' - 70.2' Fracture perpendicular to bedding plane healed with calcite. C-15 67.6' - 71.0' 1636-1714. C-15 0% 94.1% 69 1643-1650 Change water.

# Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-978

| Remarl          | ks:              |                                   |                         |                                                                                                                |                |                                                                                              |      |
|-----------------|------------------|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|------|
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                             | Graphic<br>Log | Remarks                                                                                      | NSCS |
|                 | C-15             | 3.2'                              | 0%                      | Gray to dark gary (N 5/ - 4/) to dark reddish brown (5YR 3/2)<br>INTERBEDDED SANDSTONE and SHALE. (Cont'd.)    |                | 2/13/18 at 1710 DTW=21.51<br>BGS. 2/14/18 at 0802                                            |      |
| 71              | -                |                                   |                         | 71.0 - 71.5' Highly broken zone. Mechanically induced. Some fractures completely healed with calcite.          |                | DTW=18.05 BGS.                                                                               |      |
| 72—             | C-16             | 2.7                               | 0%                      | 71.9' Fracture horizontal to core axis healed with calcite. Glauconite veins $^-$ and stringers become little. |                | C-16 71.0' - 73.9' 0922-0948.                                                                |      |
| 73—             | -                |                                   |                         | -<br>Most breaks are along bedding plane and mechanically induced.                                             |                |                                                                                              |      |
| 74—             | C-17             | 1 1                               | 0%                      |                                                                                                                |                | C-17 73.9' - 75.0' 0957-1006.                                                                |      |
| 75—             |                  |                                   |                         | -                                                                                                              |                | 2/14/18 at 1021 DTW=33.96                                                                    |      |
| 76—             | _                |                                   |                         | -                                                                                                              |                | DG3.                                                                                         |      |
| - 77            |                  |                                   |                         | -                                                                                                              |                |                                                                                              |      |
| -<br>78—        | NS               |                                   |                         | -                                                                                                              | F              |                                                                                              |      |
| -<br>79—        | -                |                                   |                         | -                                                                                                              |                |                                                                                              |      |
| -<br>80—        | -                |                                   |                         | Bottom of Borehole = 80.0'.                                                                                    |                | 2/18/18 Reamed borehole and                                                                  |      |
| -<br>81—        | -                |                                   |                         | Piezometer GW-978 installed in borehole. See Monitoring Well<br>Installation Report GW-978 for details.        | -              | advanced borehole to 80.0'<br>using Ingersoll-Rand T3W<br>rotary rig with 5 7/8" tricone bit |      |
| -<br>82 —       | -                |                                   |                         | -                                                                                                              | -              | with water and air circulation.<br>Completed at 1658.                                        |      |
| -<br>83—        | -                |                                   |                         | -                                                                                                              | _              |                                                                                              |      |
| -<br>84 —       | -                |                                   |                         | -                                                                                                              | -              |                                                                                              |      |
| -<br>85 —       | -                |                                   |                         | -                                                                                                              | -              |                                                                                              |      |
| -<br>86 —       | -                |                                   |                         | -                                                                                                              | -              |                                                                                              |      |
| -<br>87 —       | -                |                                   |                         | -                                                                                                              | -              |                                                                                              |      |
| -<br>88 —       | -                |                                   |                         | -                                                                                                              | -              |                                                                                              |      |
| -<br>89 —       | -                |                                   |                         | -                                                                                                              | -              |                                                                                              |      |
| -<br>90 —       | -                |                                   |                         | -                                                                                                              | _              |                                                                                              |      |
| -<br>91—        | -                |                                   |                         | -                                                                                                              | -              |                                                                                              |      |
| -<br>92—        | -                |                                   |                         | -                                                                                                              | -              |                                                                                              |      |
| -<br>93 —       | -                |                                   |                         | -                                                                                                              | _              |                                                                                              |      |
| 94 —            | -                |                                   |                         | -                                                                                                              |                |                                                                                              |      |
| -               | -                |                                   |                         |                                                                                                                | -              |                                                                                              |      |

| Eago      | n & A              | Associa              | tes, I      | nc.             |              |              |                                       |                           |                     | We<br>( | II Num<br>3W-97 | iber<br>8  |
|-----------|--------------------|----------------------|-------------|-----------------|--------------|--------------|---------------------------------------|---------------------------|---------------------|---------|-----------------|------------|
|           |                    | N                    | Ionit       | toring          | Wel          | l Inst       | allation R                            | eport                     |                     |         |                 |            |
| Site Nam  | e and Lo           | cation: EML          | DF Chara    | ecterization F  | roject, O    | ak Ridge,    | TN                                    | Completion                | Date: 3/8/18        | -       |                 |            |
| Coordina  | tes: 306           | 56.68N 386           | 43.59E      |                 |              | Bore         | ehole Depth (ft): 80.                 | 0                         |                     |         |                 |            |
| Elevation | Top of C           | asing (ft/MS         | SL): 955.   | 97              |              | Bore         | ehole Diameter (in):1                 | 10" (0'-26.5'), 5 7,      | (8" (26.5'-80.0')   |         |                 |            |
| Elevation | Ground             | Surface (ft/N        | 1SL): 95    | 53.5            |              | Drilli       | ng Methods: 2 1/4" I                  | HSA, HQ3 Core             | v/water, 10" hammer |         |                 | 1(         |
| installed | Bv: Fred           | Revnolds/Ti          | ri-State E  | Drillina        |              | Com          | poleted Drilling: 2/18                | r, 5778 tricone t<br>3/18 | nt w/water/air.     |         |                 | -          |
| Supervise | ed By: S           | hav Beanlan          | d/Facon     | & Associate     | s Inc        | Drill        | ng Water Used (gal                    | s).                       |                     |         |                 |            |
|           | 54 B J. O.         | lay Doaman           | a Lagon     |                 |              |              |                                       |                           |                     | -       |                 | -          |
|           |                    |                      |             |                 | vvei         | I Des        | sign                                  |                           |                     | -20     |                 | 20<br>     |
|           | Com                | ponent               |             |                 |              | Materials    |                                       | Depth (LSD)               | Elevation           |         |                 | -          |
| Well Pr   | otector            |                      |             | 4" Squa         | re Steel     | Protector    | w/Locking Lid                         | -2.8 - 2.2                | 956.3 - 951.3       |         |                 |            |
| Riser     |                    |                      |             | 2" ID Sc        | hedule 4     | 0 PVC        |                                       | -2.3 - 59.5               | 955.8 - 894.0       |         |                 | 3(         |
| Surface   | e Seal             |                      |             | 3' x 3' C       | oncrete I    | Pad          |                                       | -0.5 - 0.5                | 954.0 - 953.0       |         |                 |            |
| Conduc    | ctor Casir         | ng                   |             | 6" ID P\        | C Scheo      | dule 40, F   | ush Threaded                          | -0.4 - 26.5               | 953.9 - 927.0       |         |                 | -          |
| Cemen     | t Grout            |                      |             | Cement          | Bentoni      | te Grout     |                                       | 0.5 - 53.0                | 953.0 - 900.5       |         |                 | -          |
| Benton    | ite Seal           |                      |             | Pel Plug        | 1/4" Co      | ated Bent    | onite Pellets                         | 53.0 - 56.1               | 900.5 - 897.4       |         |                 |            |
| Sand P    | ack                |                      |             | DSI "GF         | 9 #2" Gra    | vel Pack     |                                       | 56.1 - 70.9               | 897.4 - 882.6       |         |                 | -  4(<br>- |
| Screen    |                    |                      |             | 2" ID Sc        | hedule 4     | 0 PVC, 1     | )-Slot                                | 59.5 - 69.6               | 894.0 - 883.9       |         |                 |            |
| Well Po   | oint Blank         | <b>x</b>             |             | 2" ID Sc        | h. 40 P∖     | /C Cap &     | Riser Section                         | 69.6 - 70.9               | 883.9 - 882.6       |         |                 | -          |
| Sand P    | ack Botto          | om                   |             | DSI "GF         | 9 #2" Gra    | vel Pack     |                                       | 70.9 - 71.5               | 882.6 - 882.0       |         |                 |            |
| Benton    | ite Seal           |                      |             | Pel Plug        | 1/4" Co      | ated Bent    | onite Pellets                         | 71.5 - 80.0               | 882.0 - 873.5       |         |                 | 5U         |
|           |                    |                      |             | We              | ell Do       | evelo        | pment                                 |                           |                     |         |                 |            |
| Well Dep  | th (ft,TOC         | C):                  | Depth       | to Water (ft    | TOC):        | Wel          | Volume (gals):                        | Volume                    | Purged (gals):      |         |                 | -          |
| Developn  | nent Meth          | nod:                 | / /C        | .03             |              |              | 10.2                                  | 407                       | .0                  |         |                 |            |
| Datier, S | Timo               | Cumulative<br>Volume | Temp        | Specific        | pН           | Turbidity    | Recovery                              | Data                      |                     |         |                 |            |
| Date      | Time               | Removed<br>(gals)    | (°C)        | (µmhos/cm)      | (S.U.)       | (NTU)        |                                       |                           |                     |         |                 |            |
| 2/26/18   | 1700               | 125                  |             |                 |              |              |                                       |                           |                     |         |                 |            |
| 2/27/18   | 0810               | 145                  | 14.1        | 372             | 8.29         | 3.6          |                                       |                           |                     |         |                 | 70         |
| 2/27/18   | 1304               | 250                  | 14.8        | 351             | 7.56         | 2.7          |                                       |                           |                     |         |                 |            |
| 2/27/18   | 1314               | 265                  | 14.8        | 342             | 7.57         | 6.0          | · · · · · · · · · · · · · · · · · · · |                           |                     |         |                 |            |
| 2/27/18   | 1344               | 310                  | 14.8        | 334             | 7.52         | 1.8          | 0                                     | 40                        | 80 120              |         |                 |            |
| 2/27/18   | 1555               | 467.5                | 15.1        | 340             | 7.48         | 2.0          | -                                     | Time (minu                | tes)                |         |                 | 80         |
| Sampling  | Equipme            | ent:                 |             |                 |              |              |                                       |                           |                     | -       |                 |            |
| Commercia | to.                |                      |             |                 |              |              |                                       |                           |                     | 4       |                 |            |
| Stainles  | เร:<br>s steel cen | tralizers set at     | 52' and 2   | ?7' from ground | l surface.   | Washed sa    | and pack and pellets in               | using tremie pipe.        | Grout mixing and    |         |                 |            |
| placeme   | nt informa         | tion provided l      | oy Tri-Stat | e Drilling. Scr | reen slot ir | nterval 59.8 | - 69.5 bgs.                           |                           | <b>U</b>            | Borin   | g depth=8       | 30.0 ft.   |

This page intentionally left blank.

|                 |                  |                                  |                                          | BC                                                                 | REHOLI                               | E LOG                                      |                             |                                                                                                   |                                                               |            |
|-----------------|------------------|----------------------------------|------------------------------------------|--------------------------------------------------------------------|--------------------------------------|--------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------|
| Site Na         | me               | E                                | MDF Ch                                   | aracterization Project                                             | Drilling Method                      | s:<br>ISA_HO Core with v                   | vater 5.7/8" a              | r hammer bit                                                                                      | Boring Nur                                                    | nber:      |
| Drilling        |                  | wi Otata F                       | C                                        | Dak Ridge, TN                                                      |                                      |                                            | DEPTH                       | WATER                                                                                             | GW                                                            | -979       |
| Drilling        |                  | n-State L                        | irilling                                 |                                                                    | DATE                                 | TIME                                       | DRILLED (                   | t) LEVEL (ft)                                                                                     |                                                               |            |
| Driller /       | Rig: Fr          |                                  |                                          |                                                                    |                                      | Sampling M                                 | ethods:                     |                                                                                                   | Page                                                          | 1 of 2     |
| Logged          | by: Sn           | ay Beania                        |                                          | 205                                                                | ST = Shelby Tu                       | be<br>ample                                | SS<br>CS                    | = Split Spoon<br>= Continuous Sampler                                                             | Start                                                         | Finish     |
| Coordin         | ates: 3          | 0656.61                          | 7 38653.                                 | 90E                                                                | SP = Sand Pum<br>GP or DP = Dire     | p<br>ect Push                              | C<br>NS                     | = Coring<br>= Not Sampled                                                                         | Time                                                          | Time       |
| Surface         | Elevati          | on: 953                          | / ft/MSL                                 |                                                                    | CT = Cuttings                        |                                            | B =                         | Bailer                                                                                            | Date                                                          | Date       |
| Surface         | Condit           | ons / We                         | ather: <i>Gi</i>                         | avel road base, wet / 70°F, Overcas                                | st, light sprinkle                   |                                            |                             |                                                                                                   | 2/21/18                                                       | 2/22/18    |
| Remark          | s: Bore          | hole insta                       | alled for th                             | ne collection of geotech samples and                               | d installation of sl                 | nallow piezometer.                         |                             |                                                                                                   |                                                               |            |
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or % | Blows/6 in<br>or<br>RQD                  | SAMPLE                                                             | DESCRIPT                             | ION                                        | Graphic                     | Rem                                                                                               | arks                                                          | nscs       |
| 1—<br>2—        | NS               |                                  |                                          | See Borehole Log GW-978 for de<br>stratigraphic interpretation.    | tailed lithologic d                  | escription and                             | -                           | Ran 3 1/4" ID HS<br>plug while auger<br>borehole.                                                 | A with cente<br>ing. 7" OD                                    |            |
| 3—<br>4—<br>5—  | ST-1             | 2.0                              | 700 PSI<br>700 PSI<br>750 PSI<br>850 PSI | At base of tube, sample was light<br>SANDY SILTY CLAY. Sand is fin | brown to strong<br>e grained. Samı   | brown (7.5YR 6/4 -<br>ole is mottled. Mois | -<br>-<br>-<br>5/6) -<br>st | Pushed Shelby t<br>5.0'. Let Shelby<br>set from 1119 to<br>Bucket Sample E<br>from 4.0' - 5.0' at | ube from 3.0<br>tube (ST-1)<br>1132.<br>3S-1 collecte<br>1140 | ' <u>-</u> |
| 6—<br><br>7—    | NS               |                                  |                                          |                                                                    |                                      |                                            | -                           | Bucket Sample E<br>from 5.0' - 6.0' at                                                            | 3S-2 collecte<br>1141.                                        | d          |
| 8               | ST-2             | 1.25                             | 900 PSI<br>900 PSI<br>1000/3             |                                                                    |                                      |                                            |                             |                                                                                                   |                                                               |            |
| 9—<br>-<br>10—  | NS               | 1.0                              | PSI<br>850 PSI                           | At base of tube, sample was redd<br>(SHALE). Highly weathered. Eas | ish brown (5YR<br>sily crumbled with | 5/3 - 4/4) SAPROLI<br>n hand. Moist.       | TE                          | Pushed Shelby t<br>from 7.5' - 8.75',<br>where refusal wa                                         | ube (ST-2)<br>which is<br>is. Let Shelt                       | ру         |
| 11-             | 51-3             | 1.6                              | 1100<br>PSI                              | At base of tube, sample was light                                  | vellowish brown                      | to light olive brown                       | _                           | Pushed Shelby t                                                                                   | 44 to 1154.<br>ube (ST-3)                                     |            |
| -<br>12—        |                  |                                  | PSI                                      | (2.5Y 4/3 - 5/3) SHALE (SAPROL<br>hand. Iron oxide and manganese   | ITE). Weathered<br>oxide on beddin   | d. Easily crumbled<br>g plane surfaces.    | with –<br>—                 | from 9.5' - 10.8'.<br>from 1201 to 120                                                            | Let tube sel<br>18.                                           |            |
|                 |                  |                                  |                                          |                                                                    |                                      |                                            |                             |                                                                                                   |                                                               |            |
| 14 —            |                  |                                  |                                          |                                                                    |                                      |                                            | _                           |                                                                                                   |                                                               |            |
| 15—<br>         | NS               |                                  |                                          |                                                                    |                                      |                                            | _                           |                                                                                                   |                                                               |            |
| -<br>17         |                  |                                  |                                          |                                                                    |                                      |                                            | _                           |                                                                                                   |                                                               |            |
| <br>18          |                  |                                  |                                          |                                                                    |                                      |                                            | _                           |                                                                                                   |                                                               |            |
|                 |                  |                                  |                                          |                                                                    |                                      |                                            | -                           |                                                                                                   |                                                               |            |

| EN               | /DF C            | haracteri<br>Dak Ridg             | zation P<br>e, TN       | roject                                                                                        |                                                                                                                                                     | BOREH                                                                                                                               | OLE LOG                                                                                                                                                                 |                                                                                 | Bor                                                   | ing Number<br>GW-979                                                                                                        |          |
|------------------|------------------|-----------------------------------|-------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------|
| Remark           | s: Bore          | hole insta                        | alled for th            | ne collection                                                                                 | of geotech sampl                                                                                                                                    | es and installation                                                                                                                 | on of shallow piezon                                                                                                                                                    | neter.                                                                          |                                                       |                                                                                                                             |          |
| Depth<br>(feet)  | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                                                                               | SAMF                                                                                                                                                | PLE DESCF                                                                                                                           | RIPTION                                                                                                                                                                 |                                                                                 | Graphic<br>Log                                        | Remarks                                                                                                                     | nscs     |
| <br>21—_         | C-1              | 0.4'<br>44.4%                     | 0%                      | Dark gray                                                                                     | to very dark gree                                                                                                                                   | n gray (N 4/ - 50                                                                                                                   | GY 3/1) INTERBEDD                                                                                                                                                       | DED -                                                                           |                                                       | Auger refusal at 20.2'. Switch<br>to HQ core barrel and start<br>coring and pulled augers at<br>1359 - 1421 went to get     |          |
| 22<br><br>23<br> | C-2              | 3.9'<br>100%                      | 26.1%                   | SHALE an<br>greenish g<br>grains. O<br>Shale is la<br>due to sol<br>deformation<br>staining o | nd LIMESTONE.<br>gray (N 5/ - 5GY 5<br>)verall structure of<br>aminated. Slicken<br>ft sediment deform<br>on features observ<br>observed. Field str | Limestone tends<br>/1). Laminated<br>interbeds is lam<br>sides observed<br>nation. Bioturba<br>ved. Bedding is<br>rength is strong. | s to be lighter in colo<br>in places with glauco<br>inated to medium be<br>on bedding plane su<br>tion and other soft si<br>at 40° to 50° angles<br>Core is fresh and c | or - gray to<br>onite<br>edded<br>urfaces<br>ediment<br>s. No iron<br>competent |                                                       | <ul> <li>1421 Attempting to install PVC casing.</li> <li>1424 WL at 18.55', TD = 20'.</li> </ul>                            |          |
| 24 —<br>         |                  |                                   |                         | to slightly<br>calcite. S<br>opposite o<br>but break                                          | disintegrated whe<br>Some fractures tha<br>direction of beddin<br>s are along beddir                                                                | ere trace fracture<br>t are healed with<br>g. Intensely to<br>ng planes and a                                                       | es have been healed<br>n calcite are at 45° a<br>very intensely fractu<br>re likely mechanical.                                                                         | l with<br>ingles and<br>red in part,<br>-                                       |                                                       | 1643 WL at 5.8', TD = 27.1'.                                                                                                |          |
| 26-              | C-3              | 2.1'<br>100%                      | 0%                      |                                                                                               |                                                                                                                                                     |                                                                                                                                     | -                                                                                                                                                                       |                                                                                 | 25.6' - 26.0' Calcite present<br>along fracture face. |                                                                                                                             |          |
| <br>27           |                  | 100 /0                            |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               |                                                       | highly disturbed. Limestone<br>beds intact, shale has been<br>pulverized and did not feed<br>into barrel. Sample destroyed. |          |
| 28               |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | _                                                     | C1: 20.2 - 21.1' 1445-1455.<br>C2: 26.1' - 25.0' 1500-1522.                                                                 |          |
| 29—<br>          |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | _                                                     | 21.1' - 21.3' Very intensely<br>broken along bedding planes<br>and some at an angle                                         |          |
| -<br>31—<br>-    |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | -                                                     | perpendicular to bedding<br>direction. Iron staining<br>throughout. No iron staining<br>present below 21.3'.                |          |
| 32—<br>          | NS               |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | -                                                     | C3: 25.0' - 27.0' 1528-1548.                                                                                                |          |
| 34—              |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | -                                                     |                                                                                                                             |          |
| 35—              |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | _                                                     |                                                                                                                             |          |
| 36—<br>          |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | -                                                     |                                                                                                                             |          |
| <br>38 —         |                  |                                   |                         | Bottom of                                                                                     | f Borehole = 37.6'.<br>er GW-979 installe                                                                                                           | ed in horehole                                                                                                                      | See Monitoring Well                                                                                                                                                     | -                                                                               | -                                                     | On 2/22/18 used<br>Ingersoll-Rand T3W rotary rig                                                                            |          |
| 39               |                  |                                   |                         | Installatio                                                                                   | n Report GW-979                                                                                                                                     | for details.                                                                                                                        | e se merinening well                                                                                                                                                    | -                                                                               | _                                                     | borehole to 37.6' using 5 7/8"<br>hammer bit. Completed drilling<br>at 1358.                                                |          |
| 40               |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | -                                                     |                                                                                                                             |          |
| 41—<br><br>42—   |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | -                                                     |                                                                                                                             |          |
| 43-              |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               | -                                                     |                                                                                                                             |          |
| 44               |                  |                                   |                         |                                                                                               |                                                                                                                                                     |                                                                                                                                     |                                                                                                                                                                         | -                                                                               |                                                       |                                                                                                                             |          |
|                  |                  |                                   |                         |                                                                                               |                                                                                                                                                     | B-1                                                                                                                                 | 10                                                                                                                                                                      |                                                                                 |                                                       | Pag                                                                                                                         | e 2 of 2 |

| Eago                  | n & A                     | Associa                                   | ates, l      | nc.                                    |              |                    |                         |           |            |             |         | ^     | /ell N<br>GW | lumb<br>-979 | ber<br>)  |
|-----------------------|---------------------------|-------------------------------------------|--------------|----------------------------------------|--------------|--------------------|-------------------------|-----------|------------|-------------|---------|-------|--------------|--------------|-----------|
|                       |                           | Ν                                         | loni         | toring                                 | Wel          | l Inst             | allation R              | ерс       | ort        |             |         |       | ľ            |              |           |
| Site Name             | e and Loo                 | cation: <i>EM</i>                         | DF Chara     | acterization F                         | Project, O   | ak Ridge, 1        | N                       | Co        | mpletion [ | Date: 3/8/1 | 8       |       |              |              | 0         |
| Coordinat             | tes: 3065                 | 56.61N 38                                 | 653.90E      |                                        |              | Borel              | nole Depth (ft): 37.    | 8         |            |             |         |       |              |              |           |
| Elevation             | Top of C                  | asing (ft/M                               | SL): 955     | .99                                    |              | Borel              | nole Diameter (in):5    | 5 7/8" (0 | )'-37.75') |             |         |       |              |              |           |
| Elevation             | Ground S                  | Surface (ft/                              | MSL): 95     | 53.7                                   |              | Drillir            | ng Methods: 3 1/4" I    | D HSA,    | HQ Core    | with water, | 5 7/8"  |       |              |              | 5         |
| Installed E           | By: Fred                  | Reynolds/1                                | ri-State L   | Drilling                               |              | Com                | oleted Drilling: 2/22   | 2/18      |            |             |         |       |              |              |           |
| Supervise             | ed By: Sh                 | nay Beanlar                               | nd/Eagon     | & Associate                            | s, Inc.      | Drillir            | ng Water Used (gals     | s):       |            |             |         |       |              |              |           |
| -                     |                           | -                                         |              |                                        | Wel          | l Des              | ian                     |           |            |             |         | -     |              |              | 10        |
|                       | Com                       | ponent                                    |              |                                        |              | Materials          | .9                      | Dept      | h (LSD)    | Elev        | ration  | -0    |              |              |           |
| Well Pro              | otector                   |                                           |              | 4" Squa                                | re Steel     | Protector w        | /Locking Lid            | -2.6      | 6 - 2.4    | 956.3       | - 951.3 |       |              |              |           |
| Riser                 |                           |                                           |              | 2" ID Sc                               | hedule 4     | 10 PVC             |                         | -2.3      | - 26.3     | 956.0       | - 927.5 |       |              |              |           |
| Surface               | e Seal                    |                                           |              | 3' x 3' C                              | oncrete      | Pad                |                         | -0.5      | 5 - 0.5    | 954.2       | - 953.2 |       |              |              | 15        |
| Cement                | t Grout                   |                                           |              | Cement                                 | Bentoni      | te Grout           |                         | 0.5       | - 19.0     | 953.2       | - 934.7 |       |              |              |           |
| Bentoni               | ite Seal                  |                                           |              | Pel Plug                               | 1/4" Co      | ated Bento         | nite Pellets            | 19.0      | - 21.2     | 934.7       | - 932.6 |       |              |              |           |
| Sand Pa               | ack                       |                                           |              | DSI "GF                                | 9 #2" Gra    | avel Pack          |                         | 21.2      | 2 - 37.6   | 932.6       | - 916.1 |       |              |              |           |
| Screen                |                           |                                           |              | 2" ID Sc                               | hedule 4     | 10 PVC, 10         | -Slot                   | 26.3      | - 36.3     | 927.5       | - 917.4 |       |              |              | 20        |
| Well Po               | oint Blank                |                                           |              | 2" ID Sc                               | h. 40 P∖     | /C Cap & R         | iser Section            | 36.3      | - 37.6     | 917.4       | - 916.1 | -8888 | 8988         |              | 1         |
| Sand Pa               | ack Botto                 | m                                         |              | DSI "GF                                | 9 #2" Gra    | avel Pack          |                         | 37.6      | 6 - 37.8   | 916.1       | - 916.0 |       |              |              | 4         |
|                       |                           |                                           |              |                                        |              |                    |                         |           |            |             |         | _     |              |              |           |
|                       |                           |                                           |              |                                        |              |                    |                         |           |            |             |         | _     |              |              | - 25<br>- |
|                       |                           |                                           |              | We                                     |              | evelo              | pment                   |           |            |             |         | _     |              |              | -         |
| 39.88 39.88           | th (π, IOC                | ;):                                       | Depth<br>14  | to Water (11,<br>4.70                  | ,TOC):       | vveii<br>4         | Volume (gals):<br>.1    |           | 236.0      | Purged (ga  | s):     |       |              |              |           |
| Developm<br>Surge blo | nent Meth<br>ock, bailer, | iod:<br><i>Tornado pui</i>                | пр           |                                        |              |                    |                         |           | •          |             |         |       |              |              | 30        |
| Date                  | Time                      | Cumulative<br>Volume<br>Removed<br>(gals) | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recovery                | Data      |            |             |         |       |              |              |           |
| 2/27/18               | 1100                      | 108.5                                     | 14.4         | 311                                    | 7.35         | 41.9               | 100                     |           |            |             |         |       |              |              |           |
| 2/27/18               | 1110                      | 123.5                                     | 14.4         | 306                                    | 7.44         | 13.1               | (%) 80                  |           |            |             |         |       |              |              | 35        |
| 2/27/18               | 1150                      | 183.5                                     | 14.5         | 304                                    | 7.35         | 1.0                |                         |           |            |             |         |       |              |              |           |
| 2/27/18               | 1200                      | 198.5                                     | 14.5         | 304                                    | 7.30         | 1.9                | 00<br>20<br>20          |           |            |             |         |       |              | -            | -         |
| 2/27/18               | 1210                      | 213.5                                     | 14.5         | 301                                    | 7.38         | 0.9                | o                       | 40        | )          | 80          | 120     |       |              |              | 10        |
| 2/27/18               | 1225                      | 236.0                                     | 14.5         | 303                                    | 7.32         | 0.7                |                         | Ti        | me (minute | es)         |         |       |              |              | +0        |
| Sampling              | Equipme                   | ent:                                      |              | <u> </u>                               |              | 1                  |                         |           |            |             |         | 1     |              |              |           |
| Comment               | ts:                       |                                           |              |                                        |              |                    |                         |           |            |             |         | -     |              |              |           |
| Grout mi              | ving and -                | lacement info                             | rmation -    | rovided by T-                          | State Drill  | ing Sorosa         | slot interval 26 5 26 1 | bac       |            |             |         |       |              |              |           |
|                       | ung unu pi                |                                           |              |                                        |              |                    | B-11                    | - 290.    |            |             |         | BO    | nng de       | µm=37        | .o ft.    |

MONITOR WELL INSTALLATION 2 OAK RIDGE .GPJ EAGON.GDT 4/4/18

This page intentionally left blank.

|                                                                                                                                                       |                  |                          |              | BO                                                              | REHOLF                                                                                                                                     | E LOG                                      |                       |                                           |                                      |                                |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|--------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|-------------------------------------------|--------------------------------------|--------------------------------|-----------------|
| Site Na                                                                                                                                               | me               | E                        | MDF Ch       | aracterization Project                                          | Drilling Methods                                                                                                                           | S:                                         |                       |                                           | 40% sin b servers an                 | Boring Num                     | ber:            |
| and Loc                                                                                                                                               | ation:           |                          | C            | Jak Ridge, TN                                                   | 3 1/4" ID H<br>bit, 5 7/8" t                                                                                                               | SA, HQ3 Core with<br>ricone bit with air/w | ) water cir<br>vater. | culation                                  | , 10" air hammer                     | GW-                            | 980             |
| Drilling                                                                                                                                              | Firm: T          | ri-State D               | rilling      |                                                                 | DATE                                                                                                                                       | TIME                                       | DEI<br>DRILL          | PTH<br>ED (ft)                            | WATER<br>LEVEL (ft)                  |                                | /00             |
| Driller /                                                                                                                                             | Rig: Sł          | nannon Si                | now/CME      | -550                                                            |                                                                                                                                            |                                            |                       |                                           |                                      | Page                           | 1 of 4          |
| Logged                                                                                                                                                | by: Da           | ivid J. Suç              | jar          |                                                                 | ST = Shelby Tu                                                                                                                             | <u>Sampling N</u>                          | <u>/lethods:</u>      | <u>88 = 5</u>                             | Split Spoon                          |                                |                 |
| Coordin                                                                                                                                               | nates: 3         | 30388.001                | J 38138.     | 34E                                                             | WS = Waxed Sa                                                                                                                              | imple                                      |                       | CS = (                                    | Continuous Sampler                   | Stan                           | Finish          |
| Surface                                                                                                                                               | Elevati          | on: 963.4                | 4 ft/MSL     |                                                                 | GP or DP = Direction of CT = Cuttings                                                                                                      | ct Push                                    |                       | NS = N<br>B = Ba                          | √ot Sampled<br>ailer                 | 1525                           | 1202            |
| Surface                                                                                                                                               | ; Conditi        | ions / Wea               | ather: Gr    | avel pad, moist, slopping / 51°F, Ove                           | ərcast                                                                                                                                     |                                            |                       |                                           |                                      | Date<br>2/13/18                | Date<br>2/17/18 |
| Remark                                                                                                                                                | (S:              |                          |              |                                                                 |                                                                                                                                            |                                            |                       |                                           |                                      |                                |                 |
| ÷÷                                                                                                                                                    | od bo            | ole<br>/ery<br>(%)       | D Q          |                                                                 |                                                                                                                                            |                                            |                       | р<br>Ц<br>Ц<br>Ц                          |                                      |                                | S               |
| Dep <sup>i</sup><br>(fee                                                                                                                              | Sam<br>Meth      | Samp<br>Recov<br>(feet o | Blows/<br>RQ | SAMPLE [                                                        | DESCRIPTI                                                                                                                                  | ON                                         |                       | Grap                                      | Rema                                 | ırks                           | nsc             |
| _                                                                                                                                                     |                  |                          |              | Road bed/pad. Gravel.                                           |                                                                                                                                            |                                            |                       | 3 1/4" ID HSA, 7 2<br>center bit while ar | 1/2" OD, ran<br>ugering.             |                                |                 |
| 1—                                                                                                                                                    | NS               | l I                      |              | Dark yellowish brown (10YR 4/4 -                                | 4/6) SANDY SIL                                                                                                                             | v to —                                     |                       | Continuous 2" OE<br>spoons 140 lb au      | ), 2' drive spli<br>tomatic          | <sup>t</sup> ML                |                 |
| _                                                                                                                                                     | SS-1             | 0.5'                     | 4            | generally jumbled fabric (no domir                              | some gravel clasts, up to 1 3/8" shale/sandstone fragments. Unsorted, generally jumbled fabric (no dominant orientation of clasts). Low to |                                            |                       |                                           |                                      |                                |                 |
| 2-                                                                                                                                                    |                  |                          | 5            | medium plasticity. Low to medium slightly moist. RESIDUUM/COLLI | i toughness. vve<br>UVIUM.                                                                                                                 | athered. Moist to                          | ·                     |                                           | Trace to some iro                    | n oxide                        |                 |
| 3—                                                                                                                                                    | SS-2             | 1.6'                     | 10           |                                                                 |                                                                                                                                            |                                            |                       |                                           | Does not appear                      | to follow soil                 |                 |
|                                                                                                                                                       |                  | 80%                      | 12           |                                                                 |                                                                                                                                            |                                            | -                     |                                           | fractures, isolateo<br>fragments.    | to rock                        |                 |
| 4—                                                                                                                                                    | $\left  \right $ | <sup>_</sup>             | 6            | Trace to some very grayish green                                | (5GY 3/2) zones                                                                                                                            | . Possibly highly                          |                       |                                           | No reaction with I                   | HCI.                           |                 |
| _                                                                                                                                                     |                  | 2.0'                     | 21           | weathered glauconitic rock fragme                               | ents.                                                                                                                                      | -                                          | -                     |                                           | On 2/15/18 used                      | <b></b>                        |                 |
| 5-                                                                                                                                                    | SS-3             | 100%                     | 29           |                                                                 |                                                                                                                                            |                                            |                       |                                           | to ream corehole                     | W rotary rig<br>to 26.5' using | 3               |
| 6—                                                                                                                                                    |                  | ļ'                       | 30           |                                                                 |                                                                                                                                            |                                            | _                     |                                           | 10" air hammer bi<br>permanent 6" PV | it. Set<br>C casing and        |                 |
|                                                                                                                                                       |                  | í '                      | 43           |                                                                 |                                                                                                                                            |                                            | _                     |                                           | sealed with ceme                     | nt bentonite                   |                 |
| 7—                                                                                                                                                    | SS-4             | 2.0'<br>100%             | 68           | Below 6.9' primarily slightly moist.                            | Color is lighter I                                                                                                                         | liaht brownish gra                         | v. —                  |                                           | grout.<br>SS-2 Lab results:          | Moisture                       |                 |
| , –                                                                                                                                                   |                  | 10070                    | 73           | brown to yellowish brown (10YR 5                                | /2 - 5/6).                                                                                                                                 |                                            | -                     |                                           | Content (MC) 13.                     | 8%; 45%                        |                 |
| 8—                                                                                                                                                    |                  | l                        | 16           |                                                                 |                                                                                                                                            |                                            |                       |                                           | Gravel; 32% Sand                     | 1; 23% Fines.                  | •               |
|                                                                                                                                                       |                  | 2.0'                     | 25           |                                                                 |                                                                                                                                            |                                            | -                     |                                           |                                      |                                |                 |
| 9—                                                                                                                                                    | SS-5             | 100%                     | 49           |                                                                 |                                                                                                                                            |                                            | -                     |                                           |                                      |                                |                 |
| 10-                                                                                                                                                   |                  | ļ'                       | 42           |                                                                 |                                                                                                                                            |                                            | _                     |                                           |                                      |                                |                 |
| 10                                                                                                                                                    |                  | ı                        | 6            |                                                                 |                                                                                                                                            |                                            | -                     |                                           |                                      |                                |                 |
| 11—                                                                                                                                                   | SS-6             | 2.0'                     | 25           |                                                                 |                                                                                                                                            |                                            |                       |                                           |                                      |                                |                 |
|                                                                                                                                                       |                  | 100%                     | 78           | 11.1' - 11.2' grayish green glaucon                             | itic sandstone fra                                                                                                                         | agment.                                    | -                     |                                           | Possibly ML-CL c                     | lassification.                 |                 |
| 12—                                                                                                                                                   | <b>├</b> ──┤     |                          | 100          | Light vellowish brown to brownish                               | vellow (10YR 6//                                                                                                                           | 4 - 6/8) and green                         | ish                   |                                           | Zone with rock st                    | ructure.                       |                 |
| _                                                                                                                                                     | SS-7             | 1.4'                     | 39           | gray (5G 5/1). Highly to completel                              | ly weathered SH                                                                                                                            | ALE. Thinly bedd                           | led                   |                                           | Possibly large roc                   | sk fragment.                   |                 |
| 13—                                                                                                                                                   |                  | 70%                      | 100/4        | oxide.                                                          | oxide coauriys.                                                                                                                            | Hace manyanes                              | e                     |                                           | SS-4 Lab results:                    | MC 15%.                        |                 |
| -                                                                                                                                                     | NS               |                          |              |                                                                 |                                                                                                                                            |                                            | -                     |                                           | SS-6 Lab results:                    | MC 12.6%.                      |                 |
| 14                                                                                                                                                    |                  |                          | 39           |                                                                 |                                                                                                                                            |                                            |                       |                                           | No reaction with F                   | HCI 14.370.                    |                 |
| 15—                                                                                                                                                   | 55-8             | 2.0'                     | 54           | Continues to have low to medium                                 |                                                                                                                                            | Appears saprolitic                         | : in places,          |                                           |                                      |                                |                 |
|                                                                                                                                                       |                  | 100%                     | 66           |                                                                 | inoution.                                                                                                                                  |                                            | -                     |                                           | fragments. Slight                    | ly moist.                      |                 |
| 16—                                                                                                                                                   | ──┤              | <u>ا</u>                 | 51           |                                                                 |                                                                                                                                            |                                            | _                     |                                           | ee al ab resulte:                    | MC 10 2%                       |                 |
| _                                                                                                                                                     |                  |                          | 20           | Underlving contact is gradational f                             | from 17.2' - 17.5'                                                                                                                         |                                            | -                     |                                           | SS-10 Lab result                     | s' MC 4.3%.                    |                 |
| 17 —                                                                                                                                                  | SS-9             | 1.9 <sup>,</sup><br>95%  | 57           | Change at 17.4'.                                                | 1011112                                                                                                                                    |                                            |                       |                                           |                                      |                                |                 |
| 4                                                                                                                                                     |                  |                          | 100/5        | Gray to greenish gray (N 5/ - 10Y                               | 5/1) SHALE. So                                                                                                                             | ft. Sample structi                         | ire is                |                                           | No reaction with F                   |                                |                 |
| SS-10 0.7' 92 oxide, fracture coatings. Appears thinly bedded with relatively high                                                                    |                  |                          |              |                                                                 |                                                                                                                                            |                                            |                       | lightiy                                   |                                      |                                |                 |
| 19 - 100% 100/2 bedding angle.                                                                                                                        |                  |                          |              |                                                                 |                                                                                                                                            |                                            |                       |                                           |                                      |                                |                 |
| 19       100%       100/2       bedding angle.         NS       Below 18.0' primarily gray (N 5/) color. Trace yellowish brown iron oxide near 18.6'. |                  |                          |              |                                                                 |                                                                                                                                            |                                            |                       |                                           |                                      | ry structure is by the         | 5               |

# Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

#### **BOREHOLE LOG**

Boring Number GW-980

| Remar           | ks:              |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                     |      |
|-----------------|------------------|-----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Graphic<br>Log | Remarks                                                                                                                                             | nscs |
|                 | SS-11            | 0.5'/100%                         | 100/5                   | Very dark gray to black (N3/ - N2.5/) SHALE. (Cont'd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | sampling process.                                                                                                                                   |      |
| 21-             | NS               |                                   |                         | Trace yellowish brown iron oxide from 20.2' to 20.3'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | cutter sampler was also wet.<br>After taking SS-11 (1700)<br>measured WL at 19.22' (1705).                                                          |      |
| 22-             | SS-12            | 0.9'                              | 69                      | Trace white precipitate (?) does not react with HCI. Trace amount associated with bedding planes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | SS-12 Lab results: MC 11.7%.                                                                                                                        |      |
| 23-             | NS               | 90%                               | 100/2                   | Below 22.0' oxidation not present. Formation is soft but relatively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | SS-13 Lab results: MC 12.3%.<br>SS-11 and SS-12 Recovery is                                                                                         |      |
| 24 —            |                  | 0.8'                              | 40                      | unweathered.<br>SS-13 Sample has relatively intact bedding. 40° - 45° Bedding angle,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | broken due to the sampling<br>process. Bedding appears to<br>be angled but gradation is not                                                         |      |
| 25 —            | SS-13            | 80%                               | 100/3                   | appears thinly bedded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | apparent.<br>End 2/13/18, 1735, at 25.0'.<br>1746 WI = 20.72' from GS                                                                               |      |
| -<br>26—        | NS               |                                   |                         | Change at 26.3'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Begin 2/14/18, 0830, 45°-50°F,<br>light rain. 0808 WL = 14.12'                                                                                      |      |
| -<br>27 —       |                  |                                   |                         | Interbedded dark reddish gray/weak red to dark red (2.5 4/1 - 4/2 and 3/1 - 3/2) SHALE and dark gray to very dark gray (N4/ - N3/) LIMESTONE or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Auger SS-13 interval and<br>advance augers to 26.0'. Not                                                                                            |      |
| 28-             | C-1              | 2.6 87%                           | 0%                      | less than 0.1', and up to 0.2'. Trace to few dark green/greenish black glauconitic beds and partings. Bedding is typically irregular, showing soft sediment deformation features. Limestone content generally varies between 30 to 40%. Healed fractures with white calcite infilling are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | refusal but formation appears<br>competent to core. Installed 4"<br>temporary casing to 26.3'.<br>Start HQ3 coring at 1053,<br>water circulation    |      |
| 29—             |                  |                                   |                         | generally present, but seldom exceed 2mm in width and are often hairline.<br>The formation is moderately to intensely fractured, however most of the<br>breaks are associated with bedding place breaks and are mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +              | Bedding generally varies                                                                                                                            |      |
| 30-             | _                |                                   |                         | breaks are basectated with bedang plane breaks and are interventional<br>breaks at planes of weakness. Some surfaces are slickenside, but<br>appear to be depositional, associated with lithification. Limestone beds<br>are moderately hard to hard and shale beds are soft. The formation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | C-1 26.3' - 29.3' 1033-1056.<br>C-2 29.3' - 32.9' 1101-1115.                                                                                        |      |
| 31 —            | C-2              | 2.5'<br>81%                       | 13%                     | unweathered, fresh.<br>27.2' - 27.8' Glauconitic limestone seam. Interclastic, with clasts up to<br>1/2" diameter, irregular elliptical shape with reddish brown hematitic halo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | C-3 32.9' - 33.1' 1125-1130.<br>27.2' - 27.8' Fracture or<br>fracture set, rough face.                                                              |      |
| 32—             | -                |                                   |                         | At 31.2' and 31.3' fracture, orientation is approximately 35° to the bedding angle. Face is heavily striated (slickenside) with red clay or hematite on fractional formula of the structure of th |                | Secondary clear crystals on<br>face, relatively flat crystals,<br>does not react with HCL -                                                         |      |
| 33—             | C-3              | 0.6'<br>100%                      | 0%                      | Tracture face. Ferrous oxide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | C-3 Run picked up 0.4' from                                                                                                                         |      |
| 34 —            | -                |                                   |                         | Below 32.9' the reddish color hue changes to dark reddish gray/reddish<br>black (7.5R 3/1 - 2.5/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ē              | 29.9' - 30.0' Calcite filled<br>fractures perpendicular to                                                                                          |      |
| 35 —            | - C-4            | 3.9'                              | 31%                     | Below 34.6' generally becoming more competent, moderately fractured with most core breaks attributed to mechanical drilling breaks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 31.1' and 33.5' Bedding breaks<br>with slickenside surfaces, no<br>mineralization present.                                                          |      |
| 36 —            |                  | 81%                               | 0170                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | probably mechanical.                                                                                                                                |      |
| 37—             | -                |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | C-4 33.1' - 37.9' 1132-1152.                                                                                                                        |      |
| 38 —            |                  |                                   |                         | Below 37.9' healed fractures with white calcite infilling are relatively rare<br>and usually less than 1 to 2 mm wide. Limestone/limey siltstone content<br>is probably closer to 25-30%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ē              | 37.9' - 39.2' Broken zone,<br>several breaks along bedding<br>planes with slickenside                                                               |      |
| 39—             |                  |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | surfaces.                                                                                                                                           |      |
| 40-             | C-5              | 4.7'<br>94%                       | 9%                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | At 38.7' bedding break with<br>slickenside and very fine<br>secondary pyrite crystals on                                                            |      |
| 41-             |                  | 5                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                     |      |
| 42-             | -                |                                   |                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | C 6 42 9' 47 9' 1222 1220                                                                                                                           |      |
| 43-             |                  |                                   |                         | Below 42.9' deformation of limestone/limey siltstone appears slightly more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 43.2' - 44.2' Several bedding                                                                                                                       |      |
| -<br>44 —<br>-  | C-6              | 5.0'<br>100%                      | 56%                     | pronounced. Most bedding breaks are associated with depositional slickenside surfaces. Most have trace to full thin coatings of calcite. Bedding angle is approximately 40°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | breaks (0.1' - 0.4' intervals)<br>faces are generally<br>slickensided (appears<br>depositional) with trace to full<br>carbonate coatings (calcite). |      |

| EN                     | NDF C            | haracteri<br>Dak Ridg             | ization P<br>je, TN     | roject                                                                | BOREHOLE LOG                                                                                                                                                                                                                     | B                                                                     | oring Number<br>GW-980                                                                                                                                                                   |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
|------------------------|------------------|-----------------------------------|-------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|-----------------------------------------------------------------------|--|-----------------------------------------------------------------------|--|-----------------------------------------------------------------------|--|-----------------------------------------------------------------------|--|-----------------------------------------------------------------------|--|-----------------------------------------------------------------------|-----------------------------------------------------------------|--|-------|--|
| Remark                 | s:               | _                                 |                         |                                                                       |                                                                                                                                                                                                                                  |                                                                       |                                                                                                                                                                                          |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| Depth<br>(feet)        | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                                                       | SAMPLE DESCRIPTION                                                                                                                                                                                                               | Graphic<br>Lod                                                        | Remarks                                                                                                                                                                                  | nscs                                                                  |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| 46 —<br><br>47 —       | C-6              | 5.0'<br>100%                      | 56%                     | Interbedde<br>and dark (<br>(Cont'd.)                                 | ed dark reddish gray to reddish black (7.5R 3/1 - 2.5/1) SHALE<br>gray to very dark gray LIMESTONE to LIMEY SILTSTONE.                                                                                                           |                                                                       | Moderate to slightly fractured.                                                                                                                                                          |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| 48—<br>_<br>49—        |                  |                                   |                         | Continues competen                                                    | to be fresh, no observed oxidation. Thinly bedded and t. Bedding contacts are deformed, wavey structure.                                                                                                                         |                                                                       | Bedding angle is approximately 45°.                                                                                                                                                      |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| <br>50<br><br>51       | C-7              | 5.0'<br>100%                      | 77%                     |                                                                       |                                                                                                                                                                                                                                  |                                                                       | Fracture at 49.8' has a white calcite coating.                                                                                                                                           |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| 52—<br>                |                  |                                   |                         |                                                                       |                                                                                                                                                                                                                                  |                                                                       | C-7 47.9' - 52.9' 1347-1358.                                                                                                                                                             |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| 53 —<br>-<br>54 —      |                  |                                   |                         |                                                                       |                                                                                                                                                                                                                                  |                                                                       | C-8 52.9' - 57.9' 1405-1417.                                                                                                                                                             |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| 55—<br>-<br>56—        | C-8              | 5.0'<br>100%                      | 65%                     | Bedding a                                                             | ngle approximately 47°.                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                          |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
|                        |                  |                                   |                         |                                                                       |                                                                                                                                                                                                                                  |                                                                       |                                                                                                                                                                                          |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| - 80                   | C-9              | 1.0'<br>100%                      | 71%                     | Bedding a                                                             | ngle varies between 35° - 40°.                                                                                                                                                                                                   |                                                                       | C-9 57.9' - 58.9' 1428-1440.<br>59.2' - 60.1' Zone with healed                                                                                                                           |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| 59—<br>60—<br>61—      | C-10             | 3.2'                              | 28%                     | 59.2' - 64.<br>bedding b<br>concentra<br>By 60.5' b                   | 3' Moderate to intensely broken. Most breaks correspond with<br>reaks/depositional slickenside surfaces. Slightly higher<br>tion of calcite healed fractures are perpendicular to bedding.<br>edding angle is approximately 50°. |                                                                       | (calcite filled) fractures,<br>generally oriented<br>perpendicular to bedding<br>angle. At 59.2', 59.5', and<br>59.8' fractures are open but<br>appear broken by the drilling<br>process |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| 62—<br>63—             |                  | 80%                               |                         | 62.2' - 63.<br>(~45°) bec                                             | 5' Bedding turns (deformed) to vertical and back to normal<br>dding angle.                                                                                                                                                       |                                                                       | C-10 58.9' - 62.9' 1445-1457.<br>No weathering or oxidation<br>observed. C-10 recovery loss<br>appears associated with this                                                              |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| 64 —<br>               |                  |                                   |                         | Below 64.3' slightly fractured to unfractured. Continues to be fresh, |                                                                                                                                                                                                                                  | Below 64.3' slightly fractured to unfractured. Continues to be fresh, |                                                                                                                                                                                          | Below 64.3' slightly fractured to unfractured. Continues to be fresh, |  | Below 64.3' slightly fractured to unfractured. Continues to be fresh, |  | Below 64.3' slightly fractured to unfractured. Continues to be fresh, |  | Below 64.3' slightly fractured to unfractured. Continues to be fresh, |  | Below 64.3' slightly fractured to unfractured. Continues to be fresh, |  | Below 64.3' slightly fractured to unfractured. Continues to be fresh, |  | Below 64.3' slightly fractured to unfractured. Continues to be fresh, | 3' slightly fractured to unfractured. Continues to be fresh, no |  | Zone. |  |
| 65 —<br>-<br>66 —<br>- | C-11             | 4.8'<br>96%                       | 39%                     | UNIUALIUII,                                                           | compotent. Dedung angle is approximately 40.                                                                                                                                                                                     |                                                                       | C-11 62.9' - 67.9' 1503-1517.                                                                                                                                                            |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
| 67 —<br>68 —<br>69 —   | C-12             | 5.0'<br>100%                      | 86%                     | Bedding a<br>68.0' - 68.<br>generally                                 | ngle is approximately 50°.<br>2' Bedding plane break, weak slickenside surface, calcite<br>coats face.  Probably mechanical break.                                                                                               |                                                                       | 67.0' - 67.3' Bedding plane<br>break with apparent<br>depositional slickensides.<br>Trace calcite coating and fine<br>pyrite crystals.                                                   |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |
|                        |                  |                                   |                         |                                                                       | B-15                                                                                                                                                                                                                             |                                                                       | C-12 67.9' - 72.9' 1529-1540.                                                                                                                                                            | e 3 of 4                                                              |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |  |                                                                       |                                                                 |  |       |  |

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

| EN                     | MDF CI           | haracteri<br>Dak Ridg             | zation F<br>e, TN       | Project                               | BOREHOLE LOG                                                                                                                     | Bor            | ing Number<br>GW-980                                                                                                                                                                                                   |      |
|------------------------|------------------|-----------------------------------|-------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Remark                 | (S:              |                                   |                         |                                       |                                                                                                                                  |                |                                                                                                                                                                                                                        |      |
| Depth<br>(feet)        | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                       | SAMPLE DESCRIPTION                                                                                                               | Graphic<br>Log | Remarks                                                                                                                                                                                                                | NSCS |
| -<br>71—<br>72—<br>73— | C-12<br>NS       | 5.0'<br>100%                      | 86%                     | Interbeddo<br>and dark (<br>(Cont'd.) | ed dark reddish gray to reddish black (7.5R 3/1 - 2.5/1) SHALE<br>gray to very dark gray LIMESTONE to LIMEY SILTSTONE.<br>-<br>- |                | Continues to be very<br>competent, fresh, relatively<br>unfractured.<br>Bedding angle is<br>approximately 50°.<br>72.4' - 72.5' Bedding plane<br>break, weak slickensides<br>(depositional). Trace calcite<br>on face. |      |
|                        |                  |                                   |                         | Bottom of<br>Borehole                 | Borehole = 73.6'.                                                                                                                | -              | Finished coring at 1540,<br>2/14/18.<br>Prior to removing core from<br>C-12 run, flushed borehole                                                                                                                      |      |
| 75—<br>                |                  |                                   |                         | for piezon<br>borehole.               | eter GW-980 installed approximately 7' north of original                                                                         | -              | from 1540 to 1550. Returns<br>were free of cuttings.                                                                                                                                                                   |      |
|                        |                  |                                   |                         |                                       | -                                                                                                                                | _              | On 2/17/18 used<br>Ingersoll-Rand T3W rotary rig<br>to ream corehole and advance<br>borehole to 73.6' using 5 7/8"<br>hommer bit Einished at 1202                                                                      |      |
| 78—                    |                  |                                   |                         |                                       | -                                                                                                                                | _              | nammer bit. Finished at 1202.                                                                                                                                                                                          |      |
| 79 <i>—</i>            |                  |                                   |                         |                                       | -                                                                                                                                | -              |                                                                                                                                                                                                                        |      |
| 80—<br>-               |                  |                                   |                         |                                       | -                                                                                                                                | _              |                                                                                                                                                                                                                        |      |
| 81 —<br>_              |                  |                                   |                         |                                       | -                                                                                                                                | -              |                                                                                                                                                                                                                        |      |
| 82—<br>                |                  |                                   |                         |                                       | -                                                                                                                                | _              |                                                                                                                                                                                                                        |      |
| -<br>84 –              |                  |                                   |                         |                                       | -                                                                                                                                | _              |                                                                                                                                                                                                                        |      |
| -<br>85                |                  |                                   |                         |                                       | -                                                                                                                                | -              |                                                                                                                                                                                                                        |      |
| -<br>86                |                  |                                   |                         |                                       | -                                                                                                                                | _              |                                                                                                                                                                                                                        |      |
| 87 —                   |                  |                                   |                         |                                       | -                                                                                                                                | _              |                                                                                                                                                                                                                        |      |
| 88 —<br>_              |                  |                                   |                         |                                       | -                                                                                                                                | _              |                                                                                                                                                                                                                        |      |
| 89 —<br>-              |                  |                                   |                         |                                       | -                                                                                                                                | -              |                                                                                                                                                                                                                        |      |
| 90                     |                  |                                   |                         |                                       | -                                                                                                                                | -              |                                                                                                                                                                                                                        |      |
| 92                     |                  |                                   |                         |                                       | -                                                                                                                                | _              |                                                                                                                                                                                                                        |      |
| -<br>93                |                  |                                   |                         |                                       | -                                                                                                                                | -              |                                                                                                                                                                                                                        |      |
| -<br>94 —              |                  |                                   |                         |                                       | -                                                                                                                                | -              |                                                                                                                                                                                                                        |      |
| -                      |                  |                                   |                         |                                       |                                                                                                                                  | 1              |                                                                                                                                                                                                                        |      |

|                    |                  |                                                    |                         | BC                                                                                       | REHOLE                           | E LOG                               |                      |                |                                                                                            |                                                    |                 |  |  |
|--------------------|------------------|----------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|----------------------|----------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------|--|--|
| Site Na<br>and Loo | me<br>cation:    | E                                                  | MDF CI                  | naracterization Project<br>Dak Ridge, TN                                                 | Drilling Method<br>10" Air Hai   | s:<br>mmer, 5 7/8" tricor           | e bit with wat       | er and         | d air.                                                                                     |                                                    | nber:           |  |  |
| Drilling           | Firm: 7          | ri-State D                                         | rilling                 |                                                                                          | DATE                             | TIME                                | DEPTI                | H<br>) (ft)    | WATER<br>LEVEL (ft)                                                                        | Gw-                                                | 700K            |  |  |
| Driller /          | Rig: Tr          | avis Morg                                          | an/Inger                | soll-Rand T3W                                                                            |                                  |                                     |                      |                |                                                                                            | Page                                               | 1 of 4          |  |  |
| Logged             | by: Ne           | lson Nova                                          | ak                      |                                                                                          | _ ST = Shelby Tu                 | <u>Sampling l</u><br>be             | <u>Methods:</u><br>S | S = Si         | plit Spoon                                                                                 | Start                                              | Finich          |  |  |
| Coordir            | nates: 3         | 0379.901                                           | I 38138                 | .34E                                                                                     | WS = Waxed Sa<br>SP = Sand Pum   | imple<br>p                          | C<br>C               | S = C<br>= C   | ontinuous Sampler<br>oring                                                                 | Time                                               | Time            |  |  |
| Surface            | e Elevati        | on: 963.5                                          | 5 ft/MSL                |                                                                                          | GP or DP = Dire<br>CT = Cuttings | ct Push                             | N<br>B               | S = N<br>= Bai | ot Sampled<br>ler                                                                          | 1525                                               | 1152            |  |  |
| Surface            | Conditi          | ons / Wea                                          | ather: Da               | amp gravel road / 55°F, Cloudy                                                           |                                  |                                     |                      |                |                                                                                            | Date<br>2/22/18                                    | Date<br>2/27/18 |  |  |
| Remark             | s: Drille        | Drilled approximately 7' north of borehole GW-980. |                         |                                                                                          |                                  |                                     |                      |                |                                                                                            |                                                    |                 |  |  |
| Depth<br>(feet)    | Sample<br>Method | Sample<br>Recovery<br>(feet or %)                  | Blows/6 in<br>or<br>RQD | SAMPLE DE                                                                                | SCRIPTION                        | 1                                   | Graphic              | Log            | Rema                                                                                       | arks                                               | USCS            |  |  |
| -                  | NS               | S<br>Re<br>Re<br>(fe                               | Bit                     | GW-980R is a replacement well a<br>Log GW-980 for detailed lithologic<br>interpretation. | ind was straight o               | Irilled. See Boref<br>stratigraphic |                      |                | Straight drilled us<br>hammer bit to 27.<br>permanent 6" PVu<br>sealed with ceme<br>grout. | ing 10"<br>0'. Set<br>C casing and<br>nt bentonite |                 |  |  |
| -                  |                  |                                                    |                         |                                                                                          |                                  |                                     | _                    |                |                                                                                            |                                                    |                 |  |  |

| E               | MDF C            | haracteri<br>Dak Ridg             | ization F<br>je, TN     | Project        |             | BO     | REHO   | LE LO | DG |   | Bor            | ing Number<br>GW-980R            |      |
|-----------------|------------------|-----------------------------------|-------------------------|----------------|-------------|--------|--------|-------|----|---|----------------|----------------------------------|------|
| Remark          | s: Drille        | ed approx                         | imately 7               | " north of boi | ehole GW-98 | 0.     |        |       |    |   |                |                                  |      |
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                | SAMP        | LE DES | SCRIPT | ION   |    |   | Graphic<br>Log | Remarks                          | nscs |
| -<br>21         |                  |                                   |                         |                |             |        |        |       |    | - |                |                                  |      |
| 22-             |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 23—             |                  |                                   |                         |                |             |        |        |       |    | _ |                |                                  |      |
| 24 —            |                  |                                   |                         |                |             |        |        |       |    | _ |                |                                  |      |
| 25-             |                  |                                   |                         |                |             |        |        |       |    | _ |                |                                  |      |
| 26-             |                  |                                   |                         |                |             |        |        |       |    | _ |                |                                  |      |
| 27—             |                  |                                   |                         |                |             |        |        |       |    |   |                | Below 27.0', straight drilled to |      |
| 28-             |                  |                                   |                         |                |             |        |        |       |    |   |                | with air and water circulation.  |      |
| 29              |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 30-             |                  |                                   |                         |                |             |        |        |       |    | _ |                |                                  |      |
| 31              |                  |                                   |                         |                |             |        |        |       |    | _ |                |                                  |      |
| 32-             | NS               |                                   |                         |                |             |        |        |       |    | _ |                |                                  |      |
| 33              |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 34—             |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 35-             |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 36 —            |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 37—             |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 38              |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 39 —<br>        |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 40              |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 41-             |                  |                                   |                         |                |             |        |        |       |    | _ |                |                                  |      |
| 42              |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 43              |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |
| 44 —            |                  |                                   |                         |                |             |        |        |       |    |   |                |                                  |      |

| E               | MDF C            | haracteri<br>Dak Ridg             | ization F<br>je, TN     | Project        | E             | BOREHO     | LE LOG |         | Boring N | Number<br>GW-980F | R         |
|-----------------|------------------|-----------------------------------|-------------------------|----------------|---------------|------------|--------|---------|----------|-------------------|-----------|
| Remark          | s: Drill         | ed approx                         | imately 7               | ' north of bor | ehole GW-980. |            |        | L       |          |                   |           |
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                | SAMPLE [      | DESCRIPTIO | NC     | Graphic | Log      | Remarks           | nscs      |
| -               |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| 46              |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| 47              |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| 48-             |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| 49-             |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| -<br>50 —       |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| -<br>51—        |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| - 52-           |                  |                                   |                         |                |               |            |        | -       |          |                   |           |
| -               |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
|                 |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| 54 —            |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| 55              |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| 56 —            |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| 57 —            | NG               |                                   |                         |                |               |            |        | _       |          |                   |           |
| 58-             | N5               |                                   |                         |                |               |            |        |         |          |                   |           |
| -<br>59-        |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| -<br>60         |                  |                                   |                         |                |               |            |        | -       |          |                   |           |
| - 61            |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| -               |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| 62-             |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| 63              |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| 64              |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| 65              |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| 66 —            |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| 67 —            |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| -<br>68         |                  |                                   |                         |                |               |            |        |         |          |                   |           |
| -<br>69         |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
| _               |                  |                                   |                         |                |               |            |        | _       |          |                   |           |
|                 |                  |                                   |                         |                |               | B-19       |        |         |          |                   | Page 3 of |

|                 | EMDF (     | ວharacter<br>Oak Ridູ             | ization P<br>ge, TN     | Project                | BOR                                               | EHOLE LOO             | GW-980R |                |         |      |
|-----------------|------------|-----------------------------------|-------------------------|------------------------|---------------------------------------------------|-----------------------|---------|----------------|---------|------|
| Rem             | arks: Dril | led approx                        | cimately 7              | ' north of bor         | ehole GW-980.                                     |                       |         |                |         |      |
| Depth<br>(feet) | Sample     | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                        | SAMPLE DESC                                       | RIPTION               | -       | Graphic<br>Log | Remarks | nscs |
| 71              | -          |                                   |                         |                        |                                                   |                       | -       |                |         |      |
| 72              | NS         |                                   |                         |                        |                                                   |                       | _       |                |         |      |
| 73              | -          |                                   |                         |                        |                                                   |                       | -       |                |         |      |
| 75              |            |                                   |                         | Bottom of<br>Piezomete | Borehole = 74.4'.<br>er GW-980R installed in bore | ehole. See Monitoring |         |                |         |      |
| 76              |            |                                   |                         | Installation           | n Report GW-980R for detai                        | ls.                   | -       |                |         |      |
| 77              | -          |                                   |                         |                        |                                                   |                       | _       |                |         |      |
| 78              | -          |                                   |                         |                        |                                                   |                       | -       |                |         |      |
| 80              | -          |                                   |                         |                        |                                                   |                       | _       |                |         |      |
| 81              |            |                                   |                         |                        |                                                   |                       | _       |                |         |      |
| 82              | -          |                                   |                         |                        |                                                   |                       | _       |                |         |      |
| ∞ 84            | -          |                                   |                         |                        |                                                   |                       | -       |                |         |      |
| .GDT 4/4/1      | -          |                                   |                         |                        |                                                   |                       | -       |                |         |      |
| 86 E WITH PIC   |            |                                   |                         |                        |                                                   |                       | _       |                |         |      |
| 1 TEMPLAT<br>88 | -          |                                   |                         |                        |                                                   |                       | -       |                |         |      |
| NER CRAF        | _          |                                   |                         |                        |                                                   |                       | _       |                |         |      |
| 06 00TAI        | -          |                                   |                         |                        |                                                   |                       | -       |                |         |      |
| C RIDGE .G      | -          |                                   |                         |                        |                                                   |                       |         |                |         |      |
| 40 2. 09/<br>93 | -          |                                   |                         |                        |                                                   |                       | -       |                |         |      |
| 94 94           |            |                                   |                         |                        |                                                   |                       | _       |                |         |      |
| BO              |            |                                   |                         |                        |                                                   |                       |         |                |         |      |

| Eago                 | n & A              | Associa                         | ntes, l      | nc.                                    |              |                    |                         |                       |                      | Well Nu<br>GW-98 | mber<br>30R |
|----------------------|--------------------|---------------------------------|--------------|----------------------------------------|--------------|--------------------|-------------------------|-----------------------|----------------------|------------------|-------------|
|                      |                    | Ν                               | loni         | toring                                 | Wel          | l Inst             | allation R              | eport                 |                      | <b>F</b>         |             |
| Site Name            | e and Lo           | cation: EM                      | DF Chara     | acterization P                         | roject, O    | ak Ridge,          | TN                      | Completion D          | ate: 3/8/18          |                  | 0           |
| Coordinat            | tes: 3037          | 79.90N 381                      | 38.34E       |                                        |              | Bor                | ehole Depth (ft): 74.   | .4                    |                      |                  |             |
| Elevation            | Top of C           | asing (ft/Ms                    | SL): 965     | .63                                    |              | Bor                | ehole Diameter (in):    | 10" (0'-27.0'), 5 7/8 | " (27.0'-74.4')      |                  |             |
| Elevation            | Ground             | Surface (ft/N                   | MSL): 90     | 63.5                                   |              | Dril               | ing Methods: 10" Air    | Hammer, 5 7/8" tr     | icone bit with water |                  | 10          |
| Installed E          | By: Fred           | Reynolds/T                      | ri-State I   | Drilling                               |              | Cor                | npleted Drilling: 2/2   | 7/18                  |                      |                  |             |
| Supervise            | ed By: S/          | hay Beanlan                     | d/Eagon      | & Associates                           | s, Inc.      | Dril               | ing Water Used (gal     | ls):                  |                      |                  |             |
|                      | , -                |                                 |              |                                        | <u>\</u> \\_ |                    |                         | ,                     |                      |                  |             |
|                      |                    |                                 |              |                                        | vvei         | I De:              | sign                    |                       |                      |                  | 20          |
|                      | Com                | ponent                          |              |                                        |              | Materials          |                         | Depth (LSD)           | Elevation            |                  |             |
| Well Pro             | otector            |                                 |              | 4" Squar                               | re Steel     | Protector          | w/Locking Lid           | -2.4 - 2.6            | 965.9 - 960.9        |                  |             |
| Riser                |                    |                                 |              | 2" ID Sc                               | hedule 4     | IO PVC             |                         | -2.1 - 59.9           | 965.6 - 903.6        |                  | 30          |
| Cement               | t Grout            |                                 |              | Cement                                 | Bentoni      | te Grout           |                         | -0.5 - 51.5           | 964.0 - 912.0        |                  |             |
| Surface              | e Seal             |                                 |              | 3' x 3' Co                             | oncrete I    | Pad                |                         | -0.5 - 0.5            | 964.0 - 963.0        |                  |             |
| Conduc               | tor Casir          | ıg                              |              | 6" ID Sc                               | h. 40 P∖     | /C, Flush          | Threaded                | -0.4 - 27.0           | 963.9 - 936.5        |                  |             |
| Bentoni              | ite Seal           |                                 |              | Pel Plug                               | 1/4" Co      | ated Ben           | onite Pellets           | 51.5 - 54.9           | 912.0 - 908.6        |                  | 10          |
| Sand Pa              | ack                |                                 |              | DSI "GP                                | #2" Gra      | vel Pack           |                         | 55.0 - 71.3           | 908.5 - 892.2        |                  | 40          |
| Screen               |                    |                                 |              | 2" ID Sc                               | hedule 4     | 0, 10-Slo          | t                       | 59.9 - 70.0           | 903.6 - 893.5        |                  |             |
| Well Po              | oint Blank         |                                 |              | 2" ID Sc                               | h. 40 P∖     | /C Cap &           | Riser Section           | 70.0 - 71.3           | 893.5 - 892.2        |                  |             |
| Sand Pa              | ack Botto          | om                              |              | DSI "GP                                | #2" Gra      | vel Pack           |                         | 71.3 - 72.3           | 892.2 - 891.2        |                  |             |
| Bentoni              | ite Seal           |                                 |              | Enviro P                               | lug Med      | ium Chip           | ;                       | 72.3 - 74.4           | 891.2 - 889.1        |                  | 50          |
|                      |                    |                                 |              | We                                     | ell De       | evelo              | pment                   |                       |                      |                  |             |
| Well Dept            | th (ft,TOC         | C):                             | Depth        | to Water (ft,                          | TOC):        | We                 | l Volume (gals):        | Volume F              | Purged (gals):       |                  |             |
| Developm             | nent Meth          | iod:                            | 20           | ).21                                   |              |                    | 7.4                     | 01.0                  |                      |                  | 60          |
| Date                 | Time               | Cumulative<br>Volume<br>Removed | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recovery                | Data                  |                      |                  | 00          |
| 3/5/18               | 0908               | (gais)<br>27                    | 14.6         | 324.7                                  | 8.50         | 17.4               | 100                     |                       |                      |                  |             |
| 3/5/18               | 1025               | 35                              | 13.9         | 325.1                                  | 8.78         | 15.3               | (※ 80<br>※ 60           |                       |                      |                  | 70          |
| 3/5/18               | 1340               | 46                              | 14.9         | 317.6                                  | 8.23         | 7.2                | H 40                    |                       |                      |                  |             |
| 3/5/18               | 1532               | 54.5                            | 14.6         | 330.2                                  | 8.48         | 7.3                | 02 KEC                  |                       |                      |                  |             |
| 3/5/18               | 1535               | 57                              | 14.7         | 328.5                                  | 8.37         | 9.7                | 0                       | 40                    | 80 120               |                  |             |
| 3/5/18               | 1537               | 59                              | 14.4         | 328.0                                  | 8.45         | 12.1               | -                       | Time (minute          | es)                  |                  | 80          |
| Sampling             | Equipme            | ent:                            |              |                                        |              |                    |                         |                       |                      | ┥ │              |             |
| 0 - 1                |                    |                                 |              |                                        |              |                    |                         |                       |                      | -↓ ↓             |             |
| Comment<br>Stainless | ts:<br>s steel cen | tralizers set a                 | t 49 and 2   | 4.5 from aroun                         | d surface    | . Washed           | sand pack and pellets i | n usina tremie pipe   | Grout mixing and     |                  |             |
| placemer             | nt informat        | ion provided                    | by Tri-Sta   | te Drilling. Scr                       | een slot ir  | nterval 60.2       | - 69.9 bgs.             |                       |                      | Boring depth     | 1=74.4 ft.  |

MONITOR WELL INSTALLATION 2 OAK RIDGE .GPJ EAGON.GDT 4/4/18

This page intentionally left blank.

|                    |                  |                                   |                         | BC                                                                                                   | REHOLE                                                                                                                                                                                                                          | E LOG                   |          |                                                     |                                         |                              |                 |  |  |  |
|--------------------|------------------|-----------------------------------|-------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|-----------------------------------------------------|-----------------------------------------|------------------------------|-----------------|--|--|--|
| Site Na<br>and Loo | me<br>cation:    | E                                 |                         | naracterization Project                                                                              | Drilling Method<br>4 1/4" ID H                                                                                                                                                                                                  | s:<br>ISA, HQ3 Core wit | h water. |                                                     |                                         | Boring Nu                    | nber:           |  |  |  |
| Drilling           | Firm: 7          | ri-State D                        | rilling                 |                                                                                                      | DATE                                                                                                                                                                                                                            | TIME                    | DEP      | TH<br>D (ft)                                        | WATER<br>LEVEL (ft)                     | GW                           | -981            |  |  |  |
| Driller /          | Rig: Si          | hannon Si                         | now/CME                 | -550                                                                                                 |                                                                                                                                                                                                                                 |                         |          | - ()                                                |                                         | Page                         | 1 of 2          |  |  |  |
| Logged             | by: Da           | vid J. Sug                        | gar                     |                                                                                                      | ST = Shelby Tu                                                                                                                                                                                                                  | <u>Sampling I</u>       | Methods: | SS = S                                              | nlit Spoon                              | ) ugo                        | , o, z          |  |  |  |
| Coordin            | nates: 3         | 80396.701                         | I 38148.                | 33E                                                                                                  | WS = Waxed Sa<br>SP = Sand Pum                                                                                                                                                                                                  | mple<br>p               | (        | CS = C<br>C = C                                     | ontinuous Sampler                       | Start                        | FINISN          |  |  |  |
| Surface            | e Elevati        | on: 963.2                         | ? ft/MSL                |                                                                                                      | GP or DP = Dire<br>CT = Cuttings                                                                                                                                                                                                | ct Push                 |          | NS = N<br>B = Bai                                   | lot Sampled<br>iler                     | 1455                         | 0955            |  |  |  |
| Surface            | e Condit         | ions / Wea                        | ather: <i>Gi</i>        | avel pad, relatively flat / 79°F, Mosti                                                              | ly sunny                                                                                                                                                                                                                        |                         |          |                                                     |                                         | Date<br>2/23/18              | Date<br>2/26/18 |  |  |  |
| Remark             | ks: Bore         | hole insta                        | alled for th            | ne collection of geotech samples and                                                                 | d installation of sł                                                                                                                                                                                                            | allow piezometer        | r.       |                                                     |                                         |                              |                 |  |  |  |
| Depth<br>(feet)    | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DE                                                                                            | SCRIPTION                                                                                                                                                                                                                       | 1                       |          | Graphic<br>Log                                      | Rema                                    | arks                         | USCS            |  |  |  |
| -<br>1—            | NS               |                                   |                         | See Borehole Log GW-980 for de<br>stratigraphic interpretation.                                      | tailed lithologic d                                                                                                                                                                                                             | _                       |          | 4 1/4" ID HSA, ra<br>while augering. 7<br>borehole. | n auger plug<br>′ 1/2" OD               | 3                            |                 |  |  |  |
| 2                  | 113              |                                   |                         | RESIDUUM/COLLUVIUM.                                                                                  | RESIDUUM/COLLUVIUM.                                                                                                                                                                                                             |                         |          |                                                     |                                         |                              |                 |  |  |  |
| 3                  | ST-1             | 1.65                              | 1200<br>PSI             |                                                                                                      |                                                                                                                                                                                                                                 |                         |          |                                                     |                                         |                              |                 |  |  |  |
| 4                  |                  |                                   |                         | Description based on inspection of yellowish brown (10YR 4/4 - 4/6) ~45° Bedding angle. Appears in 1 | escription based on inspection of bottom of ST-1 recovery. Dark Auger cuttings<br>ellowish brown (10YR 4/4 - 4/6) highly (completely) weathered SHALE<br>45° Bedding angle. Appears in place, but may be a large rock fragment. |                         |          |                                                     |                                         |                              |                 |  |  |  |
| 5—<br>-<br>6—      |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 | 0 0                     | -        |                                                     |                                         |                              |                 |  |  |  |
| -<br>7             |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         | _        |                                                     | Auger cuttings bu<br>BS-2 collected fro | cket sample<br>om 6.0' - 8.0 | e;<br>'.        |  |  |  |
| 8                  |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         | _        |                                                     |                                         |                              |                 |  |  |  |
| 9—                 |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         |          |                                                     |                                         |                              |                 |  |  |  |
| 10 —               |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         |          |                                                     |                                         |                              |                 |  |  |  |
| 11—<br>-<br>12—    |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         | _        |                                                     |                                         |                              |                 |  |  |  |
| - 13               | 113              |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         | _        |                                                     |                                         |                              |                 |  |  |  |
| -<br>14            |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         | _        |                                                     |                                         |                              |                 |  |  |  |
| -<br>15            |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         |          |                                                     |                                         |                              |                 |  |  |  |
| 16-                |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         | _        |                                                     |                                         |                              |                 |  |  |  |
| 17 —<br>-          |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         |          |                                                     |                                         |                              |                 |  |  |  |
| 18 <i></i> -       |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         |          |                                                     |                                         |                              |                 |  |  |  |
| 19 <i>—</i><br>-   |                  |                                   |                         |                                                                                                      |                                                                                                                                                                                                                                 |                         |          |                                                     |                                         |                              |                 |  |  |  |

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

| EN                   | MDF C            | haracteri<br>Dak Ridg             | zation P<br>e, TN       | Project                                                                         | BOREHOLE LOG                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bo             | ring Number<br>GW-981                                                                                                                                                 |      |
|----------------------|------------------|-----------------------------------|-------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Remark               | s: Bore          | hole insta                        | alled for th            | ne collection                                                                   | of geotech samples and installation of shallow piezometer.                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                                                                       |      |
| Depth<br>(feet)      | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                                                                 | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                           | Graphic<br>Log | Remarks                                                                                                                                                               | NSCS |
| <br>21—<br>22—       | NS               |                                   |                         | Based on<br>Change a                                                            | C-1 recovery, contact with overlying saprolite is above 23.0'.                                                                                                                                                                                                                                                                                                                                                                               | -              | End 2/23/18, 1536 at 20.5'.<br>Begin 2/24/18, 0915.<br>0900 Augers measured dry.                                                                                      |      |
| 23—<br>-<br>24—<br>- | C-1              | 2.0'<br>100%                      | 0%                      | Interbedde<br>3/2) SHAL<br>calcareous<br>partings a<br>Limestone                | ed dark reddish gray to weak red/dusky red (2.5YR 4/1, 4/2 -<br>E and dark gray to very dark gray (N 4/ - N 3/) LIMESTONE to<br>s SILTSTONE. Thinly bedded, generally less than 0.1' intervals,<br>re not uncommon. Bedding angle is approximately 45°.<br>beds are generally less than 1/2" thick and have wavey<br>bedding contacts, comprises approximately 40% of formation                                                              |                | Trace (rare) calcite<br>filled/healed fractures below<br>26.0'. Very thin, less than 1<br>mm to hairline.<br>Limestone reacts strongly to<br>HCI shale does not react |      |
| 25—<br><br>_26—<br>  |                  |                                   |                         | Fresh, no<br>shale bed<br>Trace glau<br>24.0' - 24.<br>(possibly a<br>been remo | <ul> <li>broken georgest, comprises approximation, and the formation, indication of weathering. Limestone beds are hard (strong) and s are soft (very weak to weak). Moderate to intensely fractured, iconite partings and thin seams.</li> <li>Broken zone, fractures oriented perpendicular to bedding associated with healed fractures where the calcite infilling has soved). Trace thin secondary calcite on fracture faces.</li> </ul> |                | C-1: 23' - 25.0' 0930-0941.<br>Top of C-2 run 25.0' - 25.4' is<br>highly broken, probable<br>mechanical. Mechanical<br>breaks along bedding planes<br>are common.     |      |
| 27 —<br>-<br>28 —    | C-2              | 5.0'<br>100%                      | 39%                     | 25.5' - 26.<br>26.7'. Pos<br>27.0' bedo                                         | 7' Bedding is horizontal. Becomes very deformed from 26.4' -<br>sible breaks near top and bottom of zone. Below zone 26.7' -<br>ling transitions back to 45° angle.                                                                                                                                                                                                                                                                          |                | C-2: 25.0' - 30.0' 0959-1015.<br>25.4' - 26.3 High angle<br>fracture, jagged/rough face.<br>Trace secondary calcite and                                               |      |
| -<br>29              |                  |                                   |                         | 27.0' - 27.<br>No oxidati<br>At 27 7' 1/                                        | 2' Calcite filled fracture along bedding plane. Face is striated.<br>on. May be healed. Possibly depositional slump (slickensides).<br>2" glauconitic seam                                                                                                                                                                                                                                                                                   |                | possibly celestite.<br>25.9' - 26.0' Limestone seam<br>fractured roughly 90° to<br>bedding. Trace glauconite                                                          |      |
| 30-                  |                  |                                   |                         | 28.1' - 28.<br>change in                                                        | 4' Broken zone. Appears mechanical, but there is no obvious<br>rock to explain breakage. Several slickenside surfaces (not all                                                                                                                                                                                                                                                                                                               |                | nodules (<1 mm).<br>At 27.4' bedding break, face<br>has slickensides. Trace calcite                                                                                   |      |
| 31—<br>-<br>32—      | NS               |                                   |                         | Below 28.<br>of the med                                                         | 7' all breaks appear mechanical. Trace very fine mica on some chanical breaks.                                                                                                                                                                                                                                                                                                                                                               |                | and pyrite on face.<br>Finished coring at 1015,<br>2/24/18. Overdrilled corehole                                                                                      |      |
|                      |                  |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | with HSA and advanced<br>borehole to 33.5'.<br>End 2/24/18, 1113 at 33.5'.<br>2/26/18, 0921, WL = 14.77'.<br>Finished drilling 2/26/18 at                             |      |
| 34—<br>-<br>35—      |                  |                                   |                         | Bottom of<br>Piezomete                                                          | Borehole = 34.0'.<br>r GW-981 installed in borehole. See Monitoring Well                                                                                                                                                                                                                                                                                                                                                                     | _              | 0955, advanced borehole to<br>34.0'.<br>2/24/18 at 1247 WL = 12.0'.                                                                                                   |      |
| 36 —                 |                  |                                   |                         | Installation                                                                    | report GVV-981 for details.                                                                                                                                                                                                                                                                                                                                                                                                                  | -              |                                                                                                                                                                       |      |
|                      |                  |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              | _              |                                                                                                                                                                       |      |
| 38                   |                  |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              | _              |                                                                                                                                                                       |      |
| 39 —<br>_            |                  |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                                                                                                       |      |
| 40 —<br>-<br>41 —    |                  |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                                                                                                       |      |
| 42                   |                  |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              | _              |                                                                                                                                                                       |      |
| 43—                  |                  |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              | _              |                                                                                                                                                                       |      |
| 44 —                 |                  |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              | _              |                                                                                                                                                                       |      |

BOREHOLE LOG V.2. OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

| Eago                  | on & A                    | Associa                                   | ates, l      | nc.                                    |              |                    |                             |        |                  |                | We    | ll Nu<br>3W-9 | mbe<br>81 |
|-----------------------|---------------------------|-------------------------------------------|--------------|----------------------------------------|--------------|--------------------|-----------------------------|--------|------------------|----------------|-------|---------------|-----------|
|                       |                           | Ν                                         | loni         | toring                                 | Wel          | l Ins              | allation R                  | ер     | ort              |                |       | ľ             |           |
| Site Nam              | ne and Loo                | cation: EM                                | DF Chara     | acterization P                         | roject, O    | ak Ridge,          | TN                          | 0      | Completion D     | oate: 3/8/18   |       |               |           |
| Coordina              | ates: 3039                | 96.70N 38 <sup>.</sup>                    | 148.33E      |                                        |              | Bor                | ehole Depth (ft): 34.       | 0      |                  |                |       |               |           |
| Elevation             | n Top of C                | asing (ft/M                               | SL): 965     | .74                                    |              | Bor                | ehole Diameter (in):7       | 7 1/2" | ,                |                |       |               |           |
| Elevatior             | n Ground S                | Surface (ft/l                             | MSL): 96     | 53.2                                   |              | Dril               | ing Methods: 4 1/4" I       | D HS   | A, HQ3 Core      | with water.    |       |               |           |
| Installed             | Bv: Shan                  | non Snow/                                 | Tri-State    | Drillina                               |              | Co                 | npleted Drilling: 2/26      | 5/18   |                  |                |       |               |           |
| Supervis              | ed By: Da                 | avid J. Suar                              | ar/Fagon     | & Associates                           | Inc          | Dril               | ing Water Used (gal         | s)·~   | 500              |                |       |               |           |
|                       |                           | and or edge                               |              |                                        |              |                    |                             |        |                  |                | -)    |               |           |
|                       |                           |                                           |              |                                        | vvei         | I Des              | sign                        |        |                  |                | -     |               | 1         |
|                       | Com                       | ponent                                    |              |                                        |              | Materials          |                             | De     | pth (LSD)        | Elevation      |       |               |           |
| Well P                | rotector                  |                                           |              | 4" Squar                               | re Steel v   | w/Locking          | Lid                         | -2     | 2.8 - 2.2        | 966.0 - 961.0  |       |               |           |
| Riser                 |                           |                                           |              | 2" ID Sc                               | hedule 4     | 0 PVC              |                             | -2     | .5 - 22.1        | 965.7 - 941.1  |       |               |           |
| Surfac                | e Seal                    |                                           |              | 3' x 3' C                              | oncrete      |                    |                             | -(     | 0.5 - 0.5        | 963.7 - 962.7  |       |               |           |
| Cemer                 | nt Grout                  |                                           |              | Cement                                 | Bentonit     | e Grout            |                             | 0      | .5 - 17.9        | 962.7 - 945.3  |       |               |           |
| Bentor                | nite Seal                 |                                           |              | Pel-Plug                               | 1/4" Co      | ated Ben           | onite Pellets               | 17     | 7.9 - 20.0       | 945.3 - 943.2  |       |               |           |
| Sand F                | Pack                      |                                           |              | DSI "GP                                | #2" Gra      | vel Pack           |                             | 20     | ).0 - 33.4       | 943.2 - 929.8  |       |               |           |
| Screer                | ı                         |                                           |              | 2" ID Sc                               | hedule 4     | 0 PVC, 1           | 0-Slot                      | 22     | 2.1 - 32.1       | 941.1 - 931.1  |       | чыны          | 2         |
| Well P                | oint Blank                |                                           |              | 2" ID Sc                               | h. 40 PV     | ′C Cap &           | Riser Section               | 32     | 2.1 - 33.4       | 931.1 - 929.8  | _     | _             |           |
| Sand F                | Pack Botto                | m                                         |              | DSI "GP                                | #2" Gra      | vel Pack           |                             | 33     | 3.4 - 34.0       | 929.8 - 929.2  |       |               |           |
|                       |                           |                                           |              |                                        |              |                    |                             |        |                  |                |       |               | <u> </u>  |
|                       |                           |                                           |              |                                        |              |                    |                             |        |                  |                | _ =   |               | <u> </u>  |
|                       |                           |                                           |              | We                                     |              | evelo              | pment                       |        |                  |                |       |               | =         |
| Well Dep<br>35.8      | oth (π, IOC<br>5          | ;):                                       | Depth<br>22  | to Water (ft,<br>2.20                  | TOC):        | VVe                | l Volume (gals):<br>2.2     |        | Volume F<br>89.0 | rurged (gals): |       |               |           |
| Developi<br>Bailer, s | ment Meth<br>surge block, | iod:<br><i>Tornado pur</i>                | np           |                                        |              | ·                  |                             |        |                  |                |       |               | =         |
| Date                  | Time                      | Cumulative<br>Volume<br>Removed<br>(gals) | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recovery                    | Dat    | a                |                |       |               |           |
| 3/2/18                | 1655                      | 15                                        | 15.2         | 322.7                                  | 8.14         | >1000              | 100                         |        |                  |                |       |               |           |
| 3/3/18                | 1224                      | 25                                        | 14.8         | 271.9                                  | 8.50         | >1000              | - (%)<br>× 6                |        |                  |                |       |               | 3         |
| 3/5/18                | 1624                      | 60.5                                      | 14.8         | 302.0                                  | 7.99         | 185.0              |                             |        |                  |                |       |               |           |
| 3/6/18                | 1550                      | 82.0                                      | 15.2         | 257.9                                  | 7.88         | 163.0              | Ŭ 20                        |        |                  |                |       |               |           |
| 3/6/18                | 1553                      | 85.0                                      | 15.5         | 271.8                                  | 7.90         | -                  | o /<br>0                    |        | 40               | 80 120         |       |               |           |
| 3/6/18                | 1632                      | 88.0                                      | 15.1         | 255.2                                  | 7.79         | 153.0              |                             | -      | Time (minute     | es)            |       |               |           |
| Samplin               | g Equipme                 | ent:                                      |              | I                                      |              |                    |                             |        |                  |                |       |               |           |
| Commer                | nts:                      |                                           |              |                                        |              |                    |                             |        |                  |                |       |               |           |
| Grout n               | nixing and p              | lacement info                             | ormation p   | rovided by Tri-S                       | State Drilli | ing. Scree         | n slot interval 22.3 - 32.0 | ) bgs. |                  |                | Borin | a depth       | )=34.0 f  |

This page intentionally left blank.

|                 |                  |                                |                      | BO                                                                        | REHOLE                                   | E LOG                                      |                              |                                                                 |                             |                 |
|-----------------|------------------|--------------------------------|----------------------|---------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------|-----------------------------------------------------------------|-----------------------------|-----------------|
| Site Na         | me               | E                              | MDF Ch               | naracterization Project                                                   | Drilling Methods                         | S:                                         |                              |                                                                 | Boring Num                  | ber:            |
| and Loo         | cation:          |                                | C                    | Dak Ridge, TN                                                             | 3 1/4" ID H<br>bit. 5 7/8" ti            | SA, HQ3 Core with<br>ricone bit with air/w | n water circulatio<br>vater. | n, 10" air hammer                                               | C/W                         | 082             |
| Drilling        | Firm: 7          | ri-State D                     | rilling              |                                                                           | DATE                                     | TIME                                       | DEPTH<br>DRILLED (ff         | ) WATER<br>LEVEL (ft)                                           | 000-                        | 702             |
| Driller /       | Rig: Sl          | nannon Si                      | now/CME              | -550                                                                      |                                          |                                            |                              |                                                                 | Page                        | 1 of 6          |
| Logged          | by: Da           | vid J. Sug                     | gar                  |                                                                           | ST = Shelby Tul                          | Sampling N                                 | <u>Methods:</u><br>ss =      | Split Spoon                                                     | 0.1                         |                 |
| Coordir         | nates: 3         | 0317.821                       | I 38617.             | 04E                                                                       | WS = Waxed Sa                            | mple                                       | CS =                         | Continuous Sampler                                              | Start                       | Finish          |
| Surface         | Elevati          | on: 1,01                       | 5.6 ft/MSL           | _                                                                         | GP or DP = Direc                         | ct Push                                    | NS =<br>B = F                | Not Sampled                                                     | 1 ime<br>1 1 3 5            | 1 ime<br>0945   |
| Surface         | e Conditi        | ons / We                       | ather: <i>Gr</i>     | ravel road bed, relatively flat, moist /                                  | Overcast, ~45°F                          |                                            |                              |                                                                 | Date<br>2/7/18              | Date<br>2/18/18 |
| Remark          | (S:              |                                |                      |                                                                           |                                          |                                            |                              |                                                                 |                             |                 |
|                 | σω               | ⊛ح⊛                            | .5                   |                                                                           |                                          |                                            | U                            |                                                                 |                             |                 |
| Depth<br>(feet) | Sample<br>Methoo | Sample<br>Recove<br>(feet or ' | Blows/6<br>or<br>RQD | SAMPLE I                                                                  | DESCRIPTI                                | ON                                         | Graphi<br>Log                | Rema                                                            | arks                        | nscs            |
| _               |                  |                                |                      | Gravel road bed. Topsoil remove                                           | d during road con                        | struction.                                 |                              | 3 1/4" ID HSA, 7                                                | 1/2" OD.<br>) 2' drive spl  | it              |
| 1—              | 112              |                                |                      | Change at 1.2'.                                                           |                                          |                                            |                              | spoons, 140 lb at                                               | utomatic                    |                 |
| -               | SS-1             | 0.8'                           | 1, 4                 | Brown to yellowish brown (10YR s                                          | 5/3 - 5/6) SANDY<br>fine to coarse) sha  | SILT to SILT. Tr<br>ale fragments, an      | ace                          | augering to samp                                                | le depth.                   | ML              |
| 2—              |                  | 10070                          | 6                    | increasing content with increasing                                        | depth. Unsorted                          | d, jumbled fabric.                         |                              | Intersoll-Rand T3                                               | W rotary rig                |                 |
| 3               | 55-2             | 1.85'                          | 11                   | contact. Low plasticity. Low toug                                         | hness. Low dry s                         | strength. Rapid                            |                              | 10 air hammer bi                                                | to 50.3° using<br>t and set | CL              |
| -               | 00-2             | 92.5%                          | 15                   | Change at 2.5'.                                                           |                                          |                                            |                              | Casing sealed wi                                                | VC casing.<br>th cement     |                 |
| 4—              |                  |                                | 21                   | Light yellowish brown (2.5Y 6/3 - 6<br>highly weathered to completely we  | 6/4) and light olive<br>eathered SHALE   | e brown (2.5Y 5/3<br>(SAPROLITE). S        | 8 - 5/6)<br>Shale            | bentonite grout.<br>1.2' - 1.6' Trace r                         | oots. No                    |                 |
| -               |                  | 1 35'                          | 20                   | structure is intact, does not appea<br>less than 1/2"), 40°-50° bedding a | r disturbed. Thin<br>ngle (disturbed b   | ly bedded (generative<br>y sampling proces | ally<br>ss in                | reaction with HCl                                               | Moisturo                    |                 |
| 5—              | SS-3             | 67.5%                          | 29                   | some areas). Sample can be mol                                            | lded with hand pro                       | essure. Primarily                          | clay — — -                   | Content (MC) 11                                                 | %.                          |                 |
| 6               |                  |                                | 39                   | toughness, and dry strength. No                                           | dilatancy with add                       | ded water. Hard.                           |                              | SS-3 Lab results:                                               | MC 13.1%.<br>MC 12.5%.      |                 |
| -               |                  |                                | 28                   | Slightly moist to moist. Highly we                                        | amereu. SAPRO                            | LIIE.                                      |                              | No reaction with<br>Trace dark browr                            | HCI.<br>I/reddish           |                 |
| 7               | SS-4             | 2.0'<br>100%                   | 38                   | At 6.9' and 8.0' - 8.4' Trace light g                                     | ray incorporations                       | s and deformed                             |                              | brown to black irc                                              | on and<br>precipitates      |                 |
| -               |                  |                                | 44                   | partings. Fine sandstone/silty sar                                        | ndstone partings a                       | and/or incorporati                         | ons                          | follow fracture pla                                             | ates and                    |                 |
| 8               |                  |                                | 28                   |                                                                           |                                          |                                            |                              | traces are genera                                               | ally not well               |                 |
| -<br>م_         | SS-5             | 2.0'                           | 56                   | Bedding angle appears to be fairly continues to be thinly bedded          | y consistent, betw                       | veen 40° to 50° ar                         | nd                           | over distance.                                                  |                             |                 |
| -               | 000              | 100%                           | 71                   |                                                                           |                                          |                                            |                              | <ul> <li>SS-5 Lab results:</li> <li>2.2% Gravel; 47%</li> </ul> | MC 12.3%;<br>6 Sand;        |                 |
| 10 —            |                  |                                | 60                   | Below 10 0' dark brown/black mar                                          | nanese oxide de                          | position increase                          |                              | 50.8% Fines.                                                    | ale fracture                |                 |
| -               |                  | 4 71                           | 32                   | continues to be associated with be                                        | edding breaks an                         | d fractures oriente                        | ed                           | with iron oxide co                                              | ating.                      |                 |
| 11              | SS-6             | 85%                            | 41                   | destroyed by the sampling proces                                          | s.                                       | t well developed t                         |                              | dark brown iron/r                                               | nanganese                   |                 |
| 10              |                  |                                | 48                   |                                                                           |                                          |                                            |                              | intervals.                                                      | ).2' to 0.3'                |                 |
| 12              |                  |                                | 12                   | 12.1' - 14.4' Zone with mottling, da                                      | ark brown/black ir<br>sions or irregular | on/manganese o                             | xide                         | Sample continue<br>at intervals less t                          | s to be broke<br>han 1/2".  | n               |
| 13—             | SS-7             | 2.0'                           | 18                   | sandy zones).                                                             |                                          |                                            |                              | 12.1' - 14.4' Sligh                                             | tly higher                  |                 |
| -               |                  | 100 %                          | 20                   | 10 51 10 01 Zana with your high a                                         | lev centent light                        | velleviek krevne e                         |                              | with no visible wa                                              | iter.                       |                 |
| 14 —            |                  |                                | 20<br>11             | olive gray (weak mottled appeara                                          | nce). Rock struct                        | ure is not promin                          | ent                          | 0.0' - 20.0' No inc                                             | lication of                 |                 |
|                 |                  | 1 75'                          | 23                   | Moist.<br>14.6' - 15.0' Dark gray brown to bl                             | ack sandy zone,                          | probable fine silty                        | , 1— -                       | water. Sample is                                                | consistently                |                 |
| 15—             | SS-8             | 87.5%                          | 33                   | sandstone or sandy siltstone remr                                         | nant. May be a h                         | ighly weathered                            |                              | water observed o                                                | n drill rods or             |                 |
| 16-             |                  |                                | 68                   | 3.53001110 004.                                                           |                                          |                                            | 1                            |                                                                 |                             |                 |
| -               |                  |                                | 29                   | Below 16.5' trace reddieb brown:                                          | iron ovido Jose                          | anganoso ovid-                             |                              | SS-8 Lab results:<br>4.8% Gravel; 65.                           | MC 13.9%;<br>9% Sand;       |                 |
| 17 —            | SS-9             | 2.0'<br>100%                   | 66                   | Delow To.5, trace reduish brown I                                         | itori uxide, less m                      | anganese oxide.                            |                              | 29.3% Fines.<br>SS-10 Lab result                                | s: MC 10 8%                 |                 |
| -               |                  |                                | 80/4                 |                                                                           |                                          |                                            |                              | Becoming difficul                                               | t to mold                   |                 |
| 18—             |                  |                                | 41                   | 18.4' - 19.0' Dark brownish gray to                                       | o black seams, no                        | ot well defined, sa                        | indy                         | rock fragments w                                                | ithin molded                |                 |
| 10_             | 90 10            | 2.0                            | 42                   | saprolite.                                                                |                                          |                                            |                              | sample.<br>No reaction with                                     | HCI.                        |                 |
| 19              | 55-10            | 100%                           | 71                   |                                                                           |                                          |                                            |                              | -                                                               |                             |                 |
|                 |                  |                                | 100                  |                                                                           |                                          |                                            |                              |                                                                 |                             |                 |

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

| EI              | MDF CI           | haracteri<br>Dak Ridg             | ization P<br>je, TN     | roject                   | BOREHOLE LOG                                                                                                                | Bor            | ing Number<br>GW-982                                                                         |      |
|-----------------|------------------|-----------------------------------|-------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|------|
| Remark          | ks:              |                                   |                         |                          |                                                                                                                             |                |                                                                                              |      |
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                          | SAMPLE DESCRIPTION                                                                                                          | Graphic<br>Log | Remarks                                                                                      | nscs |
| -               | SS-11            | 1.5                               | 62<br>100/5             | Light yello<br>highly we | wish brown (2.5Y 6/3 - 6/4) and light olive brown (2.5Y 5/3 - 5/6)<br>athered SHALE (SAPROLITE). (Cont'd.)                  |                | No reaction with HCI. SS-11,<br>SS-12, SS-13, and SS-14<br>greater recovery than, all        | CL   |
| 21              | NS               |                                   |                         |                          | -                                                                                                                           |                | looked in-place. Slightly less<br>weathered, becoming more<br>competent. Still appears to be |      |
| 22              |                  |                                   | 30                      | Below 19.<br>mangane     | 0' trace (light) reddish brown and black iron oxide and                                                                     | 1              | saprolite. Continues to be<br>thinly bedded broken <0.05'                                    |      |
| 23—             | SS-12            | 1.4                               | 38<br>50/1              | mangano                  | -                                                                                                                           |                | (1/2").<br>Sampling process is                                                               |      |
| -<br>24 —       | NS               |                                   |                         |                          |                                                                                                                             | ]==]           | altering/disturbing the rock<br>structure.                                                   |      |
| - 24            | 00.40            |                                   | 20                      | Below 24.<br>black mar   | 0' iron oxide not apparent, considerable dark brownish gray to<br>ganese oxide. Trace to few sand, probably associated with | <u> </u>       | SS 13 Lab resulte: MC 11.0%                                                                  |      |
| 25—             | SS-13            | 1.4                               | 71<br>73/2              | sandy par                | tings and seams                                                                                                             |                | End 2/7/18, 1440, at 27.0'                                                                   |      |
| - 26            | NS               |                                   |                         |                          |                                                                                                                             |                | while augering below 26.0',<br>stopped to repair a hydraulic                                 |      |
| - 20            | SS-14            | 1.0                               | 37                      |                          |                                                                                                                             | <u> </u>       | line on the drill rig. 2/7/18, 1610 Borehole measured dry.                                   |      |
| 27 —            |                  |                                   | 50/2                    |                          | -                                                                                                                           |                |                                                                                              |      |
| -               | NS               |                                   |                         |                          |                                                                                                                             |                | 2/8/18 Borehole sounded dry                                                                  |      |
| 28-             | SS-15            | 1.35                              | 63                      |                          | -                                                                                                                           | ]]             | at 0808. 0900 Start augering below 26.0'. No reaction with                                   |      |
| 29—             |                  | 1.00                              | 100/5                   | Difficult to             | mold sample with added water becoming more competent with                                                                   |                | HCI.<br>Below 28 0' sample is                                                                |      |
| -               | NS               |                                   |                         | depth. Hi                | gh plasticity, toughness, and dry strength. Continues to be                                                                 |                | generally disturbed from                                                                     |      |
| 30 —            | SS-16            | 0.8                               | 100                     | Tigrity wea              |                                                                                                                             | <u> </u>       | appears to still be in the range                                                             |      |
| 31 —            |                  |                                   |                         |                          |                                                                                                                             | ]]             | 0140 - 30                                                                                    |      |
| -               | NS               |                                   |                         |                          |                                                                                                                             |                | 55-16 Lab results: MC 4.7%.                                                                  |      |
| 32 —            |                  |                                   | 82                      |                          | -                                                                                                                           | 11             |                                                                                              |      |
| 33-             | 55-17            | 1.0                               | 100/4                   |                          | -                                                                                                                           | ]]             |                                                                                              |      |
| -               | NS               |                                   |                         |                          |                                                                                                                             | <u>-</u>       |                                                                                              |      |
| 34 —            |                  |                                   | 32                      |                          | -                                                                                                                           |                | SS-18 Lab results: MC 8.9%.                                                                  |      |
| - 35            | SS-18            | 1.1                               | 100/6                   |                          |                                                                                                                             |                |                                                                                              |      |
|                 | NS               |                                   |                         |                          |                                                                                                                             | <u> </u>       |                                                                                              |      |
| 36 —            |                  |                                   | 41                      | Below 36                 | 0' slightly higher degree of weathering. Continues to be highly                                                             |                |                                                                                              |      |
| -               | 90 10            | 10                                | 65                      | weathered<br>bedding is  | d shale, saprolite. Continues to have trace manganese oxide, smostly disturbed by the sampling process.                     | 三              |                                                                                              |      |
| - 37            | 33-19            | 1.0                               | 70                      | -                        |                                                                                                                             | ]]             |                                                                                              |      |
| 38—             |                  |                                   | 55<br>32                |                          | -                                                                                                                           | +-1            |                                                                                              |      |
| -               | SS-20            | 1.6                               | 84                      |                          |                                                                                                                             | 듣리             |                                                                                              |      |
| 39 —            |                  |                                   | 100/5                   |                          | -                                                                                                                           | <u>]</u>       |                                                                                              |      |
| 40—             | NS               |                                   |                         |                          | -                                                                                                                           |                | SS 21 Lab results: MC 7%:                                                                    |      |
| -               | SS-21            | 1.3                               | 40                      |                          |                                                                                                                             | 1              | 14.7% Gravel; 56.8% Sand;                                                                    |      |
| 41—             | NO               |                                   |                         |                          | -                                                                                                                           |                | 20.0% FILLES.                                                                                |      |
| 42-             | NS<br>NS         |                                   |                         |                          | -                                                                                                                           |                |                                                                                              |      |
| -               | SS-22            | 1.0                               | 28                      |                          |                                                                                                                             | <u> </u>       |                                                                                              |      |
| 43—             |                  |                                   | 100/4                   |                          | -                                                                                                                           | 1              |                                                                                              |      |
| -<br>44 —       | NS               |                                   | 60                      | Trace iror<br>pulverized | and manganese oxide. Sample continues to be mostly<br>//broken from the sampling process.                                   |                | Continues to be dry to slightly moist. No reaction with HCI.                                 |      |
|                 | SS-23            | 1.0                               | 100/3                   |                          |                                                                                                                             |                | SS-23 Lab results: MC 5.5%.                                                                  |      |

# Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-982

| Remarl                | KS:              |                                   |                         |                                                                                                                                                                                                                                                                                                |                |                                                                                                                                |      |
|-----------------------|------------------|-----------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(feet)       | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                             | Graphic<br>Log | Remarks                                                                                                                        | NSCS |
| -                     | NS               |                                   |                         | Light yellowish brown (2.5Y 6/3 - 6/4) and light olive brown (2.5Y 5/3 - 5/6) highly weathered SHALE (SAPROLITE). (Cont'd.)                                                                                                                                                                    |                | No indication of water on<br>drilling rods or sampler to                                                                       | CL   |
| 46                    | SS-24            | 0.2                               | 50/1                    | Trace calcite appears to be 1 to 5 mm fracture infilling. Sample is pulverized.                                                                                                                                                                                                                |                | SS-24 Strong reaction with HCI.                                                                                                |      |
| 47 —                  | NS               |                                   |                         | Change at 47.3'.                                                                                                                                                                                                                                                                               |                | 1128 2/8/18 Auger refusal at                                                                                                   |      |
| 48                    | -                |                                   |                         | 4/1) SHALE and LIMESTONE. Limestone beds appear sitty in places and<br>may classify as a calcareous siltstone. Thinly bedded, sample is very<br>broken (40° bedding angle). Trace white calcite veins (up to 5 mm).<br>Trace black and brownish vellow iron/manganese oxide precipitate along  |                | 47.3'. 1308 Borehole<br>measured dry at 46.2'. Set up<br>to core. Set temporary 4 1/2"<br>steel flush threaded casing.         |      |
| 49—<br>-<br>50—       | C-1              | 1.5'<br>32%                       | 0%                      | bedding breaks and possible fractures. Gray-grayish beds are limestone.<br>Olive colored beds are generally shale. Highly weathered. Moderate to<br>very strong strength. Most of the lost recovery is expected to be within<br>shale beds that have low field strength.                       |                | HQ3 core, water circulation.<br>1425 Start washing core bit to<br>depth.<br>C-1 47.3' - 52.0' 1450-1536.                       |      |
| -<br>51 <i>—</i><br>- | -                |                                   |                         | C-1 recovery, bottom piece has reddish brown interbeds (<0.05'). Beds appear deformed with slight displacement along healed fractures (white calcite in-fill). Bottom of recovery has a fracture face that is perpendicular to bedding.                                                        |                | Cannot position C-1 core loss,<br>sample is too broken. No<br>reaction with HCl within shale,<br>strong reaction with calcite  |      |
| 52—                   |                  |                                   |                         | Below 52.0' higher percentage of shale, mostly shale. Limestone beds                                                                                                                                                                                                                           | -              | fracture infilling and within limestone beds.                                                                                  |      |
| -<br>53—              | C-2              | 2.8'<br>100%                      | 0%                      | generally have calcite veins or healed fractures. Continues to be highly weathered. Predominate olive gray to dark olive color. Trace thin limestone interbeds below 54.1'.                                                                                                                    |                | faces are coated with iron<br>and/or manganese oxide.<br>C-2 52.0' - 54.8' 1555-1655.                                          |      |
| 54 —<br>-             | -                |                                   |                         |                                                                                                                                                                                                                                                                                                |                | C-3 54.8' - 55.8' 1710-1730.<br>End 2/8/18, 1730 at 55.8'.<br>Water level at 10.1', 1745 most<br>if not all drilling water was |      |
| 55—                   | C-3              | 1.0'<br>100%                      | 0%                      |                                                                                                                                                                                                                                                                                                |                | recirculated during drilling.<br>Begin 2/9/18 0830. driller                                                                    |      |
| 56 —<br>-<br>57 —     | C-4              | 1.1'<br>92%                       | 0%                      | Below 55.8 slight increase in brown color. Some dark olive gray to olive gray (5Y 4/2 - $3/2$ ). Primarily shale or mudstone composition. Bedding angle is approximately 40°. Continues to be thinly bedded with limestone partings and this seams (<0.05') Moderate field strength Limestone. |                | changing out bit style, HQ3<br>still. Start coring at 0955.<br>0840, WL: 16.82 from GS.<br>No reaction with HCI                |      |
|                       | -                |                                   |                         | layers are strong to very strong. Moderately decomposed/weathered.                                                                                                                                                                                                                             |                | Continues to be highly<br>fractured with iron oxide<br>precipitates on fracture faces.                                         |      |
| -<br>59—              | C-5              | 2.7'                              | 0%                      | GGY 4/1 - 3/1) layers. Becoming less weathered. Stronger olive color associated with weathered areas.                                                                                                                                                                                          |                | and angular fractures.<br>Intensely to moderately<br>fractured. Sample is generally                                            |      |
| 60 —                  |                  | 54%                               | 0,0                     | Core is very broken from 58.0' - 59.7'. Lost core probably from bottom of run.                                                                                                                                                                                                                 |                | very broken and fracture<br>orientation and fracture traces<br>are hard to follow.                                             |      |
| 61—                   |                  |                                   |                         | Below 58.4' limestone interbeds are deformed (soft sediment) irregular surfaces and thickness, generally less than 0.1' thick.                                                                                                                                                                 |                |                                                                                                                                |      |
| 62—                   |                  |                                   |                         | Near 59.7', trace pink calcite, up to 5mm thick, appears to be fracture infilling.                                                                                                                                                                                                             |                | C-6 Run, bedding angle varies                                                                                                  |      |
| -<br>63 —<br>-        | -                |                                   |                         | Below 62.4' predominately dark gray to very dark gray (N 4/ - 3/) with trace olive gray/dark olive gray (5Y 4/2 - 3/2) zones associated with weathered areas. Trace gray (5Y 6/1 - 5/1) partings/thin limestone seams. Continues to be intensely fractured.                                    |                | between 45° to 50° limestone<br>seams are typically deformed<br>and have wavy<br>surfaces/contacts.                            |      |
| 64                    | C-6              | 4.5'                              | 0%                      |                                                                                                                                                                                                                                                                                                |                | 62.9' - 63.4' Oxidized bedding<br>break, 3/4" olive gray                                                                       |      |
| 65 <i>—</i><br>-      | -                | 90%                               |                         | 64.6' - 64.8', 65.2' - 65.4', 65.6' - 65.8' bedding plane fractures/breaks with iron oxide and trace calcite. 65.6' - 65.8' Fracture is polished (slickenside).                                                                                                                                |                | weathering have faces coated with iron oxide.                                                                                  |      |
| 66 —<br>-             |                  |                                   |                         | 65.9' - 66.5' Recovery is very broken, some angular pieces with slickenside surfaces.                                                                                                                                                                                                          |                | 63.6' - 64.0' Bedding break,<br>calcite coating on face, no<br>oxidation . Possible indication                                 |      |
| 68-                   |                  |                                   |                         | Below 67.0' primarily limestone and siltstone recovery. Few shale seams.<br>Lost recovery (C-7 run) may be mostly shale. Highly broken interval,<br>intensely fractured/broken. Fracture/bedding break faces are all oxidized                                                                  |                | ot saturation. Broken oxidized fractures above and below.                                                                      |      |
|                       | C-7              | 2.3'<br>46%                       | 0%                      | with mostly iron oxide coatings; trace black manganese oxide. Mostly olive gray to dark olive gray (5Y 4/2 - 3/2). Some dark gray to very dark                                                                                                                                                 | E              | C-4 55.8' - 57.0' 0955-1010.<br>C-5 57.0' - 62.0' 1018-1124                                                                    |      |
| 69—                   |                  | .070                              |                         | gray areas.                                                                                                                                                                                                                                                                                    | ╞╧╡            | C-6 62.0' - 67.0' 1133-1220.                                                                                                   |      |
| -                     | 1                |                                   |                         |                                                                                                                                                                                                                                                                                                | 1-1            | C-7 67.0' - 72.0' 1429-1541                                                                                                    |      |

EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-982

Remarks: Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method Depth (feet) USCS SAMPLE DESCRIPTION Remarks Interbedded olive gray to dark olive gray (5Y 4/2 - 3/2), dark gray to very dark gray (N 4/ - 3/) SHALE and LIMESTONE. (Cont'd.) Lost recovery in C-7 run is assumed to be shale. Trace to few limestone seams (<0.2' thick). 23 71 C-7 0% 46% 72.7' - 73.1', 0.15' Thick silty limestone seam. Strong reaction with HCI. Bedding angle is between 45° - 50° 72 Highly fractured and broken. Generally has associated iron oxide Most of C-8 recovery is shale. coatings. Trace calcite precipitates. 1.2' C-8 72.0' - 73.2' 1555-1621. C-8 0% 100% 73 Change at 73.3'. 73.3' - 73.5; fracture oriented perpendicular to bedding. Dusky red (5R 3/3) OOLITIC LIMESTONE. Trace to few glauconite Face appears oxidized. nodules (~1mm). Red color possibly associated with hematite. Massive. 74 Field strength is strong, competent. Trace white calcite healed fractures. End 2/9/18, 0710 at 77.0' WL at 1724 = 23.72' from ground. C-9 73.2' - 77.0' 1633-1710. Fresh to slightly weathered. Change at 74.0 3.8' 75 2/10/18, 0805, WL = 63.0'. Begin 2/10/18, 0830, 45°F, C-9 16% Very dark gray to black (N 3/ - 2 1/2/) SHALE. Thinly bedded, ~45° - 50° 100% angle. Trace gray ~1mm siltstone partings. Fresh. Intensely fractured or broken, mostly along bedding planes (some may be mechanical). overcast, tract light rain. 76 Unweathered/no oxidation. Continue HQ core, using core barrel liner. C-10 77.0' - 79.9' 0833-0920. Below 77.0' bedding angle is between 55° - 60°. Moderately to intensely fractured 77 Broken zones are identified 77.0' - 77.3' Bedding break, slickenside surface. No weathering or fractures in C-10 interval precipitates. 77.7' - 77.9' Bedding break surface has white noncarbonate precipitate, appear to be mechanical, 78 Trace fine (<1mm) pyrite. Slickenside surface.</li>
 77.9' - 78.2' Bedding break, slightly polished surface. Trace thin (<1mm)</li> probably associated with 29 wedging and difficulty with 35% C-10 100% calcite and clay (maybe from drilling) on face. No oxidation. Maybe open. 79.0' - 79.3' Set of bedding breaks, polished (slickenside) surfaces. sample. Feeding, typically core wear indicates core was 79 Within interval, perpendicular fracture appears healed with white turning. Bottom of C-10 noncarbonate infilling (hairline). recovery mechanically 80 Change at 79.9'. fractured Interbedded gray to very dark gray (N5/ to N3/) SHALE and LIMESTONE. (broken), bit plugged at end of Thinly bedded, generally between 0.1' - 0.3'. Limestone and shale partings are common. Shale beds are typically darker gray and soft while run. End 2/10/18, 1004, rain, 1.5' 0% C-11 81 71% at 80.2' limestone beds are lighter gray and hard. Bedding appears to vary between 50° to 60°. Trace healed fractures, while calcite filled, generally Begin 2/12/18, 0920 continue C-11 run. 0907 WL = 35.05' 82 from GS. 45°F, Overcast, wet. oriented perpendicular to bedding, hairline to 2 mm width. Unweathered to slightly weathered (fresh). Mostly shale, 20 - 30% limestone. C-11 Run, lost recovery mostly from bottom of run. 83 ~55° - 60° bedding angle At 81.4' fracture at 90° to bedding, iron oxide on face. 84 Adjacent rock is not oxidized. 4 2 C-12 38% 83.1' - 83.5' Broken zone, 84% Below 82.0' primarily shale, trace lighter (gray) limestone or siltstone probable fracture or fractures, partings (<1/4"). 85 no oxidation. 85.0' - 85.9' Bluish gray to dark bluish gray (5PB 5/1 to 4/1) Interclastic 83.3' - 83.5' 1/4" to 1/2" thick Limestone Seam - elongated elliptical, clasts oriented parallel with pink calcite filled fracture. 86 bedding (long axis), up to 1" high and 1 3/4" wide. 45° - 50° bedding 84.7' - 84.9' Set of fractures angle. Hard, unweathered except for lower contact which is oxidized 45° to bedding angle, surfaces yellowish brown. Trace fine (<1 mm) glauconite nodules. have slickensides. No 87 Below 87.8' becomes interbedded limestone and shale, thinly bedded, precipitate or oxidation. C-11 79.9' - 82.0' 0920-0935. somewhat deformed. Trace glauconitic beds/partings. Change at 87.8'. C-12 ~50° bedding angle. 88 Bluish gray to dark bluish gray (5PB 5/1 - 4/1) LIMESTONE. Fine At 87.8' oxidized (iron oxide) grained. Few 1 mm or less glauconite nodules. Trace stylolites, dark gray to black, jagged, trace. Thinly bedded. Fresh. bedding contact. Strong reaction with HCl. 89 At 88.0' fracture, 45° to Basal contact has rip up clasts, elliptical and elongated with bedding. 3.2 35% C-13 Becoming interclastic. bedding, oxidized (iron oxide 64% Change at 89.5'. on face). 90 Interbedded very dark gray to black (N 3/ - N 2 1/2) SHALE and gray to dark gray (N 5/ - 4/) LIMESTONE. Generally thinly bedded (0.1' or less). Limestone reacts strong with HCI. Shale has no reaction. Trace white calcite filled fractures (healed). Limestone seams are 91 92.0' - 92.3', 93.1' - 93.4', and generally deformed, wavey, uneven bedding. Fresh, no oxidation. 93.4' - 93.7' Bedding plane Intensely broken along bedding planes, most are mechanical. Limestone breaks, slickenside surface. is hard to moderately hard. Shale is soft. 92 No oxidation or precipitates. 92.0' - 93.7' Predominately shale, trace limestone partings. 93 92.85' - 92.95' ~45° fracture. slickenside surface. No 4.0' C-14 10% 100% oxidation or precipitates. Below 93.7' trace bioturbation. 45° - 50° Bedding angle. C-12 82.0' - 87.0' 1044-1105. C-13 87.0' - 92.0' 1140-1159. 94

EMDF Characterization Project Oak Ridge, TN

4/4/18

GDT

TEMPLATE WITH PID.

CRAFT

CONTAINER

GPJ

BIDGF

OAK

FIOG V.2

**NDRFHOI** 

#### **BOREHOLE LOG**

Boring Number GW-982

Remarks: Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method Depth (feet) USCS SAMPLE DESCRIPTION Remarks Interbedded very dark gray to black (N 3/ - N 2 1/2) SHALE and gray to very dark gray (N 5/ - 4/) LIMESTONE. (Cont'd.) C-14 92.0' - 95.9' 1342-1356. C-15 95.9' - 97.0' 1436-1445. 4.0' 10% C-14 100% C-16 97.0' - 98.2' 1451-1505. 96 95.9' - 96.5' Bluish gray to dark bluish gray (5PB 5/1 - 4/1) Interclastic LIMESTONE. Clasts up to 0.2', generally less than 0.1', elongated and elliptical. Clasts oriented parallel with bedding. Hard. Fresh. C-17 98.2' - 102.0' 1524-1545. 0.6' C-15 46% 55% 97 C-16 Run highly broken, 0.7' C-16 0% fractured faces with 58% slickenside surfaces, too 98 broken to determine position. No oxidation or precipitation. Change at 98.9'. 99 Strong reaction with HCI. 99.6 Bluish gray to dark bluish gray (5PB 5/1 - 4/1) LIMESTONE. Fine crystalline. Trace glauconite nodules (up to 1mm). Trace stylolites. - 99.8' and 100.0' - 100.3' bedding breaks, no oxidation Fresh, unweathered. Hard. Trace pyrite. 3.1 100 C-17 33% or precipitates. 81% 98.5' - 98.9' Rip up clasts or deformation, up to 0.1' diameter, elongated. Change at 100.6'. Shale does not react with HCI. 101 Interbedded very dark gray to black (N 3/ - N 2 1/2) SHALE and gray to very dark gray (N 5/ - 4/) LIMESTONE. Thinly bedded. Shale is soft, Limestone has a strong reaction. 45-50° Bedding limestone is hard. Generally fresh, unweathered. Limestone beds are angle. 102 generally thin (<0.1' thick). Shale beds are up to 0.3' thick. Limestone is hard, fresh, unweathered. Shale is soft, fresh, unweathered. 20 to 40% C-18 Recovery is poor, appears to have started run in limestone. Continues to be intensely fractured. Bedding angle is near a fracture zone cannot position 103 45° lost recovery interval. 102.0' - 102.3' Fracture zone/bedding breaks. Faces are oxidized with iron oxide coatings. 1.2' 0% C-18 104 31% C-18 102.0' - 105.9' 1617-1649. C-19 105.9' - 106.8' 105 Trace very dark greenish gray (10GY 3/1) thin seams, less than 0.1' thick, 1705-1710. possibly glauconitic. C-20 106.8' - 107.0' 1720-1722. 106 Bedding angle ~45°. C-21 107.0' - 108.3 0.8' C-19 0% 89% 0847-0900. End 2/12/18, 1720 at 107.0'. C-20 0.2 107 0% 1730 WL = 14.02' from GS. 107.6' - 107.9' Fracture 90° to bedding plane. Face has thin coating of Begin 2/13/18, 0847, 40°F, 1.3' calcite. No oxidation. 0% overcast, light rain. 2/13/18, 0830 WL = 21.65' GS. C-21 100% 108 Underlying contact is relatively sharp color change. Continues to be intensely 0.9' 40% C-22 fractured. Most bedding 100% 109 Change at 109.2'. breaks have slickenside Dark reddish gray (2.5YR 3/1 - 4/1) SHALE. Trace gray to very dark gray surfaces. No oxidation or shale partings (generally <2mm). Soft. Thinly bedded, 40-45° angle, weathering. 110 beds generally <0.1'. Fresh, unweathered. Moderately fractured. Breaks No reaction with HCI. 109.9' appear to be mechanical. Trace glauconitic partings (greenish color, no 110.1'. 110.1' - 110.3' Bedding 2.8' C-23 22% reaction with HCl.) 100% break with gray precipitate/clay 111 on face. Below 110.5' broken along Change at 112.0'. bedding contacts at 0.3' to 0.4' 112 Interbedded very dark gray to black (N 3/1 - N 2-1/2/) and dark reddish gray (2.5YR 3/1 - 4/1) SHALE and LIMESTONE. Noticeable change to intervals. Face of break has slickensides, no oxidation or reddish color hues. Thinly bedded, color variation, highlights thinly precipitates/mineralization. 113 bedded character. Limestone beds typically have stronger gray color hues, are hard and react strongly with HCI. Shale beds are soft, generally Most if not all breaks below 112' appear mechanical. have stronger red color hues. Bedding is generally 0.1' or less, partings Trace slickenside surfaces, but 114 are common. Bedding contacts are generally wavy, have a deformed no oxidation or mineralization 4.9' appearance. May in part be due to bioturbation. Beds or partings with 54% observed. Possibly C-24 98% green color hues are also present, appear to be glauconitic. Unweathered/fresh. Commonly broken along bedding, but generally depositional. 115 attributed to mechanical breaks 112.4' - 112.6' Limestone seam. Trace fine glauconite nodules, trace 116 rare pyrite. C-22 108.3' - 109.2' Below 113.5' thinly bedded. Limestone and shale beds are generally 0.1' 0913-0920. or less. Limestone beds are hard, typically gray to dark gray and shale 117 beds are reddish gray, soft. Most limestone beds have deformed upper C-23 109.2' - 112.0' and lower surfaces, convoluted bedding. 0934-0951. 118 C-24 112 0' - 117 0' 5.0' C-25 63% 1000-1022. 100% 119 C-25 117.0' - 122.0' 1033-1048.

|           | EI                  | MDF C            | haracteri<br>Dak Ridg             | ization F<br>je, TN     | Project                 | BOREHOLE LOG                                                                                                           | Bor            | ing Number<br>GW-982                                                                                                |      |
|-----------|---------------------|------------------|-----------------------------------|-------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------|------|
| R         | lemark              | ks:              |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |
|           | Depth<br>(feet)     | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                         | SAMPLE DESCRIPTION                                                                                                     | Graphic<br>Log | Remarks                                                                                                             | nscs |
|           | -<br>121 —<br>-     | C-25             | 5.0'<br>100%                      | 63%                     | Interbedde<br>dark gray | ed dark reddish gray (2.5YR 3/1 - 4/1) SHALE and gray to very<br>(N 3/ - N 2 1/2/) LIMESTONE. Thinly bedded. (Cont'd.) |                | Unweathered. Core breaks<br>are along bedding planes.<br>Most if not all appear<br>mechanical.                      |      |
| .         | 122 —               |                  |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |
|           | 123—                |                  |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |
|           | 124 —<br>-<br>125 — | NS               |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |
|           | -<br>126 —          |                  |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |
|           | -<br>127 —          |                  |                                   |                         | Bottom of<br>Piezomete  | Borehole = 126.5'.<br>er GW-982 installed in borehole. See Monitoring Well                                             | _              | 2/13/18, 1156 WL = above GS.<br>Probably drilling water.<br>2/13/18 1247 WL = 12.51'.                               |      |
|           | -<br>128 —<br>_     |                  |                                   |                         | Installation            | n Report GW-982 for details.                                                                                           |                | 1250 Start pulling drill rods.<br>1320 Drill rods removed. 1326<br>WL = 33.43' GS.                                  |      |
| .         | 129 —               |                  |                                   |                         |                         |                                                                                                                        | _              | On 2/18/18 used Intersoll<br>Rand T3W rotary rig to ream<br>corehole and advance<br>borehole to 126 5' using 5 7/8" |      |
|           | 130 —               |                  |                                   |                         |                         |                                                                                                                        | -              | tricone bit with air and water<br>circulation. Finished drilling at<br>0945.                                        |      |
|           | 131 —<br>-<br>132 — |                  |                                   |                         |                         |                                                                                                                        | -              |                                                                                                                     |      |
|           | -<br>-<br>-         |                  |                                   |                         |                         |                                                                                                                        | _              |                                                                                                                     |      |
| . 18      | -<br>134 —          |                  |                                   |                         |                         |                                                                                                                        | -              |                                                                                                                     |      |
| .GDT 4/4/ | -<br>135 —          |                  |                                   |                         |                         |                                                                                                                        | _              |                                                                                                                     |      |
|           | 136 —<br>_          |                  |                                   |                         |                         |                                                                                                                        | _              |                                                                                                                     |      |
| EMPLATE   | 137 —               |                  |                                   |                         |                         |                                                                                                                        | -              |                                                                                                                     |      |
| RAFT 1    | 138 —<br>-<br>130 - |                  |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |
| ONTAINEF  | -<br>-<br>140 —     |                  |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |
| E.GPJ C   | -<br>141 —          |                  |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |
| OAK RIDG  | -<br>142 —          |                  |                                   |                         |                         |                                                                                                                        | -              |                                                                                                                     |      |
| LOG V.2   | -<br>143 —<br>-     |                  |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |
| DREHOLE   | 144 —<br>-          |                  |                                   |                         |                         |                                                                                                                        |                |                                                                                                                     |      |

| Eagon d        | & Ass               | <u>socia</u>            | tes, l       | Inc.                                   |              |                    |                                     |                                |                                  | Wel    | l Num<br>W-982 | ber<br>2      |
|----------------|---------------------|-------------------------|--------------|----------------------------------------|--------------|--------------------|-------------------------------------|--------------------------------|----------------------------------|--------|----------------|---------------|
|                |                     | Μ                       | onit         | oring                                  | Wel          | l Ins              | allation Re                         | eport                          |                                  |        | đ              |               |
| Site Name an   | d Locatic           | n: <i>EML</i>           | DF Char      | acterization I                         | Project, (   | Dak Ridg           | , TN                                | Completion I                   | Date: 3/8/18                     |        |                |               |
| Coordinates:   | 30317.8             | 2N 386                  | 617.04E      |                                        |              | Bor                | hole Depth (ft): 126.               | 5                              |                                  |        |                |               |
| Elevation Top  | of Casin            | g (ft/MS                | SL): 1,0     | 18.02                                  |              | Bor                | hole Diameter (in):10               | " (0'-50.3'); 5 7/             | (8" (50.3'-126.5')               |        |                | -             |
| Elevation Gro  | und Surfa           | ace (ft/N               | /ISL): 1,    | 015.6                                  |              | Dril               | 3 1/4" ID<br>ng Methods: circulatio | HSA, HQ3 Co<br>n, 10" air hamr | re with water<br>ner bit, 5 7/8" |        |                | 20            |
| Installed By:  | Shannon             | Snow/                   | Tri-State    | Drilling                               |              | Cor                | pleted Drilling: 2/18/              | it with air/water<br>18        |                                  |        |                | -             |
| Supervised B   | y: David            | J. Suga                 | ar/Eagon     | & Associate                            | s, Inc.      | Dril               | ng Water Used (gals)                | -2000                          |                                  |        |                | -             |
|                | -                   |                         |              | ,                                      | Wal          |                    | ian                                 |                                |                                  | -      |                |               |
|                |                     |                         |              |                                        | VVCI         |                    | ngn                                 |                                |                                  | -      |                | 40            |
|                | Compone             | ent                     |              |                                        |              | Materials          |                                     | Depth (LSD)                    | Elevation                        |        |                | 1             |
| Well Protec    | tor                 |                         |              | 4" Squar                               | e Steel v    | w/Locking          | Lid                                 | -2.7 - 2.3                     | 1018.3 - 1013.3                  |        |                |               |
| Riser          |                     |                         |              | 2" ID Scl                              | nedule 4     | 0 PVC              |                                     | -2.4 - 102.1                   | 1018.0 - 913.5                   |        |                | <br> <br>  60 |
| Surface Sea    | al                  |                         |              | 3' x 3' Co                             | oncrete      |                    |                                     | -0.5 - 0.5                     | 1016.1 - 1015.1                  |        |                |               |
| Conductor (    | Casing              |                         |              | 6" ID Scl                              | n. 40 PV     | C, Flush           | Threaded                            | -0.4 - 50.3                    | 1016.0 - 965.3                   |        |                | Ì             |
| Cement Gro     | out                 |                         |              | Cement                                 | Bentonit     | e Grout            |                                     | 0.5 - 95.9                     | 1015.1 - 919.7                   |        |                |               |
| Bentonite S    | eal                 |                         |              | Pel-Plug                               | 1/4" Co      | ated Ben           | onite Pellets                       | 95.9 - 99.2                    | 919.7 - 916.4                    |        | <u>)</u>       |               |
| Sand Pack      |                     |                         |              | DSI GP                                 | #2 Grave     | el Pack            |                                     | 99.2 - 113.4                   | 916.4 - 902.2                    |        |                | 1 80<br>1     |
| Screen         |                     |                         |              | 2" ID Scl                              | nedule 4     | 0 PVC, 1           | )-Slot                              | 102.1 - 112.1                  | 913.5 - 903.5                    |        |                |               |
| Well Point E   | Blank               |                         |              | 2" ID Scl                              | n. 40 PV     | C Cap &            | Riser Section                       | 112.1 - 113.4                  | 903.5 - 902.2                    |        |                |               |
| Sand Pack      | Bottom              |                         |              | DSI GP                                 | #2 Grave     | el Pack            |                                     | 113.4 - 114.5                  | 902.2 - 901.1                    |        |                |               |
| Bentonite S    | eal                 |                         |              | Pel-Plug                               | 1/4" Co      | ated Ben           | onite Pellets                       | 114.5 - 126.5                  | 901.1 - 889.1                    |        |                | 100           |
|                |                     |                         |              | We                                     | ll De        | evelo              | pment                               |                                |                                  |        |                |               |
| Well Depth (ft | ,TOC):              |                         | Depth        | to Water (ft,                          | TOC):        | We                 | Volume (gals):                      | Volume                         | Purged (gals):                   | 1 🗏    | 一              |               |
| Development    | Method:             |                         | 60           | 5.39                                   |              |                    | 8                                   | 64.5                           |                                  |        |                | 1             |
| Surge block, I | bailer, Tori<br>Cur | nado pur<br>nulative    | np, bladd    | er pump                                |              |                    | _                                   |                                |                                  |        |                | 120           |
| Date Ti        | me Re               | olume<br>moved<br>gals) | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recovery I                          | Data                           |                                  |        |                | _             |
| 3/3/18 08      | 358                 | 39.0                    | 12.2         | 374                                    | 10.38        | 41.0               | 100                                 |                                |                                  |        |                |               |
| 3/3/18 14      | 408                 | 50.0                    | 15.8         | 354.3                                  | 9.35         | 24.8               |                                     |                                |                                  |        |                | 140           |
| 3/5/18 08      | 337                 | 51.0                    | 12.7         | 414.2                                  | 8.37         | 397.0              |                                     |                                |                                  |        |                |               |
| 3/5/18 12      | 257                 | 61.5                    | 15.1         | 359.9                                  | 9.17         | 29.0               | 20 <u>20</u>                        |                                |                                  |        |                |               |
| 3/5/18 14      | 115                 | 63.5                    | 15.3         | 391.2                                  | 8.92         | 21.0               |                                     | 40                             | 80 120                           |        |                | 160           |
| 3/5/18 14      | 155                 | 64.5                    | 14.5         | 395.6                                  | 8.87         | 17.5               | -                                   | Time (minut                    | es)                              |        |                |               |
| Sampling Equ   | ipment:             |                         |              | <u> </u>                               |              | I                  | 1                                   |                                |                                  | 1      |                |               |
| Commoster      |                     |                         |              |                                        |              |                    |                                     |                                |                                  | 4      |                |               |
| Stainless stee | el centraliz        | ers set a               | t 95.0' an   | d 45.0'. Wash                          | ed sand r    | back and p         | llets in using tremie pipe          | . Grout mixina ar              | nd placement                     | 1      |                |               |
| information p  | rovided by          | Tri-State               | e Drilling.  | Screen slot in                         | terval 102   | 2.3 - 112.0        | ogs.                                |                                | -                                | Boring | depth=12       | 26.5 f        |

MONITOR WELL INSTALLATION 2 OAK RIDGE .GPJ EAGON.GDT 4/4/18

This page intentionally left blank.

|                      |                    |                            |                      | BC                                                                    | REHOLE                                                                                                                                 | ELOG                             |              |                  |                                         |                               |                 |  |  |  |
|----------------------|--------------------|----------------------------|----------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|------------------|-----------------------------------------|-------------------------------|-----------------|--|--|--|
| Site Nam<br>and Loca | ne<br>ation:       | E                          | MDF Ch               | naracterization Project                                               | Drilling Method<br>4 1/4" ID H                                                                                                         | s:<br>ISA. HQ3 Core wit          | th water cir | culation.        | 5 7/8" hammer                           | Boring Num                    | ber:            |  |  |  |
| Drilling F           | irm <sup>.</sup> 7 | ri-State D                 | rillina              | Jak Ridge, IN                                                         | bit.                                                                                                                                   | TIME                             | DEF          | PTH              | WATER                                   | GW-                           | 983             |  |  |  |
| Driller / F          | Rig: SI            | nannon Sr                  | now/CME              | E-550                                                                 |                                                                                                                                        |                                  | DRILL        | ΕD (π)           |                                         | Deve                          | 4 - 5 4         |  |  |  |
| Logged I             | by: Da             | vid J. Sug                 | ar                   |                                                                       |                                                                                                                                        | Sampling                         | Methods:     |                  |                                         | Page                          | 1 01 4          |  |  |  |
| Coordina             | ates: 3            | -<br>0325.62N              | 38606.               | 49E                                                                   | ST = Shelby Tu<br>WS = Waxed Sa                                                                                                        | be<br>mple                       |              | SS = S<br>CS = C | plit Spoon<br>Continuous Sampler        | Start                         | Finish          |  |  |  |
| Surface              | Elevati            | on: <i>1,015</i>           | 5.6 ft/MSL           |                                                                       | GP or DP = Dire                                                                                                                        | ct Push                          |              | NS = N<br>B = Ba | lot Sampled<br>iler                     | Time<br>1030                  | Time<br>1257    |  |  |  |
| Surface              | Conditi            | ons / Wea                  | ather: <i>Fl</i> a   | at, gravel road bed / 74°F, Mostly su                                 | nny                                                                                                                                    |                                  |              | <u> </u>         |                                         | Date<br>2/21/18               | Date<br>2/27/18 |  |  |  |
| Remarks              | s: Bore            | hole insta                 | lled for th          | ne collection of geotech samples and                                  | l installation of sl                                                                                                                   | allow piezomete                  | r.           |                  |                                         |                               |                 |  |  |  |
| <b>د</b> م           | e po               | ery<br>%)                  | in 0                 |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               | S               |  |  |  |
| Deptl<br>(feet       | Samp<br>Metho      | Samp<br>Recovi<br>(feet or | Blows/6<br>or<br>RQE | SAMPLE DE                                                             | SCRIPTION                                                                                                                              | 1                                |              | Graph<br>Log     | Rema                                    | arks                          | nsci            |  |  |  |
| -<br>1               | NS                 |                            |                      | See adjacent Borehole Log GW-9<br>stratigraphic interpretation.       | 82 for detailed lit                                                                                                                    | hologic descriptic               | on and _<br> |                  | Ran 4 1/4" ID HS<br>bit while augering  | A, ran center                 |                 |  |  |  |
| 2—                   |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               |                 |  |  |  |
| 3—                   | ST-1               | 1.7                        | 1200<br>PSI          |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               |                 |  |  |  |
| 4                    |                    |                            |                      | Description from bottom of ST-1.<br>5/6) SANDY SILT. Trace little cla | Brown to yellowi<br>y. Mostly gravel                                                                                                   | sh brown (10YR size rock (shale) | 5/3          |                  | Auger cutting Buo<br>BS-1 collected fro | cket Sample<br>om 4.0' to 6.5 | ·               |  |  |  |
| 5                    |                    |                            |                      | fragments, appears in-place, high<br>Slightly moist.                  | 6) SANDY SILT. Trace little clay. Mostly gravel size rock (shale) –<br>agments, appears in-place, highly (completely) weathered shale. |                                  |              |                  |                                         |                               |                 |  |  |  |
| 6-                   |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               |                 |  |  |  |
| 7-                   |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               |                 |  |  |  |
| 8-                   |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  | BS-2 collected fro                      | thet Sample om 6.5' to 8.5    | '.              |  |  |  |
| 9—                   |                    |                            |                      |                                                                       |                                                                                                                                        |                                  | _            |                  |                                         |                               |                 |  |  |  |
| 10                   |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  | <b>2</b> ///                            |                               |                 |  |  |  |
| 11-                  |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  | moist to moist.                         | e slightly                    |                 |  |  |  |
| 12—                  | NS                 |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               |                 |  |  |  |
| 13—                  |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               |                 |  |  |  |
| 14 —                 |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               |                 |  |  |  |
| 15—                  |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               |                 |  |  |  |
| 16-                  |                    |                            |                      |                                                                       |                                                                                                                                        |                                  | _            |                  |                                         |                               |                 |  |  |  |
| 17—                  |                    |                            |                      |                                                                       |                                                                                                                                        |                                  | _            |                  |                                         |                               |                 |  |  |  |
| 18—                  |                    |                            |                      |                                                                       |                                                                                                                                        |                                  |              |                  |                                         |                               |                 |  |  |  |
| -<br>19<br>-         |                    |                            |                      |                                                                       |                                                                                                                                        |                                  | -            |                  | Cutting returns ar moist to dry.        | e slightly                    |                 |  |  |  |

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

| E                 | MDF C            | haracter<br>Dak Ridg             | ization P<br>ge, TN     | Project                  | BOREHOLE LOG                                                                          | Bor            | Boring Number<br>GW-983                                                 |         |  |  |  |
|-------------------|------------------|----------------------------------|-------------------------|--------------------------|---------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------|---------|--|--|--|
| Remar             | ks: Bore         | ehole insta                      | alled for th            | he collection            | of geotech samples and installation of shallow piezometer.                            |                |                                                                         |         |  |  |  |
| Depth<br>(feet)   | Sample<br>Method | Sample<br>Recovery<br>feet or %) | Blows/6 in<br>or<br>RQD |                          | SAMPLE DESCRIPTION                                                                    | Graphic<br>Log | Remarks                                                                 | nscs    |  |  |  |
| 21-               | _                |                                  |                         | Augered w<br>detailed st | vithout sampling, see adjacent Borehole Log GW-982 for<br>ratigraphic interpretation. |                | No indication of water with cutting returns.                            |         |  |  |  |
| -<br>22           | _                |                                  |                         |                          | -<br><br>-                                                                            |                |                                                                         |         |  |  |  |
| 23-               |                  |                                  |                         |                          | -                                                                                     |                | End 2/21/18 at 23.5', 1700.                                             |         |  |  |  |
| 24 —<br>-         | _                |                                  |                         | Cutting ret<br>smooth an | turns are damp (slightly moist) to dry. Augered relatively<br>id consistent.          |                | Begin 2/22/18, 0855. Borehole measured dry.                             |         |  |  |  |
| 25-               | -                |                                  |                         |                          | -                                                                                     |                |                                                                         |         |  |  |  |
| 26-               | -                |                                  |                         |                          | -                                                                                     |                | Auger cuttings continue to be slightly moist to dry.                    |         |  |  |  |
| 27 -              | -                |                                  |                         |                          | -                                                                                     |                |                                                                         |         |  |  |  |
| 28-               | -                |                                  |                         |                          | -                                                                                     |                |                                                                         |         |  |  |  |
| 29-               | -                |                                  |                         |                          | -                                                                                     |                |                                                                         |         |  |  |  |
| 30-               | -                |                                  |                         |                          | -                                                                                     |                |                                                                         |         |  |  |  |
| 31 -              |                  |                                  |                         |                          | _                                                                                     |                |                                                                         |         |  |  |  |
| 32-               | - NS             |                                  |                         |                          |                                                                                       |                |                                                                         |         |  |  |  |
| 33-               |                  |                                  |                         |                          | -                                                                                     |                |                                                                         |         |  |  |  |
| 34 -              |                  |                                  |                         |                          |                                                                                       |                |                                                                         |         |  |  |  |
| 35-               |                  |                                  |                         |                          |                                                                                       |                |                                                                         |         |  |  |  |
| 36-               |                  |                                  |                         |                          |                                                                                       |                |                                                                         |         |  |  |  |
| 37 -              |                  |                                  |                         |                          | _                                                                                     |                |                                                                         |         |  |  |  |
| 38-               |                  |                                  |                         |                          |                                                                                       |                |                                                                         |         |  |  |  |
| 39 -              |                  |                                  |                         |                          | _                                                                                     |                |                                                                         |         |  |  |  |
| 40-               |                  |                                  |                         |                          | -                                                                                     |                |                                                                         |         |  |  |  |
| 41-               |                  |                                  |                         |                          | -                                                                                     |                |                                                                         |         |  |  |  |
| 42-               | -                |                                  |                         |                          | -                                                                                     |                | No indication of water in<br>cutting returns (damp to dry) to<br>45.0'. |         |  |  |  |
| 43 -<br>-<br>44 - | _                |                                  |                         | At 45.0' at              | ugered hard and rough, probable limestone or siltstone seam.                          |                | Below 45.0' switch over to HQ3 core, water circulation.                 |         |  |  |  |
|                   |                  |                                  |                         |                          | D 24                                                                                  |                |                                                                         |         |  |  |  |
|                   |                  |                                  |                         |                          | D-30                                                                                  |                | Page                                                                    | e∠ 0ĭ 4 |  |  |  |

| E                 | NDF C            | haracteri<br>Oak Ridg             | ization F<br>je, TN     | Project                                                                                                          | BOREHOLE LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bor            | Boring Number<br>GW-983                                                                                                                                                                                                         |      |  |  |  |
|-------------------|------------------|-----------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| Remark            | s: Bore          | ehole insta                       | alled for t             | he collection                                                                                                    | of geotech samples and installation of shallow piezometer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                                                                                                                                                                                 |      |  |  |  |
| Depth<br>(feet)   | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                                                                                                  | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Graphic<br>Log | Remarks                                                                                                                                                                                                                         | nscs |  |  |  |
| 46                | C-1              | 3.7                               | 0%                      | Interbedd<br>SHALE ar<br>seams ha<br>generally<br>0.1' thick.<br>moderate<br>moderate<br>along frac<br>bedding). | ed olive gray to dark olive gray to olive (5Y 4/2 - 4/3 and 3/2)<br>ad LIMESTONE to CALCAREOUS SILTSTONE. Limestone<br>ve stronger gray color hues (5Y 4/1 - 4/2). Thinly bedded,<br>less than 0.2' beds, with common partings and seams less than<br>Limestone content estimated at 30%. Shale seams are soft,<br>y to highly decomposed. Limestone seams are hard,<br>y decomposed. Considerable iron oxide precipitates/coatings<br>tures (bedding breaks and fractures oriented perpendicular to<br>Weathered bedrock. |                | HQ3 core, water circulation.<br>C-1 45.0' - 49.3' 1047-1129.<br>Highly fractured, broken along<br>bedding planes and<br>perpendicular to bedding. All<br>fractures are oxidized with iron<br>oxide/manganese oxide<br>coatings. |      |  |  |  |
| 40<br>-<br>49     |                  |                                   |                         | Limestone<br>reaction w                                                                                          | /calcareous siltstone beds react strong with HCI. Shale has no                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | Approximate 45° bedding<br>angle. Sample (core) is<br>relatively broken.<br>At 46.8' probable glauconitic                                                                                                                       |      |  |  |  |
| -<br>50 —         |                  |                                   |                         |                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | \seam ~ 1/4" - 1/2".<br>Finished coring at 1129. WL =<br>1.98' at 1157, 2/21.<br>Removed augers                                                                                                                                 |      |  |  |  |
| 51—               |                  |                                   |                         |                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | On 2/27/18, Ingersoll-Rand T4<br>rotary rig reamed corehole and<br>advanced borehole to 92 2'                                                                                                                                   |      |  |  |  |
| 52—<br>-<br>53—   |                  |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | using 5 7/8" hammer bit.                                                                                                                                                                                                        |      |  |  |  |
| -<br>54           |                  |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                 |      |  |  |  |
| <br>55            |                  |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                 |      |  |  |  |
| 56 —<br>-         |                  |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                 |      |  |  |  |
| 57 —<br>-<br>58 — |                  |                                   |                         |                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                 |      |  |  |  |
|                   |                  |                                   |                         |                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                 |      |  |  |  |
| -<br>60           | NS               |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                 |      |  |  |  |
| 61—               |                  |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                 |      |  |  |  |
| 62—<br>-<br>63—   |                  |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                 |      |  |  |  |
| -<br>64 —         |                  |                                   |                         |                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                 |      |  |  |  |
| -<br>65           |                  |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                 |      |  |  |  |
| 66-               |                  |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                 |      |  |  |  |
| 67—<br>-<br>68—   |                  |                                   |                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                 |      |  |  |  |
| -<br>69           |                  |                                   |                         |                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                 |      |  |  |  |
| -                 |                  |                                   |                         |                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                 |      |  |  |  |

B-37

#### Boring Number EMDF Characterization Project **BOREHOLE LOG** GW-983 Oak Ridge, TN Remarks: Borehole installed for the collection of geotech samples and installation of shallow piezometer. Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method USCS Depth (feet) SAMPLE DESCRIPTION Remarks 71 72 73 74 75 76 77 78 79 80 Driller noted borehole making water between 80' - 81'. 81 NS 82 83 84 BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18 85 86 87 88 89 90 91 92 Bottom of Borehole = 92.2'. Finished drilling to 92.2' at 1257. 93 Piezometer GW-983 installed in borehole. See Monitoring Well Installation Report GW-983 for details. 94

| Eagon                                      | 1 & A                        | ssocia                                    | tes, l                    | nc.                                    |                           |                              |                                          |                    |                  | G      | Nun<br>W-98 | 3       |
|--------------------------------------------|------------------------------|-------------------------------------------|---------------------------|----------------------------------------|---------------------------|------------------------------|------------------------------------------|--------------------|------------------|--------|-------------|---------|
|                                            |                              | N                                         | lonit                     | oring                                  | Wel                       | l Inst                       | allation Re                              | port               |                  |        | F           |         |
| Site Name                                  | and Loc                      | ation: EML                                | 0F Chara                  | cterization F                          | roject, O                 | ak Ridge, 1                  | N                                        | Completion E       | Date: 3/8/18     |        |             | _ 0     |
| Coordinates: 30325.62N 38606.49E           |                              |                                           |                           |                                        |                           |                              | ole Depth (ft): 92.2                     |                    |                  |        |             |         |
| Elevation Top of Casing (ft/MSL): 1,018.07 |                              |                                           |                           |                                        |                           |                              | Borehole Diameter (in):5 7/8" (0'-92.2') |                    |                  |        |             |         |
| Elevation Ground Surface (ft/MSL): 1,015.6 |                              |                                           |                           |                                        |                           |                              | g Methods: 4 1/4" ID                     |                    |                  | 20     |             |         |
| Installed By                               | : Fred                       | Reynolds/Tr                               | ri-State D                | Drilling                               |                           | Com                          | Circulation, 5 //8" nammer bit.          |                    |                  |        |             |         |
| Supervised                                 | Bv: Sh                       | av Beanlan                                | d/Eagon                   | & Associate                            | s. Inc.                   | Drillir                      | g Water Used (gals):                     |                    |                  |        |             |         |
|                                            |                              |                                           |                           |                                        |                           |                              | an                                       | -                  |                  |        |             |         |
|                                            |                              |                                           |                           |                                        | vvei                      | Des                          | gn                                       |                    |                  | - 🖉 🛛  |             | 40      |
|                                            | Comp                         | onent                                     |                           | Materials                              |                           |                              |                                          | Depth (LSD)        | Elevation        |        |             |         |
| Well Prot                                  | ector                        |                                           |                           | 4" Squa                                | re Steel I                | Protector w                  | /Locking Lid                             | -2.8 - 2.2         | 1018.4 - 1013.4  |        | X           |         |
| Riser                                      |                              |                                           |                           | 2" ID Schedule 40 PVC                  |                           |                              |                                          | -2.5 - 79.2        | 1018.1 - 936.4   |        | X           | 60      |
| Surface S                                  | Seal                         |                                           |                           | 3' x 3' C                              | oncrete F                 | Pad                          |                                          | -0.5 - 0.5         | 1016.1 - 1015.1  |        | X           |         |
| Cement (                                   | Grout                        |                                           |                           | Cement                                 | Bentonit                  | e Grout                      |                                          | 0.5 - 70.2         | 1015.1 - 945.4   |        |             |         |
| Bentonite                                  | e Seal                       |                                           |                           | Pel Plug                               | 1/4" Co                   | ated Bento                   | nite Pellets                             | 70.2 - 74.1        | 945.4 - 941.4    |        |             |         |
| Sand Pac                                   | ck                           |                                           |                           | DSI "GP #2" Gravel Pack                |                           |                              |                                          | 74.1 - 90.5        | 941.4 - 925.1    |        |             | 80      |
| Screen                                     |                              |                                           |                           | 2" ID Schedule 40 PVC, 10-Slot         |                           |                              |                                          | 79.2 - 89.2        | 936.4 - 926.4    |        |             |         |
| Well Poin                                  | nt Blank                     |                                           |                           | 2" ID Sch. 40 PVC Cap & Riser Section  |                           |                              |                                          | 89.2 - 90.5        | 926.4 - 925.1    |        |             |         |
| Sand Pac                                   | ck Botto                     | m                                         |                           | DSI "GP #2" Gravel Pack                |                           |                              |                                          | 90.5 - 91.5        | 925.1 - 924.1    |        |             | _       |
| Natural F                                  | ill                          |                                           |                           | Natural                                | Fill                      |                              |                                          | 91.5 - 92.2        | 924.1 - 923.4    | -      |             | 100     |
|                                            |                              |                                           |                           | We                                     | ell De                    | evelo                        | oment                                    |                    |                  | 1      |             |         |
| Well Depth                                 | (ft,TOC                      | ;):                                       | Depth                     | to Water (ft                           | TOC):                     | Well                         | /olume (gals):                           | Volume F           | Purged (gals):   |        |             |         |
| <u>92.99</u><br>Developme                  | ent Meth                     | od:                                       | 65                        | .92                                    |                           | 4                            | 4                                        | 50.0               |                  | _      |             |         |
| Date                                       | Time                         | Cumulative<br>Volume<br>Removed<br>(gals) | Temp<br>(°C)              | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.)              | Turbidity<br>(NTU)           | Recovery D                               | oata               |                  |        |             | 120     |
| 3/6/18                                     | 1059                         | 5                                         | 14.4                      | 402.6                                  | 7.21                      | 127.0                        | 100                                      |                    |                  |        |             |         |
| 3/6/18                                     | 1113                         | 15                                        | 14.3                      | 410.5                                  | 7.13                      | 97.8                         | (%) 80<br>≻ ∞                            |                    |                  |        |             | 140     |
| 3/6/18                                     | 1126                         | 25                                        | 14.3                      | 408.4                                  | 7.11                      | 44.2                         |                                          |                    |                  |        |             |         |
| 3/6/18                                     | 1133                         | 30                                        | 14.3                      | 406.9                                  | 7.12                      | 22.7                         | 이 원 20                                   |                    |                  |        |             |         |
| 3/6/18                                     | 1139                         | 35                                        | 14.2                      | 406.5                                  | 7.12                      | 14.7                         | 0                                        | 40                 | 80 120           |        |             | 160     |
| 3/6/18 1201 50 14.5                        |                              |                                           |                           | 405.7                                  | 7.11                      | 3.1                          |                                          | Time (minute       | es)              |        |             |         |
| Sampling E                                 | quipme                       | nt:                                       |                           |                                        |                           |                              |                                          |                    |                  | ]      |             |         |
| Comments:<br>Stainless s                   | :<br>steel cent<br>informati | ralizers set at<br>on provided b          | 69' and 3<br>by Tri-State | 4' from ground<br>e Drilling. Scr      | l surface.<br>een slot ir | Washed sai<br>aterval 79.4 - | d pack and pellets in us<br>89.1 bgs.    | ing tremie pipe. C | Grout mixing and | Boring | depth=      | 92 2 ft |
|                    |                  |                                   |                         | BO                                                                                                           | REHOLE                                                    | LOG                                                         |                          |                                                              |                                                         |                 |
|--------------------|------------------|-----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------|
| Site Na<br>and Loc | me<br>cation:    | E                                 | MDF Ch<br>C             | aracterization Project<br>Dak Ridge, TN                                                                      | Drilling Methods<br>3 1/4" ID H<br>bit. 5 7/8" tu         | :<br>SA, HQ3 Core with<br>icone bit with air/wa             | water circulation, ater. | 10" air hammer                                               |                                                         | ber:<br>086     |
| Drilling           | Firm: 7          | ri-State D                        | rilling                 |                                                                                                              | DATE                                                      | TIME                                                        | DEPTH<br>DRILLED (ft)    | WATER<br>LEVEL (ft)                                          | 000-                                                    | /00             |
| Driller /          | Rig: Sl          | hannon Sr                         | iow/CME                 | -550                                                                                                         |                                                           |                                                             |                          |                                                              | Page 1                                                  | of 3            |
| Logged             | by: Da           | ivid J. Sug                       | ar                      |                                                                                                              |                                                           | Sampling M                                                  | ethods:                  | nlit Speen                                                   | r ugo r                                                 |                 |
| Coordin            | ates: 3          | 30130.30N                         | 38191.                  | 80E                                                                                                          | WS = Waxed Sa                                             | nple                                                        | CS = C                   | Continuous Sampler                                           | Start                                                   | Finish          |
| Surface            | Elevati          | on: <i>930.</i> 2                 | ft/MSL                  |                                                                                                              | GP or DP = Direc<br>CT = Cuttings                         | t Push                                                      | NS = N<br>B = Bai        | lot Sampled<br>iler                                          | 1050                                                    | 1 ime<br>1240   |
| Surface            | Conditi          | ions / Wea                        | ther: <i>Fla</i>        | at gravel drilling pad / 57°F, Overcas                                                                       | t                                                         |                                                             |                          |                                                              | 2/15/18                                                 | Date<br>2/20/18 |
| Remark             | s:               |                                   |                         |                                                                                                              |                                                           |                                                             |                          |                                                              |                                                         |                 |
| Depth<br>(feet)    | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE [                                                                                                     | DESCRIPTI                                                 | ON                                                          | Graphic<br>Log           | Rema                                                         | arks                                                    | USCS            |
| _                  | NS               |                                   |                         | GRAVEL. Road bed/drilling pad.                                                                               |                                                           |                                                             |                          | 3 1/4" ID HSA, ra<br>while augering. (                       | n center plug<br>Continuous 2"                          |                 |
| 1—                 | 00.4             |                                   | 3                       | Brown to strong brown (7.5 YR 5/2                                                                            | 4, 5/6, 4/4 - 4/6) \$                                     | ILTY CLAY. Trac                                             | ;e                       | OD, 2' drive split                                           | spoons. 140<br>mer.                                     |                 |
| 2—                 | 55-1             | 0.0                               | 1                       | subrounded to subangular. Unsor<br>dark reddish brown to black mang                                          | tone tragments, i<br>ted, weak mottle<br>anese oxide/iron | ap to 1/2" diamete<br>d appearance. Tra<br>oxide Trace root | r, –<br>ace              | No reaction with I                                           | HCL.                                                    |                 |
| -                  |                  | 1.6'                              | 2 3                     | High plasticity and toughness. No<br>Weathered SUBSOII                                                       | dilatancy. High                                           | dry strength. Mois                                          | st. –                    | with root fragmen                                            | t.                                                      |                 |
| 3-                 | SS-2             | 80%                               | 4                       |                                                                                                              |                                                           |                                                             | SS-2 Lab results:        | Moisture                                                     |                                                         |                 |
| 4 —                |                  |                                   | 4                       |                                                                                                              |                                                           |                                                             |                          | SS-3 Lab results:                                            | MC 21.1%.                                               |                 |
| _                  |                  | 1 15'                             | 5<br>4                  |                                                                                                              |                                                           |                                                             |                          | On 2/19/18 used                                              | 5013 31141 p.                                           |                 |
| 5—                 | SS-3             | 57.5%                             | 5                       |                                                                                                              |                                                           |                                                             |                          | Ingersoll-Rand T3<br>to ream borehole                        | 3W rotary rig<br>to 20.0' using                         |                 |
| 6—                 |                  |                                   | 4                       | Change at 6.0'.                                                                                              | , and light alive h                                       |                                                             |                          | 10" air hammer b<br>permanent 6" PV                          | it and set<br>C casing.                                 |                 |
| -                  |                  | 4.01                              | 3<br>9                  | and 5/4 - 6/6) highly to completely                                                                          | weathered SHAI                                            | E (SAPROLITE).                                              |                          | Casing sealed with<br>bentonite grout.                       | th cement                                               |                 |
| 7—                 | SS-4             | 90%                               | 19                      | bluish gray (10Y 7/1 - 10GY 7/1) z                                                                           | ones. Trace to f                                          | emsni gray to light<br>ew dark reddish br                   | rown                     | No reaction with I<br>Remnant bedding                        | HCI.<br>Langle is                                       |                 |
| 8                  |                  |                                   | 23                      | but are difficult to follow. Sample i                                                                        | is moldable with                                          | added water. Low                                            | to                       | approximately 45                                             |                                                         |                 |
| -                  |                  | 0.01                              | 39<br>47                | bedded. Very hard when classifier                                                                            | d as soil. Slightly                                       | moist to dry. Hig                                           | hly                      | Possibly ML-CL II                                            | i part.                                                 |                 |
| 9—                 | SS-5             | 2.0°<br>100%                      | 51                      | to completely weathered. SAPRO                                                                               |                                                           |                                                             |                          | Carbonates leach                                             | ed from                                                 |                 |
| 10-                |                  |                                   | 70                      |                                                                                                              |                                                           |                                                             |                          | formation.                                                   |                                                         |                 |
| -                  |                  |                                   | 6                       |                                                                                                              |                                                           |                                                             |                          | SS-4 Lab results:<br>7.8% Gravel; 52.8                       | MC 14.6%;<br>3% Sand;                                   |                 |
| 11 —               | SS-6             | 1.8'<br>90%                       | 24<br>56                |                                                                                                              |                                                           |                                                             |                          | 39.4% Fines.<br>SS-6 Lab results:                            | MC 8.4%.                                                |                 |
| -<br>12            |                  |                                   | 100                     | Below 11.5' color is primarily bluis                                                                         | h gray (5G 6/1 - ′<br>X 7/1 - 10GX 7/1                    | 0GY 6/1) to light                                           |                          | SS-7 Lab results:                                            | MC 8.7%.                                                |                 |
| -                  |                  |                                   | 16                      | Transitioning into weathered bedro                                                                           | ock with depth.                                           | nginy weather                                               |                          | SS-8 No reaction<br>Trace wet on SS-                         | with HCl.<br>8 sampler tip                              |                 |
| 13—                | SS-7             | 1.4'<br>70%                       | ວ∠<br>44                |                                                                                                              |                                                           |                                                             | -[]                      | and within sample<br>SS-9 Lab results:                       | e.<br>MC 4.3%.                                          |                 |
| - 11-              |                  |                                   | 84                      |                                                                                                              |                                                           |                                                             |                          |                                                              |                                                         |                 |
| -                  | SS-8             | 0.3'/100%                         | 100/5                   | SS-8 recovery is wet.                                                                                        |                                                           |                                                             |                          | After augering to measured at 13.9                           | 20.0' WL<br>4' from GS at                               |                 |
| 15—                | NS               |                                   |                         | Underlying contact may be as high                                                                            | n as 14.3'.                                               |                                                             |                          | 1341 ( 1 hr. 31 m<br>drilling stopped).<br>at 1445, TD = 20. | ins after<br>WL = 10.85'<br>0'.                         |                 |
| 16—                |                  |                                   | 21                      | Change at 16.0<br>Interbedded greenish gray to dark                                                          | greenish gray (5                                          | BG 5/1 - 4/1 and 1                                          |                          | SS-9 1.5' of split I                                         | parrel was                                              |                 |
| _<br>17 —          | SS-9             | 1.3'<br>92.3%                     | 89<br>100/4             | 5/1 - 4/1) SHALE and LIMESTONI<br>as calcareous siltstone. Trace to s<br>associated with fractures with pool | E. Some limesto<br>some reddish bro<br>rly defined trace. | ne seams may cla<br>wn iron oxide,<br>Structure is also     | ssify                    | wet.<br>16.0' - 16.5' is we                                  | t.                                                      |                 |
| - 18               | NS               |                                   | 100/4                   | with the sampling process. Soft to weathered. At least partially wet (                                       | medium hard. ∃<br>SS-9 recovery, b                        | hinly bedded. Hig<br>ottom of sample w                      | ghly<br>/as              |                                                              |                                                         |                 |
| - 10               | SS-10            | 0.2'/100%                         | 100/2                   | moist, SS-10 recovery was wet).                                                                              | -                                                         | ·                                                           |                          | Strong reaction w                                            | ith HCL.                                                |                 |
| 19 <i>—</i><br>_   | NS               |                                   |                         |                                                                                                              |                                                           |                                                             |                          | 18.2'. Augered to<br>2/17/18 and switc<br>HQ3 core, water of | b, sampled to<br>20.0' on<br>th over to<br>circulation. |                 |

# Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-986

| Remark                               | (S:              |                                   |                         |                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                        |      |
|--------------------------------------|------------------|-----------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Depth<br>(feet)                      | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                | Graphic<br>Log | Remarks                                                                                                                                                                                                                                                                                                                                                                                | nscs |
| -<br>21—                             | C-1              | 1.3'<br>65%                       | 0%                      | Interbedded dark gray to very dark gray (N 5/ - 4/) SHALE and gray to dark gray (N 4/ - N 3/) LIMESTONE. Thinly bedded, beds generally less than 0.2', partings and very thin seams <1/4". Trace, healed, calcite (white) filled (<2 mm) fractures oriented perpendicular to bedding. Medium hard to hard limestone. Field strength is moderate to strong, but    |                | Shale, no reaction with HCI.<br>Limestone, strong reaction with<br>HCI. Bedding angle is<br>approximately 45° (very broken<br>sample). Below 22.0' bedding                                                                                                                                                                                                                             |      |
| 22<br>23<br>24<br>25<br>26<br><br>27 | C-2              | 2.3'<br>46%                       | 0%                      | limestone beds. Soft shale. Generally fresh with oxidation on some<br>broken bedding contacts. Highly fractured, but most appear to be<br>bedding breaks. Mechanical breaks along bedding is common. Bedding<br>is deformed, wavey contacts between beds. Some thin limestone beds<br>have discontinuous beds. Trace bioturbidation along some bedding<br>breaks. |                | 22.25' - 22.35, 22.7' - 22.85',<br>and 22.9' - 23.05' Bedding<br>breaks with reddish brown to<br>yellowish brown oxidation on<br>bedding plane. Iron oxide<br>precipitate.<br>C-1 20.0' - 22.0' 1030-1040.<br>C-2 22.0' - 27.0' 1058-1134.<br>23.6' - 24.3' Highly broken<br>gravel size fragments. Trace<br>iron oxide faces.<br>C-2 Lost recovery, most likely<br>from bottom of run |      |
| 27                                   | C-3              | 0.0' 0%                           | 0%                      | C-3 Run, core barrel did not latch. No recovery.                                                                                                                                                                                                                                                                                                                  |                | from bottom of run.<br>C-3 27.0' - 32.0' 1157-1232.<br>C-4 32.0' - 32.9' 0914-0930.<br>C-5 32.9' - 34.6' 1010-1027.<br>C-6 34.6' - 36.1' 1113-1119.<br>C-3 and C-4 runs cutting<br>returns were gray.                                                                                                                                                                                  |      |
| 32                                   | C-4              | 0.0' 0%                           | 0%                      | Oxidation/weathering not observed below 33.0'.                                                                                                                                                                                                                                                                                                                    |                | End 2/1//18, 1232 at 32.0'.<br>Stopped due to rain.<br>Begin 2/18/18, 35°F, sunny,<br>0800. WL = 2.15' at 0801.<br>Stort coring at 0014                                                                                                                                                                                                                                                |      |
|                                      | C-5              | 1.5'<br>88.2%                     | 0%                      | 33.0' - 33.2' Limestone seam. Unweathered.<br>Below 34.6' approximately 50% limestone, 50% shale. Thinly<br>interhedded. Soft sediment deformation. Wavey to discontinuous                                                                                                                                                                                        |                | Start coning at 0914.                                                                                                                                                                                                                                                                                                                                                                  |      |
| 35—<br>-<br>36—                      | C-6              | 1.5'<br>100%<br>1.2'              | 0%                      | <ul> <li>35.1' - 35.4' Gray to dark gray interclastic limestone. Elongated clasts oriented with bedding angle, up to 1 1/4" long by 3/4" high. Trace calcite filled/healed fracture, oriented perpendicular to bedding. Trace, very fine</li> </ul>                                                                                                               |                | Below 35.1' healed (white<br>calcite filled) fractures are<br>more prominent, generally less<br>than 1 mm width. Often the<br>fractures are associated with                                                                                                                                                                                                                            |      |
| 37—<br>                              | C 2              | 2.4'                              | 0%                      | Below 37.9' primarily dark bluish gray to very dark bluish gray (5B 4/1 - 3/1) to greenish black (5GY 2/1) shale with gray to dark gray (N 5/ N 4/1)                                                                                                                                                                                                              |                | terminate in shale beds.<br>C-6 Recovered 0.3' of C-5 run.<br>Bedding angle ~45°.                                                                                                                                                                                                                                                                                                      |      |
| -<br>39<br>-<br>40                   |                  | 86%                               | 0,0                     | limestone partings. Approx. 45° bedding angle. Continues to be thinly bedded. Trace bioturbidation. Bedding continues to be deformed, wavey, and discontinuous in places.                                                                                                                                                                                         |                | Core breaks easily along<br>bedding contacts between<br>shale and limestone.                                                                                                                                                                                                                                                                                                           |      |
|                                      | C-9              | 2.2'<br>100%                      | 54.1%                   | 40.7' - 41.8' Shale seam. Trace white calcite filled/healed fractures, perpendicular to bedding.                                                                                                                                                                                                                                                                  |                | Bedding angle ~45°.<br>C-7 36 1' - 37 0' 1127-1131                                                                                                                                                                                                                                                                                                                                     |      |
| 42<br>43<br>44                       | C-10             | 2.6'<br>100%                      | 0%                      | Below 42.6' bedding changes from 45° to 70° by 42.8'. By 43.2' bedding angle changes back to 45°-50°.                                                                                                                                                                                                                                                             |                | C-8 37.0' - 39.8' 1250-1305.<br>C-9 39.8' - 42.0' 1314-1324.<br>C-10 42.0' - 44.6' 1330-1344.<br>C-11 44.6' - 47.0' 1355-1406.                                                                                                                                                                                                                                                         |      |
|                                      | C-11             | 2 /                               | 0%                      |                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                        |      |

| EN                | EMDF Characterization Project<br>Oak Ridge, TN BOREHOLE LOG |                                   |                         |                                      |                                                                                                                                              | Bo             | Boring Number<br>GW-986                                                                                                                         |      |  |  |
|-------------------|-------------------------------------------------------------|-----------------------------------|-------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| Remark            | (S:                                                         |                                   |                         |                                      |                                                                                                                                              |                |                                                                                                                                                 |      |  |  |
| Depth<br>(feet)   | Sample<br>Method                                            | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                      | SAMPLE DESCRIPTION                                                                                                                           | Graphic<br>Log | Remarks                                                                                                                                         | NSCS |  |  |
| -<br>46           | C-11                                                        | 2.4'<br>100%                      | 0%                      | Interbedde<br>greenish b<br>LIMESTO  | ed dark bluish gray to very dark bluish gray (5B 4/1 - 3/1) and<br>black (5G 2/1) SHALE and gray to dark gray (N 5/ - N 4/)<br>NE. (Cont'd.) |                | Continues to be broken along<br>bedding planes. Calcite<br>precipitates are usually<br>present, and generally the<br>surfaces have depositional |      |  |  |
| 47 —              |                                                             |                                   |                         |                                      |                                                                                                                                              |                | appear to be mechanical,<br>typically at intervals between<br>0.3' to less than 0.1'                                                            |      |  |  |
| 48—<br>           | C-12                                                        | 2.3 <sup>,</sup><br>100%          | 0%                      | 47.8 - 48.<br>(<1 mm).<br>oriented w | Trace (rare) pyrite nodules (<1 mm). Clasts elongated and ith bedding.                                                                       |                | C-12 47.0' - 49.3' 1412-1423.                                                                                                                   |      |  |  |
|                   |                                                             |                                   |                         | At 49.8' fra<br>broken fac           | acture (appears mechanically broken), 2 mm calcite filled,<br>se is striated at an orientation 30° from the fracture angle.                  |                | C-13 49.3' - 52.0' 1431-1502.<br>Stopped for water from 1430' -                                                                                 |      |  |  |
| _<br>51 —         | C-13                                                        | 2.7'<br>100%                      | 13%                     | At 50.2' fra<br>pyrite on f          | acture following bedding plane, face is polished with very fine ace.                                                                         |                | 1454'.                                                                                                                                          |      |  |  |
| -<br>52—          |                                                             |                                   |                         | At 50.5' ho                          | orizontal break, rough face. Trace pyrite.                                                                                                   |                | C-14 52.0' - 55.0' 1508-1520.<br>45° Bedding angle.                                                                                             |      |  |  |
|                   | C-14                                                        | 2.9'                              | 0%                      |                                      |                                                                                                                                              |                | 52.7' - 53.3' ~50° Bedding<br>angle.                                                                                                            |      |  |  |
| 54 —<br>_         |                                                             | 97%                               | 0,0                     |                                      |                                                                                                                                              |                |                                                                                                                                                 |      |  |  |
| 55 —<br>_         |                                                             |                                   |                         |                                      |                                                                                                                                              |                | Finished coring 2/18/18 at<br>1520. WL = 10.5' from GS at                                                                                       |      |  |  |
| 56 —<br>-         |                                                             |                                   |                         |                                      |                                                                                                                                              |                | - 1334.                                                                                                                                         |      |  |  |
| 57 —<br>-<br>58 — | NS                                                          |                                   |                         |                                      |                                                                                                                                              |                |                                                                                                                                                 |      |  |  |
| -<br>59 —         |                                                             |                                   |                         |                                      |                                                                                                                                              |                |                                                                                                                                                 |      |  |  |
| 60                |                                                             |                                   |                         | Bottom of                            | Borehole = 59.6'.<br>er GW-986 installed in borehole. See Monitoring Well                                                                    |                | On 2/20/18 using<br>Ingersoll-Rand T3W rotary rig,<br>reamed corehole and                                                                       |      |  |  |
| 61 —<br>_         |                                                             |                                   |                         | Installation                         | n Report GW-986 for details.                                                                                                                 |                | advanced borehole using 5<br>7/8" tricone bit with air and<br>water circulation. Finished at                                                    |      |  |  |
| 62 <i>—</i><br>-  |                                                             |                                   |                         |                                      |                                                                                                                                              | _              | 1240.                                                                                                                                           |      |  |  |
| 63 —              |                                                             |                                   |                         |                                      |                                                                                                                                              | _              |                                                                                                                                                 |      |  |  |
| 64 —<br>          |                                                             |                                   |                         |                                      |                                                                                                                                              | _              |                                                                                                                                                 |      |  |  |
| 66-               |                                                             |                                   |                         |                                      |                                                                                                                                              |                |                                                                                                                                                 |      |  |  |
| -<br>67           |                                                             |                                   |                         |                                      |                                                                                                                                              | -              |                                                                                                                                                 |      |  |  |
| -<br>68 —         |                                                             |                                   |                         |                                      |                                                                                                                                              | -              |                                                                                                                                                 |      |  |  |
| 69 —              |                                                             |                                   |                         |                                      |                                                                                                                                              |                |                                                                                                                                                 |      |  |  |
|                   |                                                             |                                   |                         |                                      |                                                                                                                                              |                |                                                                                                                                                 |      |  |  |

BOREHOLE LOG V.2 OAK RIDGE GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

| Eago              | on & A                        | Associa                                   | tes, I       | nc.                                    |              |                      |                                           |                   |                          |                                        | Well<br>G | Numb<br>W-986 | )er    |
|-------------------|-------------------------------|-------------------------------------------|--------------|----------------------------------------|--------------|----------------------|-------------------------------------------|-------------------|--------------------------|----------------------------------------|-----------|---------------|--------|
|                   |                               | Ν                                         | Ionit        | oring                                  | Wel          | l Ins                | tallation R                               | epc               | ort                      |                                        |           | ť             |        |
| Site Nam          | ne and Lo                     | cation: EMI                               | OF Chara     | cterization F                          | Project, O   | ak Ridge             | TN                                        | Co                | mpletion D               | Date: 3/8/18                           |           |               | C      |
| Coordina          | ates: 301                     | 30.30N 381                                | 91.80E       |                                        |              | Во                   | ehole Depth (ft): 59.                     | 6                 |                          |                                        |           |               |        |
| Elevatior         | n Top of C                    | asing (ft/MS                              | SL): 932.    | 37                                     |              | Во                   | ehole Diameter (in)::                     | 10" (0'-2         | 20.0'), 5 7/8            | (20.0'-59.6')                          |           |               |        |
| Elevatior         | Ground                        | Surface (ft/N                             | /ISL): 93    | 0.2                                    |              | Dri                  | 3 1/4" I<br>ling Methods: circulat        | D HSA<br>tion, 10 | , HQ3 Core<br>" air hamm | e with water<br>er bit, 5 7/8" tricone |           |               | 1(     |
| Installed         | Bv: Fred                      | Revnolds/T                                | ri-State D   | Drillina                               |              | Co                   | <i>bit with</i><br>npleted Drilling: 2/20 | air/wai<br>0/18   | ter.                     |                                        |           |               |        |
| Supervis          | ed By: S                      | hav Reanlan                               | d/Fagon      | & Associate                            | s Inc        | Dri                  | ling Water Used (gal                      | s).               |                          |                                        |           |               |        |
|                   |                               | lay Douman                                | a/Lagon      |                                        |              |                      |                                           | 0).               |                          |                                        |           |               |        |
|                   |                               |                                           |              |                                        | vvei         |                      | sign                                      |                   |                          |                                        |           |               | 20     |
|                   | Com                           | ponent                                    |              |                                        |              | Materials            |                                           | Dept              | h (LSD)                  | Elevation                              |           |               |        |
| Well P            | rotector                      |                                           |              | 4" Squa                                | re Steel     | Protecto             |                                           | -2.               | 5 - 2.6                  | 932.7 - 927.7                          |           |               |        |
| Riser             |                               |                                           |              | 2" ID Sc                               | hedule 4     | 10 PVC               |                                           | -2.2              | 2 - 41.0                 | 932.4 - 889.3                          |           |               |        |
| Surfac            | e Seal                        |                                           |              | 3' x 3' C                              | oncrete l    | Pad                  |                                           | -0.               | 5 - 0.5                  | 930.7 - 929.7                          |           |               | 3      |
| Condu             | ctor Casir                    | ng                                        |              | 6" ID Sc                               | :h. 40 P∖    | /C, Flush            | Threaded                                  | -0.4              | - 20.0                   | 930.6 - 910.2                          |           |               |        |
| Cemer             | nt Grout                      |                                           |              | Cement                                 | Bentonit     | te Grout             |                                           | 0.5               | - 35.8                   | 929.7 - 894.4                          |           |               |        |
| Bentor            | nite Seal                     |                                           |              | Pel Plug                               | j 1/4" Co    | ated Ber             | tonite Pellets                            | 35.8              | 3 - 38.6                 | 894.4 - 891.6                          |           |               |        |
| Sand F            | Pack                          |                                           |              | DSI "GF                                | 9 #2" Gra    | vel Pack             |                                           | 38.6              | 6 - 47.6                 | 891.6 - 882.7                          |           |               | 4      |
| Screer            | ۱                             |                                           |              | 2" ID Sc                               | hedule 4     | 10 PVC, <sup>-</sup> | 0-Slot                                    | 41.0              | ) - 46.0                 | 889.3 - 884.2                          |           |               |        |
| Well P            | oint Blank                    | (                                         |              | 2" ID Sc                               | h. 40 P∖     | /C Cap &             | Riser Section                             | 46.0              | ) - 47.6                 | 884.2 - 882.7                          |           |               |        |
| Sand F            | Pack Botto                    | om                                        |              | DSI "GF                                | 9 #2" Gra    | vel Pack             |                                           | 47.6              | 6 - 48.0                 | 882.7 - 882.2                          |           |               | _      |
| Bentor            | nite Seal                     |                                           |              | Pel Plug                               | j 1/4" Co    | ated Ber             | tonite Pellets                            | 48.0              | ) - 59.6                 | 882.2 - 870.6                          |           |               | 5      |
|                   |                               |                                           |              | We                                     | ell De       | evelo                | opment                                    |                   |                          |                                        |           |               |        |
| Well Dep<br>49.70 | oth (ft,TO0<br>0<br>ment Meth | C):                                       | Depth<br>6.3 | to Water (ft<br>38                     | ,TOC):       | We                   | ll Volume (gals):<br>7.1                  |                   | Volume F<br>156.0        | Purged (gals):<br>)                    |           |               |        |
| Surge b           | lock, bailer,                 | mega purger                               | whale pu     | mp                                     |              |                      |                                           |                   |                          |                                        |           | ****          | 60     |
| Date              | Time                          | Cumulative<br>Volume<br>Removed<br>(gals) | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidit<br>(NTU)    | Recovery                                  | Data              |                          |                                        |           |               |        |
| 3/1/18            | 0848                          | 89                                        | 15.4         | 520                                    | 7.42         | 24.8                 | 100                                       |                   |                          |                                        |           |               |        |
| 3/1/18            | 1422                          | 97                                        | 14.9         | 560                                    | 7.37         | 210.0                | (%)                                       |                   |                          |                                        |           |               | 70     |
| 3/1/18            | 1557                          | 139                                       | 14.6         | 486                                    | 7.41         | 229.0                |                                           |                   |                          |                                        |           |               |        |
| 3/1/18            | 1612                          | 145                                       | 15.1         | 494.6                                  | 7.43         | 82.2                 | □                                         |                   |                          |                                        |           |               |        |
| 3/1/18            | 1627                          | 149                                       | 15.0         | 495                                    | 7.44         | 119.0                | 0                                         | 4                 | 0                        | 80 120                                 |           |               | R      |
| 3/1/18            | 1652                          | 156                                       | 14.8         | 488                                    | 7.45         | 28.2                 |                                           | Ti                | me (minute               | es)                                    |           |               |        |
| Samplinę          | g Equipme                     | ent:                                      |              | 1                                      |              | 1                    |                                           |                   |                          |                                        | 1         |               |        |
| Commer            | nts:                          |                                           |              |                                        |              |                      |                                           |                   |                          |                                        | 4         |               |        |
| Commen            |                               |                                           |              |                                        |              |                      |                                           |                   |                          |                                        |           |               |        |
| Grout m           | nixing and p                  | lacement info                             | rmation pr   | ovided by Tri-                         | State Drill  | ing. Scree           | n slot interval from 41.1                 | - 45.9 b          | gs.                      |                                        | Boring    | depth=59      | .6 ft. |

|                    |                  |                                  |                         | BO                                                                                                                                                                                                                                                 | REHOLE                                                                                                                                                                                                                                                                                                                                                                                                         | LOG                                                                                                                        |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
|--------------------|------------------|----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| Site Na<br>and Loo | me<br>cation:    | E                                | MDF Ch<br>C             | naracterization Project<br>Dak Ridge, TN                                                                                                                                                                                                           | Drilling Methods<br>4 1/4" ID H<br>bit 5 7/8" tr                                                                                                                                                                                                                                                                                                                                                               | S:<br>SA, HQ3 Core with<br>ricone bit with air/wa                                                                          | water cire                                          | culatior               | n, 10" air hammer                                                                                                                           | Boring Nun                                                                                     | nber:<br>007    |  |  |  |  |
| Drilling           | Firm: 7          | ri-State D                       | rilling                 |                                                                                                                                                                                                                                                    | DATE                                                                                                                                                                                                                                                                                                                                                                                                           | TIME                                                                                                                       | DEF                                                 | PTH<br>ED (ft)         | WATER<br>LEVEL (ft)                                                                                                                         | Gw-                                                                                            | 70/             |  |  |  |  |
| Driller /          | Rig: Sł          | annon Sr                         | now/CME                 | -550                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        |                                                                                                                                             | Page                                                                                           | 1 of 2          |  |  |  |  |
| Logged             | by: Da           | vid J. Sug                       | gar                     |                                                                                                                                                                                                                                                    | ST = Shelby Tub                                                                                                                                                                                                                                                                                                                                                                                                | <u>Sampling M</u><br>be                                                                                                    | ethods:                                             | SS = 5                 | Split Spoon                                                                                                                                 | Start                                                                                          | Finich          |  |  |  |  |
| Coordin            | nates: 3         | 0138.34N                         | I 38194.                | 40E                                                                                                                                                                                                                                                | WS = Waxed Sa<br>SP = Sand Pump                                                                                                                                                                                                                                                                                                                                                                                | mple<br>o                                                                                                                  |                                                     | CS = 0<br>C = 0        | Continuous Sampler<br>Coring                                                                                                                | Time                                                                                           | Time            |  |  |  |  |
| Surface            | Elevati          | on: 930.5                        | 5 ft/MSL                |                                                                                                                                                                                                                                                    | GP or DP = Direc<br>CT = Cuttings                                                                                                                                                                                                                                                                                                                                                                              | ct Push                                                                                                                    |                                                     | NS = I<br>B = Ba       | Not Sampled<br>ailer                                                                                                                        | 1410                                                                                           | 1102<br>Data    |  |  |  |  |
| Surface            | Conditi          | ons / Wea                        | ather: <i>Fla</i>       | at, gravel pad / 65°F, Mostly sunny                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        |                                                                                                                                             | 2/20/18                                                                                        | Date<br>2/21/18 |  |  |  |  |
| Remark             | s: Bore          | hole insta                       | illed for th            | ne collection of geotech samples and                                                                                                                                                                                                               | l installation of sh                                                                                                                                                                                                                                                                                                                                                                                           | allow piezometer.                                                                                                          |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| Depth<br>(feet)    | Sample<br>Method | Sample<br>Recovery<br>feet or %) | slows/6 in<br>or<br>RQD | SAMPLE I                                                                                                                                                                                                                                           | DESCRIPTI                                                                                                                                                                                                                                                                                                                                                                                                      | ON                                                                                                                         |                                                     | Graphic<br>Log         | Rema                                                                                                                                        | arks                                                                                           | nscs            |  |  |  |  |
| - 1                | NS               |                                  |                         | See adjacent Borehole Log GW-9 stratigraphic interpretation.                                                                                                                                                                                       | and _<br>                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | 4 1/4" ID HSA, ra<br>while augering. 8<br>Borehole. | n auger plug<br>3 1/2" | CL                                                                                                                                          |                                                                                                |                 |  |  |  |  |
| 2—<br>3—           | ST-1             | 0.90                             | 700                     | Description based on bottom of S <sup>2</sup><br>(7.5YR 5/4 - 4/6) SILTY CLAY. Tr<br>shale fragments, coarse sand to g<br>toughness, and dry strength. Mois                                                                                        | iption based on bottom of ST-1 recovery. Brown to strong brown<br>R 5/4 - 4/6) SILTY CLAY. Trace highly to completely weathered<br>fragments, coarse sand to gravel size. Unsorted. high plasticity,<br>ness, and dry strength. Moist. Weathered. SUBSOIL.<br>action with HCI.<br>Collected after completing GW-987; moved rig 3' off of GW-987 and<br>ed sample from 2 0' - 4 0' Recovered 2 1' 700 PSI press |                                                                                                                            |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| 4                  |                  |                                  |                         | ST-3 Collected after completing G<br>pressed sample from 2.0' - 4.0'.                                                                                                                                                                              | Inness, and dry strength. Moist. Weathered. SUBSOIL.<br>eaction with HCl.<br>3 Collected after completing GW-987; moved rig 3' off of GW-987 and<br>used sample from 2.0' - 4.0'. Recovered 2.1', 700 PSI press.                                                                                                                                                                                               |                                                                                                                            |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| 5—                 | NS               |                                  |                         | 1 1                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            | _                                                   |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| -<br>6-            |                  |                                  |                         | Change at 6.0'                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| -<br>7             | ST-2             | 1.75                             | 1000                    | Description based on bottom of S<br>yellowish brown to light olive brow<br>completely weathered SHALE (SA<br>bedding angle, Highly fractured w                                                                                                     | T-2 recovery: Lig<br>n (2.5Y 6/4 - 6/6)<br>APROLITE). This<br>with black iron oxid                                                                                                                                                                                                                                                                                                                             | ht yellowish brown<br>highly weathered<br>hy bedded (<1/2")                                                                | n, –<br>to –<br>high –                              |                        | BS-2 collected fro<br>No reaction with<br>to mold sample w<br>water.                                                                        | om 6.0' - 8.5'<br>HCI. Difficult<br>/ith added                                                 | ML              |  |  |  |  |
| 8                  |                  |                                  |                         | Moist.                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| 9—                 |                  |                                  |                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | _                                                   |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| 10                 |                  |                                  |                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| 11                 |                  |                                  |                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| -<br>13-           | NS               |                                  |                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | -                                                   |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| <br>14             |                  |                                  |                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| 15                 |                  |                                  |                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        | Below 17.5' switc<br>core, water circul                                                                                                     | h to HQ3<br>ation.                                                                             |                 |  |  |  |  |
| 16—<br>-           |                  |                                  |                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| 17 —               |                  |                                  |                         | Change at 17.5'.                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                     |                        |                                                                                                                                             |                                                                                                |                 |  |  |  |  |
| 18—<br><br>19—     | C-1              | 1.8'<br>72%                      | 0%                      | Interbedded dark gray to olive gra<br>LIMESTONE to CALCAREOUS S<br>fractures, oriented perpendicular t<br>bedded, generally less than 0.1' th<br>Moderate to highly decomposed.<br>seams are hard. Weathered.<br>Below 20.0' color changes to dark | y (5Y 4/1 - 4/2) S<br>ILTSTONE. Trac<br>o bedding, <2 mr<br>nick, oriented at a<br>Shale seams are<br>gray, very dark g                                                                                                                                                                                                                                                                                        | HALE and<br>ce white calcite fille<br>n width. Thinly<br>r relatively high ang<br>soft. Limestone<br>gray (N 4/ - N 3/) an | ed<br>gle<br>nd                                     |                        | Highly fractured.<br>along bedding, tr.<br>oriented perpend<br>bedding. Fractur<br>generally coated<br>manganese oxide<br>C-1 17.5' - 20.0' | Primarily<br>ace fractures<br>icular to<br>e faces are<br>with<br>e precipitates<br>1554-1615. |                 |  |  |  |  |

| E               | MDF C            | Characteri<br>Oak Ridg            | zation F<br>e, TN       | Project                              | BOREHOLE LOG                                                                                                                                                            | Bor            | ring Number<br>GW-987                                                                                                |      |
|-----------------|------------------|-----------------------------------|-------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------|------|
| Remark          | ks: Bor          | ehole insta                       | illed for t             | he collection                        | of geotech samples and installation of shallow piezometer.                                                                                                              |                |                                                                                                                      |      |
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                      | SAMPLE DESCRIPTION                                                                                                                                                      | Graphic<br>Log | Remarks                                                                                                              | nscs |
| - 21-           | C-2              | 1.2'<br>32%                       | 0%                      | gray-dark<br>Interbedd<br>dark gray  | gray (N 5/ - 4/).<br>ed dark gray to very dark gray (N 4/ - N 3/) SHALE and gray to<br>(N 5/ - 4/) LIMESTONE.                                                           |                | Becoming unweathered.<br>Limestone reacts strong with<br>HCI. Shale does not react.<br>20.0' - 20.3' Trace yellowish |      |
| - 22            | C-3              | 0.7'/100%                         | 0%                      | along bed                            | ding planes. Breaks appear mechanical.                                                                                                                                  |                | brown oxidation. Highly<br>broken.<br>~45° Bedding angle. End                                                        |      |
| -<br>23—        |                  |                                   |                         | oxide on l                           | bedding breaks.                                                                                                                                                         |                | 2/20/18, 1707 at 21.3'. Begin<br>2/21/18, 0909. WL at 0835 =<br>1.2' from GS_65°E_light rain                         |      |
| -<br>24 —       |                  | 4.0'                              | 100/                    | to very da                           | rk gray.                                                                                                                                                                |                | 22.4' - 22.8' Several bedding                                                                                        |      |
| -<br>25—        | C-4              | 89%                               | 16%                     | Trace gla<br>Continues<br>are deforr | iconite nodules, generally associated with limestone seams.<br>to be thinly bedded (<0.1 <sup>1</sup> beds). Bedding contacts generally<br>ned and have bioturbidation. |                | breaks with oxidized (yellowish<br>brown) faces. Fracture<br>perpendicular to bedding angle<br>is also oxidized.     |      |
| 26-             |                  |                                   |                         | At 23.2' se<br>Consister             | econdary calcite on bedding break, thin coating.<br>t thinly bedded shale and limestone, ~40% limestone, 60%                                                            |                | Below 22.8'<br>oxidation/weathering not<br>observed.                                                                 |      |
| 27              | NS               |                                   |                         | shale.                               |                                                                                                                                                                         |                | C-2 20.0' - 21.3' 1640-1707.<br>C-3 21.3' - 22.0' 0909-0926.<br>C-4 22.0' - 26.5' 0932-0952.                         |      |
| 28-             |                  |                                   |                         | Bottom of                            | Borehole = 27.9'.                                                                                                                                                       |                | Finished coring at 0952, 2/21/18. Overdrilled corehole                                                               |      |
| 29-             |                  |                                   |                         | Piezomete<br>report GV               | er GW-987 installed in borehole. See monitoring well installation //-987 for details.                                                                                   | _              | with HSA and advanced<br>borehole to 27.9'. Finished<br>auger drilling at 1102.                                      |      |
| 30-             |                  |                                   |                         |                                      |                                                                                                                                                                         | _              |                                                                                                                      |      |
| 31-             |                  |                                   |                         |                                      |                                                                                                                                                                         |                |                                                                                                                      |      |
| 32-             |                  |                                   |                         |                                      |                                                                                                                                                                         | _              |                                                                                                                      |      |
| 33-             |                  |                                   |                         |                                      |                                                                                                                                                                         | _              |                                                                                                                      |      |
| 34—             |                  |                                   |                         |                                      |                                                                                                                                                                         |                |                                                                                                                      |      |
| 35 —            |                  |                                   |                         |                                      |                                                                                                                                                                         |                |                                                                                                                      |      |
| 36              |                  |                                   |                         |                                      |                                                                                                                                                                         |                |                                                                                                                      |      |
| 37 —            | -                |                                   |                         |                                      |                                                                                                                                                                         | _              |                                                                                                                      |      |
| 38              |                  |                                   |                         |                                      |                                                                                                                                                                         | _              |                                                                                                                      |      |
| 39              |                  |                                   |                         |                                      |                                                                                                                                                                         | _              |                                                                                                                      |      |
| 40              |                  |                                   |                         |                                      |                                                                                                                                                                         | _              |                                                                                                                      |      |
| 41-             |                  |                                   |                         |                                      |                                                                                                                                                                         |                |                                                                                                                      |      |
| 42              |                  |                                   |                         |                                      |                                                                                                                                                                         |                |                                                                                                                      |      |
| 43              |                  |                                   |                         |                                      |                                                                                                                                                                         |                |                                                                                                                      |      |
| 44              |                  |                                   |                         |                                      |                                                                                                                                                                         |                |                                                                                                                      |      |

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

| Eago                         | <b>n &amp;</b> A              | ssocia                      | ites, I      | Inc.                                   |              |                    |                                    |                                 |                                     | Well N<br>GW | Numbe<br>/-987 |
|------------------------------|-------------------------------|-----------------------------|--------------|----------------------------------------|--------------|--------------------|------------------------------------|---------------------------------|-------------------------------------|--------------|----------------|
|                              |                               | Μ                           | onit         | oring                                  | Wel          | l Inst             | allation R                         | eport                           |                                     | - I          | -              |
| Site Nam                     | e and Loc                     | ation: EM                   | DF Char      | acterization                           | Project,     | Oak Ridge          | , TN                               | Completio                       | n Date: <i>3/8/18</i>               |              |                |
| Coordina                     | tes: 3013                     | 88.34N 38                   | 194.40E      |                                        |              | Bore               | Borehole Depth (ft): 27.9          |                                 |                                     |              |                |
| Elevation                    | Top of C                      | asing (ft/M                 | SL): 932     | .94                                    |              | Bore               | hole Diameter (in):7               | 1/2"                            |                                     |              |                |
| Elevation                    | Ground S                      | Surface (ft/l               | MSL): 93     | 30.5                                   |              | Drilli             | 4 1/4" II<br>ng Methods: circulati | D HSA, HQ3 (<br>ion, 10" air ha | Core with water<br>mmer bit, 5 7/8" |              |                |
| Installed                    | By: Shan                      | non Snow/                   | Tri-State    | Drilling                               |              | Corr               | pleted Drilling: 2/21              | bit with air/wa<br>/18          | ter.                                |              |                |
| Supervis                     | ed By: Da                     | avid J. Sug                 | ar/Eagon     | & Associat                             | es, Inc.     | Drilli             | ng Water Used (gals                | s): <b>75</b> 0                 |                                     |              |                |
|                              |                               |                             |              |                                        | Wal          |                    | ian                                |                                 |                                     |              |                |
|                              | 0                             |                             |              |                                        | WEI          |                    | ign                                |                                 |                                     |              |                |
|                              | Comp                          | onent                       |              |                                        |              | Materials          |                                    | Depth (LSD)                     | Elevation                           |              |                |
| Well Pi                      | rotector                      |                             |              | 4" Squa                                | are Steel    | w/Locking          | Lid                                | -2.7 - 2.3                      | 933.2 - 928.2                       |              |                |
| Riser                        |                               |                             |              | 2" ID Se                               | chedule 4    | 0 PVC              |                                    | -2.4 - 16.1                     | 932.9 - 914.4                       | _            |                |
| Surface                      | e Seal                        |                             |              | 3' x 3' C                              | Concrete     |                    |                                    | -0.5 - 0.5                      | 931.0 - 930.0                       |              |                |
| Cemer                        | t Grout                       |                             |              | Cemen                                  | t Bentoni    | te Grout           |                                    | 0.5 - 10.9                      | 930.0 - 919.6                       |              |                |
| Benton                       | ite Seal                      |                             |              | Pel-Plu                                | g 1/4" Co    | ated Bent          | onite Pellets                      | 10.9 - 13.3                     | 919.6 - 917.2                       |              |                |
| Sand F                       | Pack                          |                             |              | DSI GP                                 | #2 Grav      | el Pack            |                                    | 13.3 - 27.4                     | 917.2 - 903.1                       |              | FT.            |
| Screen                       | l                             |                             |              | 2" ID Se                               | chedule 4    | 0 PVC, 10          | -Slot                              | 16.1 - 26.1                     | 914.4 - 904.4                       |              |                |
| Well Po                      | oint Blank                    |                             |              | 2" ID Se                               | chedule 4    | 0 PVC Ca           | p and Riser                        | 26.1 - 27.4                     | 904.4 - 903.1                       |              |                |
| Sand F                       | ack Botto                     | m                           |              | DSI GP                                 | #2 Grav      | el Pack            |                                    | 27.4 - 27.9                     | 903.1 - 902.6                       |              |                |
|                              |                               |                             |              |                                        |              |                    |                                    |                                 |                                     |              |                |
|                              |                               |                             |              |                                        |              |                    |                                    |                                 |                                     |              |                |
|                              |                               |                             |              | We                                     | ell De       | evelo              | pment                              |                                 |                                     |              |                |
| Well Dep<br>29.7<br>Developr | oth (ft,TOC<br>7<br>ment Meth | od <sup>.</sup>             | Depth<br>9.  | to Water (fl<br><i>4</i> 9             | t,TOC):      | Well               | Volume (gals):<br>3.3              | Volum                           | ne Purged (gals):<br>10.0           |              |                |
| Bailer, s                    | urge block,                   | Tornado pu                  | тр           |                                        | 1            |                    |                                    |                                 |                                     | _            | 3              |
| Date                         | Time                          | Volume<br>Removed<br>(gals) | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recovery                           | Data                            |                                     |              |                |
| 2/23/18                      | 1510                          | 10.0                        | 16.3         | 364                                    | 7.48         | >1000              | 100                                |                                 |                                     |              |                |
| 2/27/18                      | 1652                          | 17.5                        | 15.6         | 380                                    | 7.57         | >1000              |                                    |                                 |                                     |              | 3              |
| 2/28/18                      | 1620                          | 56.0                        | 15.0         | 411                                    | 7.63         | 810.0              |                                    |                                 |                                     |              |                |
| 3/1/18                       | 0859                          | 66                          | 14.8         | 422                                    | 7.55         | >1000              |                                    |                                 |                                     |              |                |
| 3/2/18                       | 1635                          | 99                          | 14.4         | 433                                    | 7.52         | 129.0              |                                    | 4                               | 8 12                                |              |                |
| 3/3/18                       | 0850                          | 110                         | 14.8         | 437                                    | 7.49         | 68.8               |                                    | Time (mir                       | nutes)                              |              |                |
| Sampling                     | j Equipme                     | nt:                         |              |                                        |              |                    |                                    |                                 |                                     | 1            |                |
| Commen                       | ts:                           |                             |              |                                        |              |                    |                                    |                                 |                                     | -            |                |
| Grout                        | niving and n                  | lacement inf                | ormation r   | provided by T                          | ri-State Dri | illina. Scree      | n slot interval 16.3 - 26          | .1 bas.                         |                                     | Poring d     | nth=37.0       |

|               |               |                           |                  | BC                                                                      | REHOLE                                   | LOG                                       |                     |                                       |                               |                 |
|---------------|---------------|---------------------------|------------------|-------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|---------------------|---------------------------------------|-------------------------------|-----------------|
| Site Na       | me            | E                         | MDF Ch           | naracterization Project                                                 | Drilling Methods                         | HO3 Core w/water                          | r 10" air hamme     | ar bit 5.7/8"                         | Boring Num                    | iber:           |
|               |               |                           | C                | Dak Ridge, TN                                                           | tricone bit                              | v/air/water.                              | DEPTH               | WATER                                 | GW-                           | 988             |
| Drilling      | Firm: 1       | ri-State D                | orilling         |                                                                         | DATE                                     | TIME                                      | DRILLED (ft)        | LÉVEL (ft)                            |                               |                 |
| Driller /     | Rig: Fr       | ed Reync                  | olds/Mobil       | le 42C                                                                  | 2/8/18                                   | 1719<br>Sempling M                        | 51.6                | 19.45                                 | Page                          | 1 of 4          |
| Logged        | by: Ry        | an Hanse                  | l/Nelson         | Novak                                                                   | ST = Shelby Tul                          | sampling M                                | ss = :              | Split Spoon                           | Start                         | Finish          |
| Coordir       | nates: 2      | 9952.471                  | I 38091.         | 14E                                                                     | WS = Waxed Sa                            | mple<br>o                                 | CS = (<br>C = (     | Continuous Sampler<br>Coring          | Time                          | Time            |
| Surface       | e Elevati     | on: 957.(                 | ) ft/MSL         |                                                                         | GP or DP = Dire<br>CT = Cuttings         | ct Push                                   | NS =<br>B = Ba      | Not Sampled<br>ailer                  | 1135                          | 1120            |
| Surface       | e Conditi     | ons / Wea                 | ather: <i>Gi</i> | ravel pad on 10° slope, damp ground                                     | d / 40°, Cloudy, 0·                      | 5 MPH SW                                  |                     |                                       | Date<br>2/7/18                | Date<br>2/22/18 |
| Remark        | ks:           |                           |                  |                                                                         |                                          |                                           |                     |                                       |                               |                 |
| म<br>स        | od            | ery<br>(%)                | 0 II             |                                                                         |                                          |                                           | ic                  |                                       |                               | Ś               |
| Dept<br>(feet | Samp<br>Metho | Samp<br>Recov<br>(feet or | Blows/<br>RQI    | SAMPLE I                                                                | DESCRIPTI                                | ON                                        | Graph<br>Log        | Rema                                  | arks                          | nsc             |
| -             |               |                           | 1                | Reddish yellow to strong brown (7<br>gravel. Sand is fine grained, suba | 7.5YR 7/6 - 5/6) S<br>angular to subrou  | AND. Few silt. So<br>nded, loose, massi   | ome XXXX<br>iveXXXX | Ran 2 1/4" ID Hol<br>Augers (7" OD) w | low Stem<br>/center plug      |                 |
| 1—            | SS-1          | 1.4'<br>70%               | 2                | Low dry strength, slow to rapid dil                                     | atancy. Moist. R<br>action to HCL_RC     | oad base. Below                           | 1.2'                | while augering. F                     | Ran 2" (ÒD)<br>boon sample    | -               |
| -             | -             |                           | 2                | Change at 1.4'.                                                         |                                          |                                           | / =                 | driven by 140 lb h                    | ydraulic                      | ML              |
| 2—            |               |                           | 3                | (7.5YR 6/8 - 5/8) CLAYEY SILT.                                          | Trace fine graine                        | d sand. Trace sha                         | /n<br>lle           | SS-1 Lost return a                    | at top                        | CL              |
|               | 66.2          | 2.0'                      | 4                | fragments that have been weathe<br>Thinly bedded with a mottled appe    | red to gravel, sub<br>earance, very stif | angular to angular<br>, low plasticity.   | . –                 | On 2/20/18 used                       | id base.                      |                 |
|               | 00-2          | 100%                      | 5                | Moderate strength, slow to rapid o                                      | dilatancy. Weathe                        | ered. Moist.                              | _                   | Intersoll-Rand T3<br>to ream borehole | W rotary rig<br>to 36.0' usin | a               |
| 4—            |               |                           | 8                |                                                                         |                                          |                                           | _                   | 10" hammer bit.                       | Set<br>iductor casin          | a               |
| -             | -             | 0.01                      | 4                |                                                                         |                                          |                                           |                     | and sealed with c                     | ement                         | 9               |
| 5—            | SS-3          | 2.0 <sup>°</sup><br>100%  | 8                | Delaw 5 01 ailt langue and norting                                      |                                          |                                           |                     | bentonite grout.                      |                               |                 |
| -             | -             |                           | 9                | present along shale fragments. N                                        | lo reaction with H                       | Cl.                                       |                     | SS-2 Lab results:                     | Moisture                      |                 |
| 6-            |               |                           | 4                |                                                                         |                                          |                                           |                     | Content (MC) 34.                      | 6%.<br>MC 25 1%               |                 |
| 7             | SS-4          | 2.0'                      | 8                |                                                                         |                                          |                                           |                     |                                       | 100 20.170.                   |                 |
| -             |               | 100%                      | 12               |                                                                         |                                          |                                           | -                   | 0.6% Gravel; 42%                      | MC 33.6%;<br>57.4 Sand; 57.4  |                 |
| 8—            |               |                           | 1/               | Shale becoming more competent                                           | with depth. Shal                         | e bedding and                             |                     | Fines.                                |                               |                 |
| -             |               | 2 0'                      | 13               | structure becoming more defined/                                        | intact with depth.                       | Bedding is at 45°                         | . –                 |                                       |                               |                 |
| 9—            | SS-5          | 100%                      | 16               |                                                                         |                                          |                                           |                     |                                       |                               |                 |
| - 10          |               |                           | 19               |                                                                         |                                          |                                           |                     |                                       |                               |                 |
|               | -             |                           | 7                | 11.5' - 11.6' Strong reaction HCI.                                      |                                          |                                           | _                   | SS-6 Lab results:                     | MC 29.8%.                     |                 |
| 11—           | SS-6          | 2.0'                      | 11               | Underlying contact is transitional.                                     |                                          |                                           | _                   |                                       |                               |                 |
| -             |               | 100%                      | 11               | Change at 11.6'.                                                        |                                          |                                           |                     |                                       |                               |                 |
| 12—           |               |                           | 10               | (SAPROLITE). Shale is mostly re                                         | educed to a silty c                      | ay. Trace fine gra                        | ained               |                                       |                               |                 |
| -             |               | 2.0'                      | 14               | sand. Some shale has been redu<br>thinly bedded (~45°), very stiff. Lo  | iced to gravel, sul<br>ow to medium pla  | pangular to angula<br>sticity. Moderate o | r,<br>dry           |                                       |                               |                 |
| 13—           | SS-7          | 100%                      | 11               | strength. No dilatancy. Weathere                                        | ed with iron and n                       | anganese oxide                            |                     |                                       |                               |                 |
| 14            |               |                           | 15               | F containing shot outdood. No                                           |                                          |                                           |                     |                                       |                               |                 |
| - "           |               |                           | 7                | Below 13.8' silt lenses and parting                                     | gs present. Silt ha                      | as rapid dilatancy.                       |                     | SS-8 Lab results:                     | MC 26.2%.                     |                 |
| 15—           | SS-8          | 2.0'<br>100%              | 11               | Shale fragments up to 1" diameter                                       | r.                                       |                                           |                     |                                       |                               |                 |
| -             | -             | 10070                     | 15               |                                                                         |                                          |                                           |                     |                                       |                               |                 |
| 16—           |               |                           | 7                |                                                                         |                                          |                                           |                     |                                       |                               |                 |
| 47            | 000           | 1.6'                      | 9                |                                                                         |                                          |                                           |                     |                                       |                               |                 |
| 1/-           | 33-9          | 80%                       | 10               |                                                                         |                                          |                                           |                     |                                       |                               |                 |
| 18—           |               |                           | 14               |                                                                         |                                          |                                           |                     |                                       |                               |                 |
| -             |               |                           | 6                |                                                                         |                                          |                                           |                     |                                       |                               |                 |
| 19—           | SS-10         | 1.6'<br>80%               | 12               |                                                                         |                                          |                                           |                     |                                       |                               |                 |
| -             |               |                           | 16               |                                                                         |                                          |                                           |                     |                                       |                               |                 |

| E               | MDF CI           | naracteri<br>Dak Ridg             | zation P<br>e, TN       | roject                                 | BOREHOLE LOG                                                                                                                                                                                         | Bor            | ing Number<br>GW-988                                                                          |          |
|-----------------|------------------|-----------------------------------|-------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------|----------|
| Remark          | ks:              |                                   | -                       |                                        |                                                                                                                                                                                                      |                |                                                                                               |          |
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                        | SAMPLE DESCRIPTION                                                                                                                                                                                   | Graphic<br>Log | Remarks                                                                                       | NSCS     |
| -               |                  |                                   | 5                       | From 20.0                              | ' - 20.6' wet.                                                                                                                                                                                       |                | On SS-11 wet at top of spoon.                                                                 | CL<br>ML |
| 21—             | SS-11            | 1.8'<br>90%                       | 11<br>15                |                                        |                                                                                                                                                                                                      |                | SS-11 Lab results: MC 21.5%.                                                                  |          |
| 22 —            |                  |                                   | 17                      | Below 22                               | n' shale is becoming more competent harder becoming brown                                                                                                                                            | 1              |                                                                                               |          |
| -<br>23—        | SS-12            | 1.0'<br>50%                       | 7<br>11<br>21           | to dark bro<br>depth. SA               | wn (7.5YR 4/2 - 3/2). Degree of weathering decreasing with PROLITE.                                                                                                                                  |                | wet in cuttings after 45 min break.                                                           |          |
| -<br>24 —       |                  |                                   | 32                      |                                        |                                                                                                                                                                                                      |                |                                                                                               |          |
| -               |                  | 4 51                              | 17<br>20                |                                        |                                                                                                                                                                                                      |                | SS-13 Lab results: MC 16%.                                                                    |          |
| 25              | SS-13            | 1.5 <sup>°</sup><br>75%           | 32                      |                                        | -                                                                                                                                                                                                    |                |                                                                                               |          |
| 26—             |                  |                                   | 46<br>18                | Below 26.                              | 0' shale clasts become light olive gray to olive gray (5Y 7/2 -                                                                                                                                      |                | Refusal at 27.4', augered to                                                                  |          |
| _<br>27 —       | SS-14            | 1.4'<br>100%                      | 49<br>50/4              | 6/2). Iron<br>oxide pres               | oxide on clasts becomes trace to none. Some manganese<br>ent on clasts surface. SAPROLITE.                                                                                                           |                | 28'.                                                                                          |          |
|                 | NS               |                                   | 28                      |                                        |                                                                                                                                                                                                      |                |                                                                                               |          |
| -<br>29 —       | SS-15            | 1.8'<br>90%                       | 20<br>22<br>32          | Below 28.<br>Manganes                  | 7' shale clasts become brown to dark brown (7.5YR 4/2 - 3/2).                                                                                                                                        |                |                                                                                               |          |
| -<br>30 —       |                  |                                   | 45                      |                                        |                                                                                                                                                                                                      |                |                                                                                               |          |
| -               | SS-16            | 1.4'                              | 22<br>49                | Below 30.<br>6/2 - 4/2).               | 0' becomes dry. Color becomes light olive gray to olive gray (5Y<br>Some iron oxide to manganese oxide on clast surfaces.                                                                            |                | SS-16 Lab results: MC 9.9%;<br>3.3% Gravel; 66.9% Sand;                                       |          |
| 31—             |                  | 100%                              | 50/4                    |                                        | -                                                                                                                                                                                                    | 11             | 29.8% Fines.                                                                                  |          |
| 32—             | NS               |                                   | 20                      |                                        | -                                                                                                                                                                                                    | 13             | Refusal at 31.4', augered to 32.0'.                                                           |          |
| - 33-           | SS-17            | 1.2'                              | 23                      | Shale stru                             | cture becoming more defined, less weathered with depth.                                                                                                                                              |                |                                                                                               |          |
| -               |                  | 60%                               | 11<br>19                |                                        |                                                                                                                                                                                                      |                | SS-18 Lab results: MC 9.9%.                                                                   |          |
| 34 —            | SS-18            | 0.9'<br>100%                      | 40                      |                                        |                                                                                                                                                                                                      |                | Auger refusal @ 35.6' @ 1625.<br>2/7/18 @ 1533 DTW - 25.3                                     |          |
| 35—             | NS               |                                   |                         | Change a<br>Overall st                 |                                                                                                                                                                                                      |                | BGS.<br>∖ 2/8/18 @ 0801 DTW = 13.11                                                           |          |
| 36 —            | C-1              | 1.0'<br>71.4%                     | 0%                      | SHALE. The shale massive, s            | The limestone is medium gray to medium dark gray (N 5/ - N 4/).<br>is dark gray to grayish black (N 3/ - N 2/). The limestone is<br>siliceous, very strong field strength. The shale is laminated to |                | Set PVC temporary surface<br>casing to 35' in hole plug.                                      |          |
| 37 —            |                  |                                   |                         | thinly bed<br>bedding a<br>and cross   | ded, strong field strength. The overall structure has a 45°<br>ngle. Present with soft sediment deformation, bioturbidation,<br>bedding. The top portion (top 1/2') is present with iron staining    |                | Start HQ3 core with water at 1140. Drilling water is being                                    |          |
| 38—             | C-2              | 2.2'<br>88%                       | 0%                      | on fracture<br>Below 35.<br>Fracturing | e traces.<br>4' the limestone and shale are fresh to slightly decomposed.<br>is moderate to very intense. Fractures along bedding planes                                                             |                | recirculated.<br>C-1: 35.2' - 36.6', 1140-1150.<br>35.2' - 35.4' highly fractured             |          |
| 39 —            |                  |                                   |                         | are fresh a<br>along sha               | and probably mechanically induced. Slickensides are observed<br>e bedding planes. Multiple horizontal and vertical fractures are<br>there have no methods bedden with each its areas vertical and    |                | zone with iron staining and<br>calcite on surface                                             |          |
| -<br>40—        | C-3              | 1.1'                              | 0%                      | horizontal<br>strong rea               | fractures have been healed with mudstone. Calcite veins have ction with HCl.                                                                                                                         |                | 36.6' - 36.8' Fracture<br>perpendicular to bedding plane<br>healed with calcite.              |          |
| 41-             |                  | 44%                               |                         | 38.6' - 38.<br>38.9' - 40              | 8' Vertical fracture. Probably mechanically induced.<br>0' Multiple horizontal and vertical fractures. Some are healed                                                                               |                | C-3: 39.1' - 41.6', 1334-1345.<br>Vertical fracture wedged and                                |          |
| -<br>42         | C-4              | 0.6'                              | 0%                      | with calcit                            | e. Most breaks are probably mechanically induced.                                                                                                                                                    | Ē              | bottom.<br>C-4: 41.6' - 42.3', 1520-1526.                                                     |          |
| 12              |                  | 00.770                            |                         | 40.0 - 40.                             |                                                                                                                                                                                                      |                | Driller noted blocked tip on run<br>due to vertical fracture.<br>C-5: 42.3' - 44.6' 1535-1549 |          |
|                 | C-5              | 2.3'<br>100%                      | 17.4%                   | 41.6' - 42.<br>oxide on f              | 3' Multiple horizontal and vertical fractures, iron and manganese racture face. Some healed with calcite.                                                                                            |                | 43.9' Horizontal fracture with                                                                |          |
| 44              | C-6              | 2.0                               | 27.5%                   | 42.3' - 44.<br>with muds               | 6' Very intensely fractured. 42.7' - 43.1' Vertical fracture healed <sup>-</sup><br>tone. Rip-up clasts present. Multiple horizontal and vertical                                                    |                | iron.                                                                                         |          |

# Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-988

| Remark            | emarks:          |                                   |                         |                                                                                                                                                                                                                                                                                                                                  |                            |                                                                                                         |      |
|-------------------|------------------|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|------|
| Depth<br>(feet)   | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                               | Graphic<br>Log             | Remarks                                                                                                 | nscs |
| 46                | C-6              | 2.0'<br>100%                      | 27.5%                   | Medium gray to medium dark gray (N5 - N4) to dark gray to grayish black<br>(N3 - N2) INTERBEDDED LIMESTONE and SHALE. (Cont'd.)<br>46.2' Horizontal fracture (~1 inch thick) healed with calcite.                                                                                                                                |                            | C-6: 44.6' - 46.6', 1559-1610.<br>44.6' - 46.6' Multiple hairline<br>fractures healed with calcite      |      |
| -<br>47 —         | -                |                                   |                         | Shale beds becoming dominant with depth. Contacts between shale and limestone are deformed, have a wavy appearance.                                                                                                                                                                                                              |                            | 47.3' Fracture perpendicular to<br>bedding plan healed with<br>calcite.                                 |      |
| 48 —<br>-         | C-7              | 3.0'<br>85.7%                     | 12.9%                   |                                                                                                                                                                                                                                                                                                                                  |                            | C-7: 46.6' - 50.1', 1620-1642.                                                                          |      |
| 49—<br>-          |                  |                                   |                         |                                                                                                                                                                                                                                                                                                                                  |                            | Driller noted no loss of water/circulation while drilling.                                              |      |
| 50—<br>-<br>51—   | C-8              | 1.5'<br>100%                      | 0%                      | Below 50.0' shale and limestone content is approximately 50%. Rock is fresh, moderately to very intensely fractured. Fractures along bedding planes (45°) are mechanically induced. Multiple thin horizontal and vertical fractures that are healed with calcite. Shale has abundant slickensided surfaces along bedding planes. |                            | C-8: 50.1' - 51.6', 1650-1710.<br>2/8/18 @ 1719 WL = 19.45<br>BGS.<br>2/9/18 @ 0835 DTW - 15.58<br>BGS. |      |
| 52-               |                  |                                   |                         | 52.8' Fracture along bedding plane healed with calcite.                                                                                                                                                                                                                                                                          |                            |                                                                                                         |      |
| 53 —<br>-<br>54 — |                  | 4.0'                              | 26.49/                  | 53.2' - 53.4' Multiple hairline fractures perpendicular to bedding planes completely healed with calcite.                                                                                                                                                                                                                        |                            |                                                                                                         |      |
| -<br>55—          | 0-9              | 80%                               | 30.4 %                  | 54.6' Fracture perpendicular to bedding plane healed with calcite.                                                                                                                                                                                                                                                               |                            | C-9: 51.6 - 56.6, 0933-1012.                                                                            |      |
| -<br>56 —         |                  |                                   |                         | 56.8' - 57.1' Shale and limestone are deformed with turbidation,                                                                                                                                                                                                                                                                 |                            |                                                                                                         |      |
| -<br>57 —         |                  |                                   |                         | Below 57.0' bedding varies between 45° and 60°.                                                                                                                                                                                                                                                                                  |                            | C-10: 56.6' - 61.6', 1029-1055.                                                                         |      |
| 58 —<br>-<br>59 — | C-10             | 5.0'<br>100%                      | 17.2%                   | 59.0' - 59.1' Fracture perpendicular to bedding plane healed with calcite.                                                                                                                                                                                                                                                       |                            |                                                                                                         |      |
| 60 —              |                  |                                   |                         | 61.2' - 61.5' Hairline fractures perpendicular to bedding plane healed with calcite                                                                                                                                                                                                                                              |                            |                                                                                                         |      |
| 61—<br>-          | -                |                                   |                         | 61.7' - 61.8' Fracture perpendicular to bedding plane healed with calcite.                                                                                                                                                                                                                                                       |                            | C-11: 61.6' - 66.6'. 1108-1150.                                                                         |      |
| 63 —              |                  |                                   |                         | From 62.2' - 62.3' fine glauconite nodules oriented along bedding plane.<br>Only found in layers of limestone.                                                                                                                                                                                                                   | -<br>-<br>-<br>-<br>-<br>- | Driller noted pressure<br>fluctuations while drilling.                                                  |      |
| -<br>64 —         | C-11             | 3.8'<br>76%                       | 0%                      | 63.6' - 63.8' Fine glauconite nodules oriented along bedding planes only within limestone. Pyrite nodules associated near glauconite grains/nodules.                                                                                                                                                                             |                            |                                                                                                         |      |
| 65 —              |                  |                                   |                         | 64.4' - 64.7' Fracture perpendicular to bedding plane healed with calcite.                                                                                                                                                                                                                                                       |                            |                                                                                                         |      |
| 66 —<br>-         |                  |                                   |                         | Below 65.0' limestone beds are up to 3" thick. Slickensides present<br>perpendicular to bedding plane in shale. Shale beds becoming dominant.                                                                                                                                                                                    |                            | No loss of water/circulation<br>during drilling.                                                        |      |
| 67 —              | C-12             | 2.3'                              | 14 8%                   | 67.2' - 67.4' 1/4" thick fracture healed with calcite. Calcite is mostly white, some pink/orange in color.                                                                                                                                                                                                                       |                            | Driller noted rock feeding<br>poorly. Pulled run.                                                       |      |
| 68 —<br>-<br>69 — |                  | 92%                               |                         | 68.2' - 68.5' Multiple horizontal and vertical hairline fractures filled with calcite.                                                                                                                                                                                                                                           |                            |                                                                                                         |      |
| -                 | C-13             | 1.5'<br>100%                      | 0%                      |                                                                                                                                                                                                                                                                                                                                  | - <u></u>                  |                                                                                                         |      |

# Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-988

| Remar           | ks:              |                                   |                         |                                                                                                                                                                                                          |                |                                                                                                 |      |
|-----------------|------------------|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------|------|
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                                                                                                                       | Graphic<br>Log | Remarks                                                                                         | nscs |
| -               | C-13             | 1.5'<br>100%                      | 0%                      | At 69.7' bedding turns near vertical with a fracture going from 69.9' to 72.3'. Fracture is healed with mudstone and calcite. Some limestone and                                                         |                | C-13: 69.1' - 70.6', 1428-1444.                                                                 |      |
| 71-             | C-14             | 1.0'<br>100%                      | 0%                      | shale rip-up clasts present within the mudstone. Highly deformed along bedding planes with some small-scale folds observed. Abundant borizontal fractures healed with calcite. Most breaks were probably |                | C-14: 70.6' - 71.6', 1454-1504.                                                                 |      |
| 72-             | C 15             | 2.0'                              | 0%                      | mechanically induced.<br>From 71.8' - 72.3' very intensely fractured zone. Healed with mudstone.<br>Some healed with calcite.                                                                            |                | C-15: 71.6' - 73.6', 1513-1531.<br>Driller noted approximately 5%<br>water loss in circulation. |      |
| 73-             | C-15             | 100%                              | 0 78                    | Below 72.3' bedding turns back to 40° to 50°.                                                                                                                                                            |                | C-16 <sup>,</sup> 73 6' - 75 0' 1542 -                                                          |      |
| 74 —            | C-16             | 1.3'<br>92.9%                     | 0%                      |                                                                                                                                                                                                          |                | 2/9/18 at 1600 DTW = 6.79                                                                       |      |
| 75-             |                  |                                   |                         |                                                                                                                                                                                                          |                | BGS.<br>2/10/18 @ 0755, DTW = 4.88'.                                                            |      |
| 76 —            |                  |                                   |                         |                                                                                                                                                                                                          |                |                                                                                                 |      |
| 77-             | NS               |                                   |                         |                                                                                                                                                                                                          |                |                                                                                                 |      |
| 78-             | -                |                                   |                         |                                                                                                                                                                                                          | -              |                                                                                                 |      |
| 79-             |                  |                                   |                         | Bottom of Borehole = 78.5'.<br>Piezometer GW-988 installed in borehole. See Monitoring Well                                                                                                              | _              | On 2/22/18 used T3W rotary<br>rig to ream corehole and<br>advance borehole to 78.5'             |      |
| 80-             | -                |                                   |                         | Installation Report GW-988 for details.                                                                                                                                                                  | _              | using 5 7/8" tricone bit with air<br>and water circulation. Finished<br>drilling at 1120.       |      |
| 81-             | -                |                                   |                         |                                                                                                                                                                                                          | _              |                                                                                                 |      |
| 82-             | -                |                                   |                         |                                                                                                                                                                                                          | _              |                                                                                                 |      |
| 83-             | -                |                                   |                         |                                                                                                                                                                                                          | _              |                                                                                                 |      |
| 84 —            | -                |                                   |                         |                                                                                                                                                                                                          | _              |                                                                                                 |      |
| 85-             | -                |                                   |                         |                                                                                                                                                                                                          | _              |                                                                                                 |      |
| 86 —<br>-       | -                |                                   |                         |                                                                                                                                                                                                          | -              |                                                                                                 |      |
| 87-             | -                |                                   |                         |                                                                                                                                                                                                          | -              |                                                                                                 |      |
| 88-             | -                |                                   |                         |                                                                                                                                                                                                          | -              |                                                                                                 |      |
| 89-             | -                |                                   |                         |                                                                                                                                                                                                          | -              |                                                                                                 |      |
| 90-             | -                |                                   |                         |                                                                                                                                                                                                          | -              |                                                                                                 |      |
| 91-             |                  |                                   |                         |                                                                                                                                                                                                          |                |                                                                                                 |      |
| 92-             | -                |                                   |                         |                                                                                                                                                                                                          | -              |                                                                                                 |      |
| 93-             | -                |                                   |                         |                                                                                                                                                                                                          | -              |                                                                                                 |      |
| 94 —            | -                |                                   |                         |                                                                                                                                                                                                          | -              |                                                                                                 |      |

B-54

| Eago              | n & A                                        | Associa                  | tes, I       | nc.                                 |                          |                                |                                                  |                      |                 | G      | N-988    |          |
|-------------------|----------------------------------------------|--------------------------|--------------|-------------------------------------|--------------------------|--------------------------------|--------------------------------------------------|----------------------|-----------------|--------|----------|----------|
|                   |                                              | N                        | Ionit        | toring                              | Wel                      | l Inst                         | allation Re                                      | port                 |                 |        | đ        |          |
| Site Nam          | e and Lo                                     | cation: EML              | DF Chara     | acterization P                      | Project, O               | ak Ridge, 1                    | N                                                | Completion D         | ate: 3/8/18     |        |          |          |
| Coordinat         | tes: 2995                                    | 52.47N 380               | 91.14E       |                                     |                          | Borel                          | nole Depth (ft): 78.5                            |                      |                 |        |          |          |
| Elevation         | Top of C                                     | asing (ft/MS             | iL): 958     | .95                                 |                          | Borel                          | nole Diameter (in):10'                           | " (0'-36.0'), 5 7/8  | " (36.0'-78.5') |        |          |          |
| Elevation         | Ground                                       | Surface (ft/N            | 1SL): 95     | 57.0                                |                          | Drillir                        | g Methods: 2 1/4" HS                             | A, HQ3 Core w        | /water, 10" air |        |          | 1        |
| nstalled l        | By: Fred                                     | Reynolds/Ti              | ri-State L   | Drilling                            |                          | Com                            | bleted Drilling: 2/22/1                          | 8                    |                 |        |          | -        |
| Supervise         | ed By: S/                                    | hay Beanlan              | d/Eaqon      | & Associates                        | s, Inc.                  | Drillir                        | g Water Used (gals):                             | :                    |                 |        |          |          |
|                   |                                              |                          |              |                                     |                          |                                | an                                               |                      |                 |        |          |          |
|                   |                                              |                          |              |                                     | vvei                     | Des                            | ign                                              |                      |                 |        |          | 2        |
|                   | Com                                          | ponent                   |              |                                     |                          | Materials                      |                                                  | Depth (LSD)          | Elevation       |        |          |          |
| Well Pr           | otector                                      |                          |              | 4" Squa                             | re Steel                 | Protector w                    | /Locking Lid                                     | -2.3 - 2.7           | 959.3 - 954.3   |        |          |          |
| Riser             |                                              |                          |              | 2" ID Sc                            | hedule 4                 | 0 PVC                          |                                                  | -2.0 - 61.9          | 959.0 - 895.1   |        |          | 2        |
| Surface           | e Seal                                       |                          |              | 3' x 3' C                           | oncrete I                | Pad                            |                                                  | -0.5 - 0.5           | 957.5 - 956.5   |        |          | 3        |
| Conduc            | ctor Casir                                   | g                        |              | 6" ID P∨                            | /C Scheo                 | lule 40, Flu                   | sh Threaded                                      | -0.4 - 36.0          | 957.4 - 921.0   |        |          |          |
| Cemen             | t Grout                                      |                          |              | Cement                              | Bentonit                 | e Grout                        |                                                  | 0.5 - 55.1           | 956.5 - 901.9   |        |          |          |
| Benton            | ite Seal                                     |                          |              | Pel Plug                            | 1/4" Co                  | ated Bento                     | nite Pellets                                     | 55.1 - 59.6          | 901.9 - 897.4   |        |          |          |
| Sand P            | ack                                          |                          |              | DSI "GP                             | 9 #2" Gra                | vel Pack                       |                                                  | 59.6 - 73.2          | 897.4 - 883.8   |        |          | 4        |
| Screen            |                                              |                          |              | 2" ID Sc                            | hedule 4                 | 0 PVC, 10                      | Slot                                             | 61.9 - 71.9          | 895.1 - 885.1   |        |          |          |
| Well Po           | oint Blank                                   |                          |              | 2" ID Sc                            | h. 40 PV                 | 'C Cap & R                     | iser Section                                     | 71.9 - 73.2          | 885.1 - 883.8   |        |          | 1        |
| Sand P            | ack Botto                                    | om                       |              | DSI "GP                             | 9 #2" Gra                | vel Pack                       |                                                  | 73.2 - 74.0          | 883.8 - 883.0   |        |          |          |
| Benton            | ite Seal                                     |                          |              | Pel Plug                            | 1/4" Co                  | ated Bento                     | nite Pellets                                     | 74.0 - 78.5          | 883.0 - 878.5   |        |          | 5        |
|                   |                                              |                          |              | We                                  | ell De                   | evelo                          | oment                                            |                      |                 |        |          | -        |
| Vell Dep          | th (ft,TOC                                   | C):                      | Depth        | to Water (ft,                       | ,TOC):                   | Well                           | Volume (gals):                                   | Volume F             | Purged (gals):  |        |          |          |
| 75.20<br>Developn | nent Meth                                    | nod:                     | 13           | 3.50                                |                          | 1                              | 0                                                | 132.5                | 1               |        |          |          |
| Surge bl          | ock, bailer,                                 | mega purger              | whale pu     | mp<br>Snasifia                      |                          |                                |                                                  |                      |                 |        |          | ] 6<br>] |
| Date              | Time                                         | Volume<br>Removed        | Temp<br>(°C) | Conductivity<br>(µmhos/cm)          | рН<br>(S.U.)             | Turbidity<br>(NTU)             | Recovery D                                       | ata                  |                 |        |          | 1        |
| 3/1/18            | 1240                                         | 42.5                     | 15.1         | 647                                 | 7.54                     | 134.0                          | 100                                              |                      |                 |        |          |          |
| 3/1/18            | 1305                                         | 57 5                     | 14 9         | 759                                 | 7 25                     | 29.0                           | 80                                               |                      |                 |        |          | 7        |
| 3/1/18            | 1325                                         | 87.5                     | 14.8         | 761                                 | 7 12                     | 3.0                            | 00 KER                                           |                      |                 |        |          |          |
| 0/1/10            | 1020                                         | 07.0                     | 14.0         | 701                                 | 7.12                     | 0.5                            |                                                  |                      |                 |        |          |          |
| 3/1/18            | 1335                                         | 102.5                    | 14.9         | /68                                 | 7.10                     | 3.5                            |                                                  |                      |                 |        |          | i        |
| 3/1/18            | 1345                                         | 117.5                    | 14.7         | 766                                 | 7.07                     | 2.2                            | Ŭ<br>O                                           | 40<br>Time (minute   | 80 120          |        |          | 8        |
| 3/1/18            | 1400                                         | 132.5                    | 14.7         | 769                                 | 7.05                     | 2.4                            |                                                  |                      |                 |        |          |          |
| Sampling          | Equipme<br>ts:<br>s steel cent<br>nd placeme | ent:<br>tralizers instal | led at 27.s  | 5' and 55.5' be<br>I by Tri-State I | low groun<br>Drilling. S | d surface. V<br>creen slot int | ashed sand pack and po<br>erval 62.1 - 71.8 bgs. | ellets in using tren | nie pipe. Grout | Boring | denth=78 |          |

|                    |               |                            |                                           | BC                                                                                                             | REHOLE                                                                                                                                                                                                                                   | E LOG                                    |                      |                                                   |                          |                 |  |  |  |
|--------------------|---------------|----------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|---------------------------------------------------|--------------------------|-----------------|--|--|--|
| Site Na<br>and Loo | me<br>cation: | E                          | MDF C                                     | naracterization Project                                                                                        | Drilling Method<br>4 1/4" ID H                                                                                                                                                                                                           | s:<br>ISA, HQ3 Core with                 | water circulatio     | n.                                                | Boring Nur               | nber:           |  |  |  |
| Drilling           | Firm: 7       | ri-State D                 | rillina                                   | Jak Riuge, IN                                                                                                  | DATE                                                                                                                                                                                                                                     | TIME                                     | DEPTH                | WATER                                             | GW                       | -989            |  |  |  |
| Driller /          | Rig: SI       | nannon Si                  | now/CME                                   | E-550                                                                                                          |                                                                                                                                                                                                                                          |                                          | DRILLED (π           | ) LEVEL (π)                                       | Dene                     | 4 - 5 0         |  |  |  |
| Logged             | by: Da        | vid J. Sug                 | gar                                       |                                                                                                                |                                                                                                                                                                                                                                          | Sampling N                               | lethods:             |                                                   | Page                     | 1 Of 3          |  |  |  |
| Coordir            | ates: 2       | 9950.44                    | ,<br>I 38082.                             | .67E                                                                                                           | ST = Shelby Tu<br>WS = Waxed Sa                                                                                                                                                                                                          | be<br>Imple                              | SS =<br>CS =         | Split Spoon<br>Continuous Sampler                 | Start                    | Finish          |  |  |  |
| Surface            | e Elevati     | on: 955.7                  | 7 ft/MSL                                  |                                                                                                                | GP or DP = Dire                                                                                                                                                                                                                          | p<br>ct Push                             | C =<br>NS =<br>B = B | Coring<br>Not Sampled                             | Time<br>1429             | Time<br>1645    |  |  |  |
| Surface            | Conditi       | ons / Wea                  | ather: S/                                 | opped surface, gravel pad / 60°-65°l                                                                           | F, Sunny                                                                                                                                                                                                                                 |                                          | D = L                |                                                   | Date<br>2/27/18          | Date<br>2/28/18 |  |  |  |
| Remark             | s: Bore       | hole insta                 | alled for th                              | ne collection of geotech samples and                                                                           | d installation of sl                                                                                                                                                                                                                     | nallow piezometer.                       |                      |                                                   |                          |                 |  |  |  |
| 5.0                | d e           | e<br>%)                    | in an |                                                                                                                |                                                                                                                                                                                                                                          |                                          | <u>.0</u>            |                                                   |                          | 0               |  |  |  |
| Depth<br>(feet     | Samp<br>Metho | Samp<br>Recove<br>(feet or | Blows/6<br>or<br>RQD                      | SAMPLE DE                                                                                                      | SCRIPTION                                                                                                                                                                                                                                | ١                                        | Graph<br>Log         | Rema                                              | arks                     | USC:            |  |  |  |
| _                  |               |                            |                                           | See Borehole Log for adjacent bo<br>description and stratigraphic inter                                        | nole Log for adjacent boring GW-988 for detailed lithologic 4 1/4" ID HS<br>n and stratigraphic interpretation. while augerir                                                                                                            |                                          |                      |                                                   |                          |                 |  |  |  |
| 1—                 | NS            |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          | _                    |                                                   |                          |                 |  |  |  |
| - 2                |               |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          | -                    |                                                   |                          |                 |  |  |  |
| - 3                |               |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          | _                    |                                                   |                          |                 |  |  |  |
| -                  | ST-1          | 1.85                       | 1200                                      | Description based on inspection of                                                                             | of bottom of ST-1                                                                                                                                                                                                                        | recovery: Strong                         | _                    | Auger cutting but                                 | sket sample              |                 |  |  |  |
| 4                  |               |                            | 221                                       | brown (7.5YR 5/6 - 5/8 and 4/6) a<br>SILTY CLAY. Trace to some blac                                            | escription based on inspection of bottom of S1-1 recovery: Strong Auger cutting to own (7.5YR 5/6 - 5/8 and 4/6) and pale brown (2.5Y 7/3 - 7/4) mottled — BS-1 collected LTY CLAY. Trace to some black mottling. Trace highly weathered |                                          |                      |                                                   |                          |                 |  |  |  |
| 5—                 |               |                            |                                           | tragments. Moist. high plasticity                                                                              | agments. Moist. high plasticity and toughness. SUBSOIL.                                                                                                                                                                                  |                                          |                      |                                                   |                          |                 |  |  |  |
| 6-                 | NS            |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          | _                    |                                                   |                          |                 |  |  |  |
| - 0                |               |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          | _                    |                                                   |                          |                 |  |  |  |
| 7                  | 07.0          |                            | 1000                                      |                                                                                                                |                                                                                                                                                                                                                                          |                                          | _                    |                                                   |                          |                 |  |  |  |
| 8                  | ST-2          | 1.85                       | PSI                                       | Description based on inspection of bedded yellow to olive yellow (7.5                                          | of bottom of ST-2<br>5Y 7/6 - 6/6) SHA                                                                                                                                                                                                   | recovery: Thinly<br>LE (SAPROLITE).      |                      | Plasticity and tou<br>variable, general           | ghness are<br>ly low to  |                 |  |  |  |
| -                  |               |                            |                                           | Completely weathered. Some da brown (2.5Y 4/2 - 3/2) beds. App                                                 | rk grayish brown<br>ears intact remna                                                                                                                                                                                                    | to very dark grayis<br>ant bedding. Unde | sh<br>rlying         | medium.                                           |                          |                 |  |  |  |
| 9_                 | NS            |                            |                                           | contact may be higher or bottom                                                                                | of ST-2 may be a                                                                                                                                                                                                                         | large rock fragme                        | nt. —                |                                                   |                          |                 |  |  |  |
| 10                 |               |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          |                      | Auger cutting but<br>BS-2 collected fro<br>10.0'. | cket sample<br>om 8.0' - |                 |  |  |  |
| 11 —               |               |                            | 1500                                      |                                                                                                                |                                                                                                                                                                                                                                          |                                          |                      |                                                   |                          |                 |  |  |  |
| -                  | ST-3          | 1.9                        | PSI                                       | SHALE (SAPROLITE). Highly/co                                                                                   | mpletely weather                                                                                                                                                                                                                         | ed. Damp to mois                         | st.                  |                                                   |                          |                 |  |  |  |
| - 12               |               |                            |                                           | Description based on inspection of                                                                             | of bottom of ST-3                                                                                                                                                                                                                        | recovery: Light of                       | ive                  |                                                   |                          |                 |  |  |  |
| 13—                | NC            |                            |                                           | brown (2.5Y 5/3 - 5/4) highly weat<br>bedding angle (may not be in place                                       | thered SHALE (S<br>ce) or slightly dist                                                                                                                                                                                                  | APROLITE). Low<br>urbed sample at        | _                    |                                                   |                          |                 |  |  |  |
| -<br>14            | 113           |                            |                                           | sampler tip.                                                                                                   | , , ,                                                                                                                                                                                                                                    | 1                                        | _                    |                                                   |                          |                 |  |  |  |
| -                  |               |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          | -                    |                                                   |                          |                 |  |  |  |
| 15—                | ST-4          | 1 95                       | 1300                                      |                                                                                                                |                                                                                                                                                                                                                                          |                                          |                      |                                                   |                          |                 |  |  |  |
| 16—                | 0.1           | 1.00                       | PSI                                       | Description based on inspection of                                                                             | of bottom of ST-4                                                                                                                                                                                                                        | recovery: Olive a                        | rav to               |                                                   |                          |                 |  |  |  |
| -<br>17            |               |                            |                                           | olive (5Y 4/2 - 4/3 and 5/3 - 5/4) I<br>Relatively low bedding angle. Thi<br>brown/black iron oxide on bedding | highly weathered<br>inly bedded with<br>a surfaces Mois                                                                                                                                                                                  | SHALE (SAPROL<br>dark reddish            | .ITÉ). –<br>––       |                                                   |                          |                 |  |  |  |
| -                  |               |                            |                                           |                                                                                                                | y 54114000. INDIS                                                                                                                                                                                                                        |                                          | -                    |                                                   |                          |                 |  |  |  |
| 18                 | NS            |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          |                      |                                                   |                          |                 |  |  |  |
| 19—                |               |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          | _                    |                                                   |                          |                 |  |  |  |
| -                  |               |                            |                                           |                                                                                                                |                                                                                                                                                                                                                                          |                                          | -                    |                                                   |                          |                 |  |  |  |

| EI              | EMDF Characterization Project<br>Oak Ridge, TN |                                   |                         |                                    | BOREHOLE LOG                                                                                                                                                                                       | Boi            | Boring Number<br>GW-989                                                                   |      |  |  |
|-----------------|------------------------------------------------|-----------------------------------|-------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------|------|--|--|
| Remarl          | ks: Bore                                       | ehole insta                       | alled for th            | he collection                      | of geotech samples and installation of shallow piezometer.                                                                                                                                         |                |                                                                                           |      |  |  |
| Depth<br>(feet) | Sample<br>Method                               | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                    | SAMPLE DESCRIPTION                                                                                                                                                                                 | Graphic<br>Log | Remarks                                                                                   | nscs |  |  |
| -               | _                                              |                                   |                         | SHALE (S                           | SAPROLITE). (Cont'd.)                                                                                                                                                                              | _              |                                                                                           |      |  |  |
| 21-             | -                                              |                                   |                         |                                    |                                                                                                                                                                                                    | -              |                                                                                           |      |  |  |
| 22-             |                                                |                                   |                         | Below 22                           | 0' auger cutting returns are very moist. No free water                                                                                                                                             | _              |                                                                                           |      |  |  |
| - 23-           | _                                              |                                   |                         |                                    |                                                                                                                                                                                                    | _              |                                                                                           |      |  |  |
| -               | -                                              |                                   |                         |                                    |                                                                                                                                                                                                    | -              |                                                                                           |      |  |  |
| 24              | -                                              |                                   |                         |                                    |                                                                                                                                                                                                    | _              |                                                                                           |      |  |  |
| 25 —            | -                                              |                                   |                         |                                    |                                                                                                                                                                                                    | _              |                                                                                           |      |  |  |
| 26              | NS                                             |                                   |                         |                                    |                                                                                                                                                                                                    | _              |                                                                                           |      |  |  |
| - 27            |                                                |                                   |                         |                                    |                                                                                                                                                                                                    | _              |                                                                                           |      |  |  |
| -               | _                                              |                                   |                         |                                    |                                                                                                                                                                                                    | -              |                                                                                           |      |  |  |
| 28-             | -                                              |                                   |                         |                                    |                                                                                                                                                                                                    | _              | C 1 22 0' 25 6' 1620 1701                                                                 |      |  |  |
| 29 —            | -                                              |                                   |                         | Below 30                           | .0' auger cutting returns are wet.                                                                                                                                                                 | _              | C-1 32.0 - 35.0 1030-1701.                                                                |      |  |  |
| 30-             |                                                |                                   |                         | Contact w                          | /ith underlving interbedded shale and limestone is higher than                                                                                                                                     | _              | C-2 35.6 - 36.7' 0930-0941.                                                               |      |  |  |
| - 31-           | -                                              |                                   |                         | 32.0'.                             |                                                                                                                                                                                                    | _              | C-3 36.7' - 40.0' 0952-1050.                                                              |      |  |  |
| -               | -                                              |                                   |                         | Change a                           | ıt 32.0'.                                                                                                                                                                                          | -              | C-4 40.0' - 45.0' 1108-1130.                                                              |      |  |  |
| 32-             | -                                              |                                   |                         | Interbedd<br>LIMESTC               | ed dark gray to olive gray (5Y 4/1 - 4/2) SHALE and<br>NE Some of the limestone seams may actually classify as                                                                                     |                | Contacts between limestone<br>and shale beds are                                          |      |  |  |
| 33-             |                                                |                                   |                         | are not ur                         | is siltstone. Thinly bedded, generally <0.1' beds and partings<br>noommon. Bedding angle is 45°. Limestone seams are hard<br>strongly with HCI. Microcrystalline to fine crystalline. Shale        |                | wavey/deformed. Soft<br>sediment deformation trace                                        |      |  |  |
| 34-             | C-1                                            | 2.9'<br>80%                       | 13%                     | seams and<br>Intensely             | fractured.                                                                                                                                                                                         |                | Approximately 40% to 60% limestone.                                                       |      |  |  |
| - 35            | -                                              |                                   |                         | With dept                          | h picking up gray color hues, becoming unweathered.                                                                                                                                                |                | 32.0' - 33.6' Most bedding breaks are oxidized with iron                                  |      |  |  |
| -               |                                                | 1 11                              |                         | slightly de                        | a composed. Limestone seams have lighter gray color hues.<br>unweathered/competent.                                                                                                                |                | oxide precipitates on fracture surfaces.                                                  |      |  |  |
| - 30            | C-2                                            | 100%                              | 0%                      | 33.5' - 34                         | 4' Primarily limestone. trace shale partings and thin seams.                                                                                                                                       |                | 34.1' - 34.3' Broken zone, bedding break and fracture                                     |      |  |  |
| 37-             | -                                              |                                   |                         | Bedding o                          | contacts are deformed and bioturbated.                                                                                                                                                             |                | perpendicular to bedding.<br>Oxidized with iron oxide                                     |      |  |  |
| 38-             | C-3                                            | 1.5'                              | 30%                     | Below 35                           | 6' oxidized zones/fractures are rare and called out where                                                                                                                                          |                | End 2-27-18, 1701 at $35.6'$ .<br>2/28/18, 0810 WL = $5.4'$ , $49^{\circ}$ F,             |      |  |  |
| -<br>39 —       |                                                | 45%                               | 0070                    | observed<br>breaks at<br>along bre | . Continues to be thinly bedded with common mechanical<br>shale/limestone bedding contacts. Secondary mineralization<br>aks is generally not observed                                              |                | Light rain. Start coring at<br>0930.                                                      |      |  |  |
| - 40            | -                                              |                                   |                         | along bro                          | and to go to any not obcorrod.                                                                                                                                                                     |                | filled fractures below 36.0'<br>appears to correlate with the                             |      |  |  |
| -               |                                                |                                   |                         | Below 36<br>calcite fille          | .0' bedding angle increases to 65° - 70°. Healed fractures (white<br>ed) increase, up to 1/4" width, generally oriented perpendicular<br>a often more prominent within limestone beds and two-ally |                | increase in the bedding angle.<br>41.9' - 42.3' Broken zone with                          |      |  |  |
| 41-             | -                                              |                                   |                         | dissipate<br>By 41.0' b            | or terminate within shale beds.<br>bedding is approaching vertical. Healed (calcite filled) fractures                                                                                              |                | planes and perpendicular<br>fractures. Secondary calcite                                  |      |  |  |
| 42-             | C 4                                            | 3.2'                              | 0.0%                    | oriented p<br>Local defe           | perpendicular to bedding are prominent within limestone beds.<br>ormation, contorted bedding (small scale folds) are present.                                                                      |                | does not appear to be present.<br>Zone may account for some                               |      |  |  |
| 43-             | 0-4                                            | 64%                               | 0%                      | Below 41                           | 3' some limestone beds are almost brecciated. At a minimum.                                                                                                                                        |                | C-4 lost recovery.<br>The core bit/lifter was stuffed,<br>indicating that the majority of |      |  |  |
| - 44            |                                                |                                   |                         | highly def                         | ormed.                                                                                                                                                                                             |                | lost C-4 recovery was most<br>likely from the bottom of the                               |      |  |  |
| ···             | -                                              |                                   |                         | Below 42                           | 8 <sup>r</sup> considerable white calcite filled fractures, highly deformed.                                                                                                                       |                | run.<br>Overdrilled corehole with 4 1/4"                                                  |      |  |  |

| E               | MDF C            | haracter<br>Dak Rid <u>o</u>      | ization P<br>ge, TN     | Project       | BOREHOLE LOG                                                                        | Boring Nu      | oring Number<br>GW-989 |             |  |
|-----------------|------------------|-----------------------------------|-------------------------|---------------|-------------------------------------------------------------------------------------|----------------|------------------------|-------------|--|
| Remark          | ks: Bore         | hole insta                        | alled for th            | ne collection | of geotech samples and installation of shallow piezometer.                          |                |                        |             |  |
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |               | SAMPLE DESCRIPTION                                                                  | Graphic<br>Log | Remarks                | nscs        |  |
| -               |                  |                                   |                         | Bottom of     | Borehole = 45.0'.                                                                   | _              |                        |             |  |
| 46              |                  |                                   |                         | Piezomete     | r GW-989 installed in borehole. See Monitoring Well<br>n Report GW-989 for details. | _              |                        |             |  |
| 47 —            |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| 48-             |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| -<br>49         |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| - 50            |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| -               |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| - 51            |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| 52              |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| 53-             |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| 54 —            |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| 55-             |                  |                                   |                         |               |                                                                                     |                |                        |             |  |
| -<br>56 —       |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| -<br>57 —       |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| - 58            |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| -               |                  |                                   |                         |               |                                                                                     | -              |                        |             |  |
| - 59            |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| 60 —            |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| 61              |                  |                                   |                         |               |                                                                                     |                |                        |             |  |
| 62-             |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| 63-             |                  |                                   |                         |               |                                                                                     |                |                        |             |  |
| -<br>64         |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
| -<br>65         |                  |                                   |                         |               |                                                                                     | _              |                        |             |  |
|                 |                  |                                   |                         |               |                                                                                     |                |                        |             |  |
| -               |                  |                                   |                         |               |                                                                                     |                |                        |             |  |
| 67              |                  |                                   |                         |               |                                                                                     |                |                        |             |  |
| 68              | -                |                                   |                         |               |                                                                                     |                |                        |             |  |
| 69 —            |                  |                                   |                         |               |                                                                                     |                |                        |             |  |
|                 |                  |                                   |                         |               | B-59                                                                                |                | P                      | Page 3 of . |  |

| Eago             | on & A          | Associa                     | ntes, l      | nc.                                    |              |                    |                                 |                    |                | Wel<br>G | l Num<br>W-98 | ber<br>9   |
|------------------|-----------------|-----------------------------|--------------|----------------------------------------|--------------|--------------------|---------------------------------|--------------------|----------------|----------|---------------|------------|
|                  |                 | Ν                           | loni         | toring                                 | Wel          | l Inst             | allation Re                     | port               |                |          | ГГ<br>Г       |            |
| Site Nam         | ne and Loo      | cation: EM                  | DF Chara     | acterization F                         | Project, O   | ak Ridge,          | TN                              | Completion         | Date: 3/8/18   |          |               | <b>0</b> - |
| Coordina         | ates: 2995      | 50.44N 380                  | 082.67E      |                                        |              | Bor                | ehole Depth (ft): 45.0          |                    |                |          |               |            |
| Elevatior        | n Top of C      | asing (ft/M                 | SL): 957     | .86                                    |              | Bor                | ehole Diameter (in):7 1         | /2"                |                |          |               |            |
| Elevatior        | n Ground S      | Surface (ft/l               | MSL): 95     | 55.7                                   |              | Drill              | ing Methods: 4 1/4" ID          | HSA, HQ3 Coi<br>n. | re with water  |          |               | 5-         |
| Installed        | By: Shan        | non Snow/                   | Tri-State    | Drilling                               |              | Cor                | npleted Drilling: 2/28/1        | 18                 |                |          |               |            |
| Supervis         | ed By: Da       | avid J. Suga                | ar/Eagon     | & Associates                           | s, Inc.      | Drill              | ing Water Used (gals):          | ~600               |                |          |               |            |
|                  |                 |                             |              |                                        | Wel          |                    | sian                            |                    |                |          |               | 10-        |
|                  | Com             | onent                       |              |                                        |              | Materials          | ,igii                           | Denth (I SD)       | Flevation      | -        |               |            |
|                  |                 |                             |              | 411 0                                  | 01           |                    | . 1 : 4                         |                    |                |          |               |            |
| Well P           | rotector        |                             |              | 4" Squa                                | re Steel v   |                    |                                 | -2.6 - 2.4         | 958.3 - 953.3  |          |               |            |
| Riser            |                 |                             |              | 2" ID Sc                               | nedule 4     | 0 PVC              |                                 | -2.3 - 33.6        | 958.0 - 922.1  |          | Ň             | 15-        |
| Surfac           | e Seal          |                             |              | 3° x 3° C                              | oncrete      |                    |                                 | -0.5 - 0.5         | 956.2 - 955.2  |          |               |            |
| Cemer            | nt Grout        |                             |              | Cement                                 | Bentonit     | e Grout            |                                 | 0.5 - 25.7         | 955.2 - 930.0  |          |               |            |
| Bentor           | nite Seal       |                             |              | Pel-Plug                               | g 1/4" Co    | ated Beni          | conite Pellets                  | 25.7 - 30.0        | 930.0 - 925.7  |          |               |            |
| Sand F           | Pack            |                             |              | DSI GP                                 | #2 Grave     | el Pack            |                                 | 30.0 - 44.9        | 925.7 - 910.8  |          |               | 20-        |
| Screer           | )<br>sint Diank |                             |              | 2" ID Sc                               |              | 0 PVC, 1           | Diser Cestien                   | 33.6 - 43.6        | 922.1 - 912.1  |          |               |            |
| Sand C           |                 |                             |              |                                        | #2 Crow      |                    | Riser Section                   | 43.0 - 44.9        | 912.1 - 910.8  |          | Ň             |            |
| Sand F           | Pack Botto      | m                           |              | DSI GP                                 | #2 Grave     | Раск               |                                 | 44.9 - 45.0        | 910.8 - 910.7  |          |               |            |
|                  |                 |                             |              |                                        |              |                    |                                 |                    |                |          |               | 25-        |
|                  |                 |                             |              | We                                     | ell De       | evelo              | pment                           |                    |                |          |               |            |
| Well Dep         | oth (ft,TOC     | ;):                         | Depth        | to Water (ft                           | ,TOC):       | We                 | l Volume (gals):                | Volume             | Purged (gals): | -        |               |            |
| 47.2<br>Developr | 1<br>ment Meth  | od.                         | 14           | 4.03                                   |              |                    | 5.4                             | 151.               | 0              |          |               |            |
| Surge b          | lock, bailer,   | mega purge                  | r whale pu   | mp                                     |              |                    |                                 |                    |                | -        | ****          | 30-        |
| Date             | Time            | Volume<br>Removed<br>(gals) | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recovery D                      | ata                |                |          |               |            |
| 3/5/18           | 0900            | 17.0                        | 14.8         | 534                                    | 7.28         | >1000              |                                 |                    |                |          |               |            |
| 3/5/18           | 1126            | 49.5                        | 14.8         | 341.3                                  | 8.10         | 351.0              |                                 |                    |                |          |               | 35-        |
| 3/5/18           | 1400            | 80.5                        | 14.6         | 508                                    | 7.51         | 383.0              |                                 |                    |                |          |               |            |
| 3/6/18           | 0904            | 124.0                       | 14.5         | 323.8                                  | 7.72         | 142.0              | 2 20                            |                    |                |          |               |            |
| 3/6/18           | 1402            | 135.5                       | 15.3         | 326.6                                  | 7.78         | 24.6               | 0                               | 40                 | 80 120         |          |               |            |
| 3/6/18           | 1459            | 151.0                       | 15.6         | 329.3                                  | 7.79         | 8.1                |                                 | Time (minu         | tes)           |          |               |            |
| Sampling         | g Equipme       | ent:                        |              |                                        |              | 1                  | 1                               |                    |                | ┨ 目      |               |            |
| Commer           | nts:            |                             |              |                                        |              |                    |                                 |                    |                | ┨╞       |               |            |
| Crow             | iving and -     | locomont int                | motio        | rovided by T=                          | State D=""   | na Sam-            | a slat interval 22 9 42 5 4     |                    |                |          |               |            |
| Grouth           | ", ny anu pi    | accincii illo               | n nauon pi   | Gvided by III-                         |              | ng. Scieel         | 1 310L IIILEI VAI 33.0 - 43.5 D | ys.                |                | Boring   | ) depth=4     | 5.0 ft.    |

B-61

|                           |                  |                                  |                         | BO                                                                                                                                                                              | REHOLE                                                                                                                                                                                                                                                                                                                                                   | E LOG                                      |                   |              |                                      |                       |              |  |  |  |
|---------------------------|------------------|----------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|--------------|--------------------------------------|-----------------------|--------------|--|--|--|
| Site National Site Nation | me<br>ation:     | E                                | MDF Ch<br>C             | aracterization Project<br>Dak Ridge, TN                                                                                                                                         | Drilling Methods<br>2 1/4" HSA<br>tricone bit                                                                                                                                                                                                                                                                                                            | s:<br>, HQ3 Core w/wate<br>with air/water. | r, 10" air ham    | mer          | bit, 5 7/8"                          | Boring Numb           | er:<br>007   |  |  |  |
| Drilling                  | Firm: T          | ri-State D                       | rilling                 |                                                                                                                                                                                 | DATE                                                                                                                                                                                                                                                                                                                                                     | TIME                                       | DEPTH<br>DRILLED  | (ft)         | WATER<br>LEVEL (ft)                  | 000-7                 | 72           |  |  |  |
| Driller /                 | Rig: Fr          | ed Reyno                         | lds/Mobil               | e 42C                                                                                                                                                                           | 2/16/18                                                                                                                                                                                                                                                                                                                                                  | 1725                                       | 36.4              |              | 4.57                                 | Page 1                | of 3         |  |  |  |
| Logged                    | by: Ry           | an Hanse                         | 1                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          | Sampling M                                 | ethods:           | _            |                                      |                       | 0/5          |  |  |  |
| Coordin                   | ates: 2          | 9698.291                         | 1 38749.                | 00E                                                                                                                                                                             | WS = Waxed Sa                                                                                                                                                                                                                                                                                                                                            | be<br>mple                                 | CS                | = Sp<br>= Co | ontinuous Sampler                    | Start                 | Finish       |  |  |  |
| Surface                   | Flevati          | on <sup>.</sup> 910 (            | ) ft/MSI                |                                                                                                                                                                                 | GP or DP = Dire                                                                                                                                                                                                                                                                                                                                          | o<br>ct Push                               | NS<br>NS          | = Co<br>= No | oring<br>ot Sampled                  | Time<br>0855          | Time<br>1515 |  |  |  |
| Surface                   | Conditi          |                                  | othor                   |                                                                                                                                                                                 | CI = Cuttings                                                                                                                                                                                                                                                                                                                                            |                                            | В =               | Bail         | er                                   | Date                  | Date         |  |  |  |
| Sunace                    | Conditi          |                                  |                         |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   |              |                                      | 2/16/18 2             | 2/17/18      |  |  |  |
| Remark                    | .s:              |                                  | - I                     |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   |              |                                      |                       |              |  |  |  |
| Depth<br>(feet)           | Sample<br>Method | Sample<br>Recovery<br>(feet or % | Blows/6 ir<br>or<br>RQD | SAMPLE [                                                                                                                                                                        | ON                                                                                                                                                                                                                                                                                                                                                       | Graphic                                    | Log               | Rema         | ırks                                 | nscs                  |              |  |  |  |
| _                         | NS               |                                  |                         | ROAD BASE.                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   |              | Ran 2 1/4" HSA (                     | 7" OD)<br>le augering |              |  |  |  |
| 1—                        |                  |                                  | -                       | Change at 1.0'.                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          | grained sand Tr                            |                   | ×            | Continuous 2" OD, 2' drive split     |                       |              |  |  |  |
| -<br>2—<br>-              | SS-1             | 1.3'<br>65%                      | 3<br>4<br>5<br>3        | to little shale fragments (up to 1" c<br>on shale fragments. Massive. Sh<br>direction. Low plasticity. Slow to<br>Moist. Cohesive. No reaction with<br>PESIDIAL SOUL (COLLIVIUM | own (7.5YR 5/4 - 4/4) CLAYEY SILT. Trace fine grained sand. Trace<br>little shale fragments (up to 1" diameter). Iron and manganese oxide<br>shale fragments. Massive. Shale fragments are oriented in same<br>ection. Low plasticity. Slow to no dilatancy. Medium dry strength.<br>bist. Cohesive. No reaction with HCI. Very soft to soft. Weathered. |                                            |                   |              |                                      |                       |              |  |  |  |
| 3—                        |                  |                                  | 3                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   |              | permanent 6" PV                      | C casing and          |              |  |  |  |
| 4                         | SS-2             | 1.3'                             | 2                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   |              | grout.                               | nt bentonite          |              |  |  |  |
| _                         |                  | 65%                              | 2                       | Below 4.3' shale clasts become tra                                                                                                                                              | ace to rare. Beco                                                                                                                                                                                                                                                                                                                                        | omes moist to wet.                         | No -              |              | SS-1 Lab results:<br>Content 29.3%.  | b results: Moisture   |              |  |  |  |
| 5—                        |                  |                                  | 2<br>WH                 | to slow dilatancy. Fine grained sa<br>decreases slightly.                                                                                                                       | ind becomes few                                                                                                                                                                                                                                                                                                                                          | to little. Clay cont                       | ent               |              | SS-2 Lab results:                    | MC 23.9%;             |              |  |  |  |
| -                         |                  | 2 0'                             | 1                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   |              | 7% Gravel; 36% S<br>Fines            | Sand; 57%             |              |  |  |  |
| 6-                        | SS-3             | 100%                             | 1                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   |              | WH = weight of h                     | ammer                 |              |  |  |  |
| 7                         |                  |                                  | 1                       | Below 7.0' clay content increases.                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                            | _                 |              | weight of h                          |                       |              |  |  |  |
| -                         |                  |                                  | WH                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            | -                 |              |                                      |                       |              |  |  |  |
| 8—                        | SS-4             | 1.4'<br>70%                      |                         | Olive (5Y 5/4 - 4/4) highly weather                                                                                                                                             | red SHALE (SAP                                                                                                                                                                                                                                                                                                                                           | ROLITE). Shale c                           | lasts             | <u>-</u> 1   | SS-4 Lab results:                    | MC 37 1%              | CL           |  |  |  |
| -                         |                  |                                  | 6                       | are highly weathered and compris                                                                                                                                                | ed of silt and clay                                                                                                                                                                                                                                                                                                                                      | y. Laminated to th                         | inly – – –<br>ing | _            |                                      | MO 07.170.            |              |  |  |  |
| 9—                        |                  |                                  | 4                       | planes are at 40°-50° angles. Ver                                                                                                                                               | y stiff to hard. M                                                                                                                                                                                                                                                                                                                                       | edium plasticity.                          | ligh              | _            |                                      |                       |              |  |  |  |
| 10-                       | SS-5             | 1.3'                             | 10                      | SAPROLITE.                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          | / to moist.                                | 1-                | _            |                                      |                       |              |  |  |  |
| -                         | 000              | 65%                              | 19                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            | +                 | -            | SS-5 Lab results:                    | MC 13.4%.             |              |  |  |  |
| 11 —                      |                  |                                  | 17                      | Below 11 0' becomes wet Trace                                                                                                                                                   | to few siltstone b                                                                                                                                                                                                                                                                                                                                       | eds/clasts Shale                           | is                | _            |                                      |                       |              |  |  |  |
| _                         |                  | 1 21                             | 10                      | becoming more competent with de                                                                                                                                                 | epth. All shale ar                                                                                                                                                                                                                                                                                                                                       | nd siltstone has iro                       | n <u>+</u>        |              |                                      |                       |              |  |  |  |
| 12—                       | SS-6             | 65%                              | 10                      | and manganese oxide. Wet.                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   | _            |                                      |                       |              |  |  |  |
| 12                        |                  |                                  | 9                       | 11.7' - 11.9' Broken siltstone beds                                                                                                                                             | with manganese                                                                                                                                                                                                                                                                                                                                           | e oxide on clast                           |                   | _            |                                      |                       |              |  |  |  |
| 13-                       |                  |                                  | 4                       | sunaces.                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                            | 1-                | _            |                                      |                       |              |  |  |  |
| 14 —                      | SS-7             | 1.1'                             | 6                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   | -            | SS-7 Lab results:<br>Water on spoon. | MC 21.3%.             |              |  |  |  |
| -                         |                  | 5570                             | 5                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            | +                 | _            |                                      |                       |              |  |  |  |
| 15 —                      |                  |                                  | 7                       | 15.0' - 15.5' Shale is grayish blue                                                                                                                                             | green (5BG 5/2).                                                                                                                                                                                                                                                                                                                                         | Trace iron and                             | -[-]              | _            |                                      |                       |              |  |  |  |
| -                         |                  | 1.6'                             | 16                      | manganese oxide.                                                                                                                                                                | hi ha hualian hi i h                                                                                                                                                                                                                                                                                                                                     | and Dr.                                    | E                 | -            |                                      |                       |              |  |  |  |
| 16-                       | 55-8             | 80%                              | 18                      | Below 15.0 shale clasts can barel                                                                                                                                               | iy de droken dy n                                                                                                                                                                                                                                                                                                                                        | and. Dry.                                  |                   | _            | SS-8 Lab results:                    | MC 16.2%.             |              |  |  |  |
| 17-                       |                  |                                  | 29                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   | _            |                                      |                       |              |  |  |  |
|                           |                  |                                  | 8                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   | -            |                                      |                       |              |  |  |  |
| 18 —                      | SS-9             | 1.6'<br>80%                      | 19                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            | +                 | _            |                                      |                       |              |  |  |  |
| -                         |                  |                                  | 19                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   | _            | SS 10 Lab roculta                    | • MC 15 50/ •         |              |  |  |  |
| 19—                       | 00.40            | 1.5'                             | 9                       |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                          |                                            |                   | _            | 1% Gravel; 62% S                     | Sand; 37%             |              |  |  |  |
| _                         | SS-10            | 75%                              | 13                      |                                                                                                                                                                                 | 1% Gravel; 62% Sand; 37%<br>Fines.                                                                                                                                                                                                                                                                                                                       |                                            |                   |              |                                      |                       |              |  |  |  |

# Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-992

| F      | Remarl          | ks:              |                                   |                         |                                                                                                                                                 |                |                                                          |      |
|--------|-----------------|------------------|-----------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------|------|
|        | Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                                                              | Graphic<br>Log | Remarks                                                  | nscs |
|        | _               | SS-10            | 1.5'                              | 11                      | Olive (5Y 5/4 - 4/4) highly weathered SHALE (SAPROLITE). (Cont'd.)                                                                              |                |                                                          | CL   |
|        | 21—             |                  | 75%                               | 9<br>10                 | Below 20.0' shale (saprolite) becomes more weathered. Shale clasts are                                                                          | ┼═╌╡           |                                                          |      |
|        | -               | 00.44            | 1.3'                              | 10                      | easily broken by hand. Abundant iron and manganese oxide on shale<br>clasts. No reaction with HCI.                                              |                |                                                          |      |
|        | - 22            | 55-11            | 65%                               | 10                      | Below 23.0' trace limestone clasts with calcite veins. Strong reaction with HCI.                                                                |                |                                                          |      |
|        | 23-             |                  |                                   | 6                       | 24 0' - 24 8' Sandstone clasts completely decomposed to sand abundant                                                                           | +              | CC 401 ab regulter MC 47 6%                              |      |
|        | -               | SS 12            | 1.7'                              | 8                       | with iron and manganese oxide. Saturated.                                                                                                       | [              | 33-12 Lab results. MC 17.0%.                             |      |
|        | 24 —            | 33-12            | 94.4%                             | 23                      | Below 25.0' shale (saprolite) becomes olive gray (5Y 5/2 - 4). Trace iron                                                                       |                |                                                          |      |
|        | 25 —            | NS /             |                                   |                         | Below 25 5' color becomes gravish blue green (5BG 5/2)                                                                                          |                | SS-13 Lab results: MC 10.8%                              |      |
|        | -               | -                | 1 3'                              | 30<br>28                |                                                                                                                                                 |                |                                                          |      |
|        | 26 —            | SS-13            | 65%                               | 30                      | Below 26.8' color becomes light olive gray (5Y 6/2).                                                                                            |                |                                                          |      |
|        | 27 —            |                  |                                   | 29                      | -                                                                                                                                               |                |                                                          |      |
|        | -               | SS-14            | 0.8'<br>80%                       | 8<br>50/5               | Change at 28 0'                                                                                                                                 | <u>F</u>       |                                                          |      |
|        | 28 —            |                  |                                   | 00/0                    | Gray to dark gray (N 5/ - 4/) INTERCLASTIC LIMESTONE. Strong.                                                                                   |                | Auger refusal at 1052 at 28.0'.                          | +    |
|        | 29 —            |                  |                                   |                         | Clast orientation is parallel to bedding planes. The matrix material is                                                                         |                | temporary PQ surface casing.                             |      |
|        | -               | C-1              | 2.6'                              | 22.9%                   | deformation of the limestone clasts and cross bedding. Slightly                                                                                 |                | perpendicular to bedding and a                           |      |
|        | 30 —            | _                | 76.5%                             |                         | Multiple horizontal and vertical fractures that have been completely hadded                                                                     |                | oxide.                                                   |      |
|        | 31              | -                |                                   |                         | Below 31.0' shale beds and partings that are increasing with depth.                                                                             |                | Weathered at top. Probably                               |      |
|        | -               |                  | 0.9'                              |                         | Dark gray to very dark gray (N 4/ - 3/) SHALE. Trace glauconite.                                                                                |                | Measure C-1 from bottom. $/$                             | ·    |
|        | 32 —            | C-2              | 90%                               | 0%                      | Laminated to thinly bedded. Strong. Fresh. Slightly disintegrated<br>Intense to very intensely fractured. Most breaks are along bedding planes  |                | with slickensides. Glauconite.                           |      |
|        | 33-             | C-3              | 0.7                               | 0%                      | and probably mechanically induced. Some fractures are shear with glauconite grains and striations along fracture. No reaction with HCl.         |                | C-2: 31.4 - 32.4 1456-1509.<br>Blocking in tip/pull run. |      |
|        | -               |                  |                                   |                         | 33.1 - 33.4 Shale is very intensely fractured. Probably due to sampling/mechanically induced.                                                   |                | C-3: 32.4 - 33.1 1515-1530.<br>Blocked tip. Pull run.    |      |
| 1/18   | 34 —            |                  |                                   |                         | made up of shale and limestone. Clasts are oriented parallel to the                                                                             |                | oxide. 33.7' - 34.0' Fracture                            |      |
| JT 4/2 | 35 —            | C-4              | 3.3'<br>100%                      | 18.8%                   | associated with limestone beds.                                                                                                                 |                | with iron oxide.                                         |      |
| PID.GI | -               | -                |                                   |                         | 34.1' - 34.4' Shale is dark greenish gray 10GY (4/1). Shale is becoming                                                                         |                | G-4: 33.1° - 36.4° 1538-1615.                            |      |
| VITH F | 36 —            |                  |                                   |                         | less fractured with depth.                                                                                                                      | <u> </u>       | 2/16/18 at 1725 DTW = 4.57                               |      |
| ATE V  | -<br>37 —       |                  |                                   |                         | 36.4' - 37.4' Trace limestone and glauconite beds and partings. Very intensely fractured. Some healed with calcite. Most are mechanically       |                | BGS.<br>2/17/18 at 0803 DTW = 4.32                       |      |
| EMPL   | -               | -                | 2 3'                              |                         | induced.<br>Limestone bed from 37.5' - 38.2'.                                                                                                   |                | BG3.                                                     |      |
| AFT T  | 38 —            | C-5              | 74.1%                             | 0%                      | 37.5' - 37.9' and 38.0' - 38.2' Interclastic limestone beds. Clasts are                                                                         |                | C-5: 36.4' - 39.5' 0819-0853.                            |      |
| IR CR  | -<br>39 —       |                  |                                   |                         | limestone with glauconite. Some soft sediment deformation and                                                                                   | <u> </u>       | Pulled run.                                              |      |
| TAINE  | -               |                  |                                   |                         | with calcite. Shale beds near the limestone beds are dark greenish gray                                                                         |                | bedding plane healed with                                |      |
| CON    | 40 —            | Ce               | 1.9'                              | 0%                      | Below 39.5' shale is fresh. Competent. Slightly to moderately fractured.                                                                        | ==             | C-6: 39.5' - 41.4' 0900-0929.                            |      |
| .GPJ   | - 41            | C-0              | 100%                              | 0%                      | Limestone beds and partings become trace to rare. Multiple breaks along bedding planes with slickensides. Breaks are probably drilling induced. |                |                                                          |      |
| RIDGE  | -               |                  |                                   |                         | 40.4' - 40.7' Vertical break with slickensides.<br>41.8' - 44.3' Verv intenselv fractured. Multiple breaks along and                            |                |                                                          |      |
| OAKF   | 42—             | -                |                                   |                         | perpendicular to the bedding planes. Some with slickensides. Probably – mechanically induced.                                                   |                | C-7: 41.4' - 45.0' 0939-1033.                            |      |
| V.2    | -<br>43         |                  | 3 2'                              |                         | · · · · · · · · · · · · · · · · · · ·                                                                                                           | 1-1            | 1046 Drillers get Water.                                 |      |
| ELOG   | -               | C-7              | 88.9%                             | 0%                      | 44.3' - 45.0' Limestone bed with some soft sediment deformation Trace                                                                           | <u> </u>       |                                                          |      |
| EHOL   | 44 —            | 1                |                                   |                         | shale beds within limestone. Moderately fractured with fracture healed by - calcite.                                                            |                |                                                          |      |
| BOR    | -               | 1                |                                   |                         | · · · · · · · · · · · · · · · · · · ·                                                                                                           | <u> </u>       |                                                          |      |

| E                                    | MDF C            | haracteri<br>Dak Ridg             | ization F<br>je, TN     | Project                                                        | BOREHOLE LOG                                                                                                                                                                                                    | В       | GW-992                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|--------------------------------------|------------------|-----------------------------------|-------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Remark                               | (S:              |                                   |                         |                                                                |                                                                                                                                                                                                                 |         |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Depth<br>(feet)                      | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                                                | SAMPLE DESCRIPTION                                                                                                                                                                                              | Graphic | Remarks                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 46 —<br>47 —<br>48 —<br>48 —<br>49 — | C-8              | 1.3'<br>28.9%                     | 0%                      | Dark gray<br>Below 45.<br>multiple h                           | to very dark gray (N 4/ - 3/) SHALE. (Cont'd.)<br>0' trace limestone beds and partings. Limestone present with<br>orizontal and vertical fractures healed with calcite.                                         |         | <ul> <li>C-8: 45.0' - 49.5' 1104-1210.</li> <li>On start of C-8 cutting returns turned from light gray to brown.</li> <li>1135 Drillers to get water.</li> <li>On C-8 inner core barrel did not lock in. Core in bottom of hole. Trip out to attempt core recovery at 1223.</li> <li>Low recovery on C-8. Makes difficulty in logging.</li> <li>C-9: 49.5' - 50.0' 1250-1859.</li> </ul> |  |  |
| -                                    | C-9              | 0.3'/60%                          | 0%                      |                                                                |                                                                                                                                                                                                                 | 12      | DTW = 11.57 BGS.                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 51—<br>51—<br>52—                    |                  |                                   |                         | Bottom of<br>Borehole<br>surface ca<br>for Piezor<br>borehole. | Borehole = 50.0'.<br>sealed with cement bentonite grout due to damage to the<br>asing at the beginning of reaming activities. Installation borehole<br>neter GW-992 installed approximately 8' east of original | -       | On 2/19/18, used<br>Ingersoll-Rand T3W rotary rig<br>to ream corehole to 50.0' using<br>5 7/8" tricone bit. Finished<br>drilling at 1515.                                                                                                                                                                                                                                                |  |  |

USCS

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

53-

54

55

56

57

| -<br>58 —  |   |          |     |      |          |
|------------|---|----------|-----|------|----------|
|            |   |          |     |      |          |
| 60 —       |   |          |     |      |          |
| 61 —       |   |          |     |      |          |
| 62—        |   |          |     |      |          |
| 63         |   |          |     |      |          |
| 64 —       |   |          |     |      |          |
| 65 —       |   |          |     |      |          |
| 66         | - |          |     |      |          |
| 67 <i></i> |   |          |     |      |          |
| 68 —       |   |          |     |      |          |
| 69 <i></i> |   |          |     |      |          |
|            |   |          |     |      |          |
|            | 1 | <br>B-65 | ı 1 | Page | e 3 of 3 |

|                                                                                              |                  |                                   |                         | BC                                       | REHOLE                                | E LOG                    |                           |                                                                  |                                    |                 |
|----------------------------------------------------------------------------------------------|------------------|-----------------------------------|-------------------------|------------------------------------------|---------------------------------------|--------------------------|---------------------------|------------------------------------------------------------------|------------------------------------|-----------------|
| Site Na<br>and Loo                                                                           | me<br>cation:    | E                                 | MDF Cł                  | naracterization Project<br>Dak Ridge, TN | Drilling Methods<br>10" Air Har       | s:<br>nmer, 5 7/8" and 5 | 5/8" Tricone.             |                                                                  | Boring Number:                     |                 |
| Drilling                                                                                     | Firm: 7          | ri-State D                        | rilling                 |                                          | DATE                                  | TIME                     | DEPTH<br>DRILLED (ft)     | WATER<br>LEVEL (ft)                                              | Gw-                                | 192K            |
| Driller /                                                                                    | Rig: Tr          | avis Morg                         | an/Inger                | soll-Rand T3W                            | 2/26/18                               | 1730                     | 54.2                      | 24.22                                                            | Paga                               | 1 of 3          |
| Logged                                                                                       | by: Ne           | lson Nova                         | ak                      |                                          | ST - Shalby Tul                       | Sampling N               | <u>Aethods:</u>           | Colit Speen                                                      | rage                               |                 |
| Coordir                                                                                      | nates: 2         | 9698.291                          | 1 38737.                | 35E                                      | WS = Waxed Sa                         | mple                     | SS = 3<br>CS = (<br>C = ( | Split Spoon<br>Continuous Sampler                                | Start                              | Finish          |
| Surface                                                                                      | e Elevati        | on: <i>908.</i> 9                 | 9 ft/MSL                |                                          | GP or DP = Directory<br>CT = Cuttings | ct Push                  | NS = 1<br>B = Ba          | Not Sampled<br>ailer                                             | 1 ime<br>1422                      | 1635            |
| Surface                                                                                      | e Condit         | ions / Wea                        | ather: Da               | amp gravel road / 60°F, Sunny            |                                       |                          |                           |                                                                  | Date<br>2/20/18                    | Date<br>2/26/18 |
| Remark                                                                                       | s: Drille        | ed approx                         | imately 8               | east of borehole GW-992.                 |                                       |                          |                           |                                                                  |                                    |                 |
| Depth<br>(feet)                                                                              | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DE                                | SCRIPTION                             | I                        | Graphic<br>Log            | Rema                                                             | arks                               | nscs            |
|                                                                                              |                  |                                   |                         | Log GW-992 for a detailed litholog       | gic description an                    | d stratigraphic          |                           | 10" hammer bit.<br>permanent 6" PV<br>sealed with ceme<br>grout. | Set<br>C casing an<br>nt bentonite | E               |
| 8—<br>9—<br>10—<br>11—<br>11—<br>12—<br>13—<br>13—<br>14—<br>15—<br>16—<br>17—<br>18—<br>19— | NS               |                                   |                         |                                          |                                       |                          |                           |                                                                  |                                    |                 |

#### EMDF Characterization Project Boring Number **BOREHOLE LOG** Oak Ridge, TN **GW-992R** Remarks: Drilled approximately 8' east of borehole GW-992. Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method USCS Depth (feet) SAMPLE DESCRIPTION Remarks 21 22 23 24 25 26 27 28 29 30 31 32 NS 33 34 BOREHOLE LOG V.2 OAK RIDGE GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18 Straight drilled to 34.6' with 5 5/8" tricone bit to get through permanent 6" casing. Once below 6" PVC casing, switched tricone bit to a larger size bit (5 7/8") and straight drilled to 57.635 36 55.5'. 37 38 39 40 41 42 43 44 B-68

#### EMDF Characterization Project Boring Number **BOREHOLE LOG GW-992R** Oak Ridge, TN Remarks: Drilled approximately 8' east of borehole GW-992. Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method USCS Depth (feet) SAMPLE DESCRIPTION Remarks 46 47 48 49 50 NS 51 52 53 54 55 Bottom of Borehole = 55.5'. 56 Piezometer GW-992R installed in borehole. See Monitoring Well Installation Report GW-992R for details. 57 58 59 60 61 62 63 64 65 66 67 68 69

| Eagon & Associates, Inc. |              |                             |                  |                            |              |                   |                                              |                     |                     |            |             |
|--------------------------|--------------|-----------------------------|------------------|----------------------------|--------------|-------------------|----------------------------------------------|---------------------|---------------------|------------|-------------|
|                          |              | Ν                           | <i>l</i> lonit   | oring                      | Wel          | l Ins             | tallation Re                                 | port                |                     | T f        |             |
| Site Narr                | e and Loc    | cation: EM                  | DF Chara         | cterization F              | Project, O   | ak Ridge          | TN                                           | Completion [        | Date: 3/8/18        |            | 0-          |
| Coordina                 | ites: 2969   | 98.29N 38                   | 737.35E          |                            |              | Bo                | ehole Depth (ft): 55.5                       | 1                   |                     |            |             |
| Elevation                | Top of C     | asing (ft/M                 | SL): <i>911.</i> | 40                         |              | Во                | ehole Diameter (in):10'                      | ' (0'-32.0'), 5 7/8 | 3" (32.0'-55.5')    |            |             |
| Elevatior                | Ground S     | Surface (ft/                | MSL): 90         | 8.9                        |              | Dr                | ling Methods: 10" Air Ha                     | ammer, 5 7/8" a     | and 5 5/8" Tricone. |            | 10-         |
| Installed                | Bv: Fred     | Revnolds/1                  | ri-State D       | Drillina                   |              | Cc                | mpleted Drilling: 2/26/1                     |                     |                     |            |             |
| Supervis                 | ed By: .Sh   | av Reanlar                  | nd/Fagon         | & Associate                | s Inc        | Dr                | ling Water Lised (gals):                     |                     |                     |            |             |
|                          |              | lay Deamar                  | la Lugon         | a / 10000/arch             |              |                   |                                              |                     |                     |            |             |
|                          |              |                             |                  |                            | vvei         |                   | sign                                         |                     |                     |            | 20-         |
|                          | Comp         | ponent                      |                  |                            |              | Material          | ;                                            | Depth (LSD)         | Elevation           |            |             |
| Well P                   | rotector     |                             |                  | 4" Squa                    | re Steel I   | Protecto          |                                              | -2.8 - 2.2          | 911.7 - 906.7       |            |             |
| Riser                    |              |                             |                  | 2" ID Sc                   | hedule 4     | 0 PVC             |                                              | -2.5 - 39.3         | 911.4 - 869.6       |            |             |
| Surfac                   | e Seal       |                             |                  | 3' x 3' C                  | oncrete F    | Pad               |                                              | -0.5 - 0.5          | 909.4 - 908.4       |            | 30-         |
| Condu                    | ctor Casin   | g                           |                  | 6" ID PV                   | /C Sch. 4    | 40 PVC,           | -lush Threaded                               | -0.4 - 32.0         | 909.3 - 876.9       |            |             |
| Cemer                    | nt Grout     |                             |                  | Cement                     | Bentonit     | e Grout           |                                              | 0.5 - 33.8          | 908.4 - 875.1       |            |             |
| Bentor                   | ite Seal     |                             |                  | Pel Plug                   | 1/4" Co      | ated Bei          | tonite Pellets                               | 33.8 - 37.2         | 875.1 - 871.7       |            |             |
| Sand F                   | Pack         |                             |                  | DSI "GF                    | 9 #2" Gra    | vel Pacł          |                                              | 37.2 - 45.7         | 871.7 - 863.2       |            | 40-         |
| Screen                   | l            |                             |                  | 2" ID Sc                   | hedule 4     | 0 PVC,            | 0-Slot                                       | 39.3 - 44.4         | 869.6 - 864.5       |            |             |
| Well P                   | oint Blank   |                             |                  | 2" ID Sc                   | h. 40 PV     | C Cap &           | Riser Section                                | 44.4 - 45.7         | 864.5 - 863.2       |            |             |
| Sand F                   | Pack Botto   | m                           |                  | DSI "GF                    | 9 #2" Gra    | vel Pacł          |                                              | 45.7 - 48.2         | 863.2 - 860.7       |            |             |
| Bentor                   | ite Seal     |                             |                  | Enviro F                   | lug Med      | ium Chip          | s                                            | 48.2 - 55.5         | 860.7 - 853.4       |            | 50-         |
|                          |              |                             |                  | We                         | ell De       | evel              | opment                                       |                     | ·                   |            |             |
| Well Dep                 | oth (ft,TOC  | C):                         | Depth            | to Water (ft               | ,TOC):       | W                 | Il Volume (gals):                            | Volume              | Purged (gals):      |            |             |
| Developr                 | nent Meth    | iod:                        |                  |                            |              |                   | 7.1                                          | 74.5                |                     |            | 60          |
| Surgeb                   |              | Cumulative                  | i whate put      | Specific                   |              |                   | Decement                                     | -1-                 |                     | -          | 00-         |
| Date                     | Time         | Volume<br>Removed<br>(gals) | Temp<br>(°C)     | Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidit<br>(NTU) |                                              | ata                 |                     |            |             |
| 3/3/18                   | 1305         | 17.0                        | 15.5             | 387                        | 7.49         | 62.7              |                                              |                     |                     |            |             |
| 3/3/18                   | 1320         | 32.0                        | 15.1             | 380                        | 7.57         | 7.0               | »» »                                         |                     |                     |            | 70-         |
| 3/3/18                   | 1350         | 42.0                        | 15.0             | 380                        | 7.49         | 6.3               |                                              |                     |                     |            |             |
| 3/3/18                   | 1405         | 57                          | 15.1             | 375                        | 7.52         | 6.8               | □ <sup>O</sup> <sup>20</sup> <sup>−−−−</sup> |                     |                     |            |             |
| 3/3/18                   | 1415         | 67                          | 15.0             | 369                        | 7.46         | 8.3               | 0 L                                          | 40                  | 80 120              |            | 80-         |
| 3/3/18                   | 1430         | 74.5                        | 15.2             | 368                        | 7.46         | 6.0               |                                              | Time (minut         | es)                 |            |             |
| Sampling                 | g Equipme    | ent:                        |                  |                            |              | 1                 | -                                            |                     |                     | 1          |             |
| Commer                   | its:         |                             |                  |                            |              |                   |                                              |                     |                     | 4          |             |
|                          |              | 1000m1 ! . *                |                  |                            | Otat- D ""   |                   |                                              | ~~                  |                     |            |             |
| Grout m                  | ixing and pl | acement info                | ormation pr      | oviaed by Tri-             | State Drilli | ng. Scre          | n slot interval 39.4 - 44.2 b                | gs.                 |                     | Boring dep | th=55.5 ft. |

|                      |                            |                                   |                                                                           | BC                                                                                                                                                                                                                                                            | DREHOL                                                                                                           | E LOG                                                                                       |                                                                                                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |                 |
|----------------------|----------------------------|-----------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Site Nan<br>and Loca | ne<br>ation:               | E                                 |                                                                           | naracterization Project                                                                                                                                                                                                                                       | Drilling Method<br>4 1/4" ID H                                                                                   | ls:<br>HSA, HQ Core with                                                                    | water, 5 7/8"                                                                                     | ' hamn                   | ner bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Boring Nur                                                                                                                                                                                                                                                        | nber:           |
| Drilling F           | -irm: 7                    | ri-State D                        | Prilling                                                                  |                                                                                                                                                                                                                                                               | DATE                                                                                                             | TIME                                                                                        |                                                                                                   | H<br>) (ft)              | WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GW                                                                                                                                                                                                                                                                | .993            |
| Driller / F          | Rig: Fr                    | ed Reync                          | olds/Mobil                                                                | le B42C                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                             | DIRIELEE                                                                                          | <i>(</i> 11)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Paga                                                                                                                                                                                                                                                              | 1  of  2        |
| Logged I             | by: Sh                     | ay Beanla                         | and                                                                       |                                                                                                                                                                                                                                                               |                                                                                                                  | Sampling N                                                                                  | Methods:                                                                                          | ·                        | lit Creen                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Faye                                                                                                                                                                                                                                                              | 1012            |
| Coordina             | ates: 2                    | 9690.501                          | / 38724.                                                                  | 90E                                                                                                                                                                                                                                                           | WS = Waxed Sa                                                                                                    | ample                                                                                       | S<br>C                                                                                            | S = Sp<br>S = Co<br>= Co | ontinuous Sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Start                                                                                                                                                                                                                                                             | Finish          |
| Surface              | Elevati                    | on: <i>909.</i> :                 | 7 ft/MSL                                                                  |                                                                                                                                                                                                                                                               | GP or DP = Dire<br>CT = Cuttings                                                                                 | ect Push                                                                                    | N<br>B                                                                                            | IS = No<br>S = Bail      | ot Sampled<br>ler                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000                                                                                                                                                                                                                                                              | 0818            |
| Surface              | Conditi                    | ons / We                          | ather: G                                                                  | ravel pad, dry / 70°F, Partly cloudy                                                                                                                                                                                                                          |                                                                                                                  |                                                                                             |                                                                                                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date<br>2/22/18                                                                                                                                                                                                                                                   | Date<br>2/27/18 |
| Remarks              | s: Borir                   | ng installe                       | d for coll                                                                | ection of geotech samples and for in                                                                                                                                                                                                                          | stallation of shal                                                                                               | low piezometers.                                                                            |                                                                                                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |                 |
| Depth<br>(feet)      | Sample<br>Method           | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD                                                   | SAMPLE                                                                                                                                                                                                                                                        | DESCRIPT                                                                                                         | ION                                                                                         | Granhic                                                                                           | Log                      | Rema                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arks                                                                                                                                                                                                                                                              | NSCS            |
|                      | HSA<br>ST-1<br>ST-2<br>HSA | 1.6                               | 700 PSI<br>750 PSI<br>750 PSI<br>750 PSI<br>600 PSI<br>600 PSI<br>600 PSI | See Borehole Log for adjacent bo<br>description and stratigraphic inter<br>Bottom of tube, sample is brown f<br>CLAYEY SILT. Few to little fine t<br>to coarse grained. Abundant sha<br>Bottom of tube, same material as<br>trace. Increase in moisture conte | oring GW-992 for<br>pretation.<br>to strong brown (<br>to coarse grained<br>le fragments. Mo<br>above, but decre | detailed lithologic<br>7.5YR 5/4 - 4/6)<br>sand, primarily m<br>oist.<br>ease in sand conte | edium -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                          | Ran 4 1/4" ID HS<br>plug to target dep<br>tubes amples. Pu<br>tubes. Advanced<br>target depth and s<br>HQ Core with wait<br>target depth, then<br>borehole with 5 7,<br>bit to depth.<br>Pushed ST-1 fron<br>Let tube set in bo<br>940 to 945.<br>Bulk Bucket Sam<br>collected from 4.0<br>0952. Auger cutt<br>collected.<br>Pushed ST-2 fron<br>Let tube set in bo<br>0954 to 1003. Tu<br>Bulk Bucket Sam<br>collected from 6.0<br>1000. Auger cutt<br>collected. | A with center<br>ths of Shelb<br>ushed Shelb<br>augers to<br>switched to<br>the reamed<br>/8" hammer<br>n 3.0' - 5.0'.<br>rehole from<br>ple (BS-1)<br>)' - 5.0' at<br>ings<br>n 5.0' - 7.0'.<br>rehole from<br>the is wet.<br>ple (BS-2)<br>)' - 7.0' at<br>ings | r<br>y<br>y     |
| 10                   | ST-3                       | 0.5                               | 900 PSI<br>1000/1<br>PSI                                                  | At bottom of tube, sample is olive<br>Highly weathered. No reaction w                                                                                                                                                                                         | : (5Y 5/4 - 4/4) Sł<br>ith HCI.                                                                                  | HALE (SAPROLIT                                                                              |                                                                                                   |                          | Pushed ST-3 fron<br>until refusal. Let<br>borehole from 10                                                                                                                                                                                                                                                                                                                                                                                                         | n 10.5' - 11.<br>tube set in<br>19 to 1025.                                                                                                                                                                                                                       | 1'              |

| EN                           | MDF C            | haracteri<br>Dak Ridg             | zation F<br>e, TN       | Project                                                                                                               | BOREHOLE LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bo             | Boring Number<br>GW-993                                                                                                                                                                                                                                                                           |      |  |  |
|------------------------------|------------------|-----------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| Remark                       | s: Bori          | ng installe                       | d for coll              | ection of geo                                                                                                         | tech samples and for installation of shallow piezometers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                                                                                   |      |  |  |
| Depth<br>(feet)              | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                                                                                                       | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Graphic<br>Lod | Remarks                                                                                                                                                                                                                                                                                           | nscs |  |  |
| 21 —<br>22 —<br>23 —<br>24 — | HSA              |                                   |                         |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                                                                                                                                                                                                                                   |      |  |  |
| 25—<br><br>26—<br><br>27—    | C-1              | 2.1'<br>67.7%                     | 0%                      | Interbedde<br>Overall int<br>laminated<br>microcryst<br>bedding pl<br>weak Slic<br>60° - 70° a<br>core but b          | ed gray (N 5/) LIMESTONE and dark gray (N 4/) SHALE.<br>erbedded structure is thinly to medium bedded. Shale is<br>where present. Limestone is interclastic above 27.0' and<br>alline below 27.0'. Clasts are elongated and aligned parallel to<br>anes, which are at an 80° angle. Limestone is strong and shale<br>kenside surfaces (depositional) along bedding plane breaks at<br>ingles. Slightly decomposed, moderately disintegrated at top of<br>ecomes slightly disintegrated with depth. Very intensely to<br>ractured but some breaks are mechanically induced. Bedding |                | 1110 - Switching over to core.<br>C-1 25.0' - 25.0' 1239-1306.<br>1231 WL = 4.30 from ground<br>surface, TD = 25.0'.<br>C1 - Recovery lost is probably<br>shale mainly from top of core<br>run but within limestone beds<br>too. Driller noted that it felt                                       |      |  |  |
| 28 —<br>29 —<br>30 —         | C-2              | 2.8'<br>100%                      | 0%                      | plane ang<br>with calcite<br>perpendici<br>up to 8mm<br>several fra<br>Change at<br>Dark gray<br>Abundant<br>manganes | es range from 80°-90° to 40°-50° with depth. Fractures healed<br>e also are observed throughout limestone zones run<br>ular to bedding planes ranging in thickness from less than 1mm<br>i. Iron staining, iron oxide, and manganese oxide observed on<br>cture surfaces and bedding planes, as noted in remarks.<br>27.9'.<br>(N 4/) SHALE. Laminated bedding. Trace limestone beds.<br>slickenside surfaces (depositional). Upper 1' has iron oxide,<br>e oxide. and calcite precipitate observed along fracture faces.                                                          |                | <ul> <li>26.0' - 26.5' Multiple high angle fractures (&gt;75° angles) with iron staining, iron and manganese oxide along fracture face. 26.0' - 26.2' limestone is slightly to moderately disintegrated along fracture face.</li> <li>27.3' - 27.5' 40°-50° fractures,</li> </ul>                 |      |  |  |
| 31 —<br>32 —<br>33 —<br>34 — | C-3              | 2.5'<br>73.5%                     | 35.9%                   | Slightly to<br>depth. We<br>bedding pl<br>HCI.<br>Change al<br>Gray (N 5/<br>Interclastic<br>decreasing<br>Bedding p  | moderately decomposed becoming fresh and competent with<br>eak to moderate field strength. Very intensely fractured along<br>ane surfaces, likely mechanical induced. Does not react with<br>31.1'.<br>) INTERCLASTIC to MICROCRYSTALLINE LIMESTONE.<br>Imestone changing to microcrystalline with depth; clasts<br>to none at 32.0'. Clasts aligned parallel to bedding planes.<br>Ianes are at 40°-60° angles. Little shale beds within limestone,<br>the the prodominately less than 5mm. Bioturbation obcomed in                                                               |                | not along bedding planes, iron<br>staining present.<br>27.8' - 28.1' Core is highly<br>broken due to composition<br>mudstone/shale and is likely<br>due to coring. Iron staining<br>along fractures, along bedding<br>planes, and along fractures<br>that are perpendicular to<br>bedding angles. |      |  |  |
|                              | NS               |                                   |                         | shales. Fi<br>moderatel<br>induced. S<br>Breaks in                                                                    | sch and competent. Strong field strength. Intensely to<br>y fractured along bedding plane breaks likely mechanically<br>Some calcite precipitate observed along bedding planes.<br>beds are along bedding contacts of limestone and shale with<br>a surfaces observed along contacts.                                                                                                                                                                                                                                                                                              |                | C2 Core is very intensely<br>fractured and reduced to<br>rubble in places due to drilling<br>process. C2 28.0' - 31.0'<br>1310-1350.                                                                                                                                                              |      |  |  |
| 36—<br>-<br>37—              |                  |                                   |                         | healed fra<br>deformation<br>Bottom of                                                                                | tures running perpendicular to bedding planes. Soft sediment<br>n observed. Reacts strongly with HCl.<br>Borehole = 35.5'.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 28.1' - 28.6' Rubble zone, very<br>intensely fractured, all pieces<br>rounded. Iron staining, iron<br>oxide, and manganese oxide                                                                                                                                                                  |      |  |  |
| -<br>38—                     |                  |                                   |                         | Piezomete<br>Installatior                                                                                             | r GW-993 installed in borehole. See Monitoring Well<br>Report GW-993 for details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _              | observed along surfaces.<br>Calcite precipitate also<br>observed along fracture faces.<br>On 2/27/18 used                                                                                                                                                                                         |      |  |  |
| 39 —                         |                  |                                   |                         |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Ingersoll-Rand T4 rig to ream<br>corehole and advance<br>borehole to 35.5' using 5 7/8"<br>hammer bit. Finished drilling                                                                                                                                                                          |      |  |  |
| 40<br><br>41                 |                  |                                   |                         |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | at 0818.                                                                                                                                                                                                                                                                                          |      |  |  |
| -<br>42                      |                  |                                   |                         |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                                                                                                                                                                                                                                   |      |  |  |
| 43 —<br>                     |                  |                                   |                         |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                                                                                                                                                                                                                                   |      |  |  |
| -                            |                  |                                   |                         |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -              |                                                                                                                                                                                                                                                                                                   |      |  |  |

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

| Eagon & Associates, Inc.                       |                |                                                                                           |              |                                        |              |                    |                                                             |                         |          |                |      |        | Well Number<br>GW-993 |        |  |  |
|------------------------------------------------|----------------|-------------------------------------------------------------------------------------------|--------------|----------------------------------------|--------------|--------------------|-------------------------------------------------------------|-------------------------|----------|----------------|------|--------|-----------------------|--------|--|--|
|                                                |                | N                                                                                         | Ionit        | toring                                 | Wel          | l Inst             | tallation R                                                 | ерс                     | ort      |                |      | f      |                       |        |  |  |
| Site Nan                                       | ne and Lo      | cation: EM                                                                                | DF Chara     | ecterization F                         | Project, C   | ak Ridge,          | TN                                                          | Completion Date: 3/8/18 |          |                |      |        |                       |        |  |  |
| Coordinates: 29690.50N 38724.90E               |                |                                                                                           |              |                                        |              |                    | Borehole Depth (ft): 35.5                                   |                         |          |                |      |        |                       |        |  |  |
| Elevation Top of Casing (ft/MSL): 911.76       |                |                                                                                           |              |                                        |              | Bor                | Borehole Diameter (in):5 7/8" (0'-35.5')                    |                         |          |                |      |        |                       |        |  |  |
| Elevation Ground Surface (ft/MSL): 909.7       |                |                                                                                           |              |                                        |              | Drill              | Drilling Methods: 4 1/4" ID HSA, HQ Core with water, 5 7/8" |                         |          |                |      |        |                       | !      |  |  |
| Installed By: Travis Morgan/Tri-State Drilling |                |                                                                                           |              |                                        |              |                    | Completed Drilling: 2/27/18                                 |                         |          |                |      |        |                       |        |  |  |
| Supervis                                       | ed By: S       | hay Beanlar                                                                               | nd/Eagon     | & Associate                            | s, Inc.      | Drill              | Drilling Water Used (gals):                                 |                         |          |                |      |        |                       |        |  |  |
|                                                |                | •                                                                                         |              |                                        |              |                    | eian                                                        | ,                       |          |                |      |        |                       |        |  |  |
|                                                |                |                                                                                           |              |                                        |              |                    |                                                             |                         |          |                | -2   |        |                       |        |  |  |
| Component                                      |                |                                                                                           |              | Mate                                   |              |                    | rials                                                       |                         | h (LSD)  | Elevation      |      |        |                       |        |  |  |
| Well Protector                                 |                |                                                                                           |              | 4" Squa                                | re Steel     | Protector          | w/Locking Lid                                               | -2.4 - 2.6              |          | 912.1 - 907.1  |      |        |                       |        |  |  |
| Riser                                          |                |                                                                                           |              | 2" ID Schedule 40 PVC                  |              |                    |                                                             | -2.1 - 23.0             |          | 911.8 - 886.8  |      |        |                       | 15     |  |  |
| Surface Seal                                   |                |                                                                                           |              | 3' x 3' Concrete Pad                   |              |                    |                                                             | -0.5 - 0.5              |          | 910.2 - 909.2  |      |        |                       |        |  |  |
| Cement Grout                                   |                |                                                                                           |              | Cement Bentonite Grout                 |              |                    |                                                             | 0.5 - 14.5              |          | 909.2 - 895.2  |      |        |                       |        |  |  |
| Bentonite Seal                                 |                |                                                                                           |              | Pel Plug 1/4" Coated Bentonite Pellets |              |                    |                                                             | 14.5 - 19.8             |          | 895.2 - 889.9  |      |        |                       |        |  |  |
| Sand Pack                                      |                |                                                                                           |              | DSI "GP #2" Gravel Pack                |              |                    |                                                             | 19.8 - 34.3             |          | 889.9 - 875.4  |      |        |                       | 20     |  |  |
| Screen                                         |                |                                                                                           |              | 2" ID Schedule 40 PVC, 10-Slot         |              |                    |                                                             | 23.0 - 33.0             |          | 886.8 - 876.7  |      |        |                       |        |  |  |
| Well Point Blank                               |                |                                                                                           |              | 2" ID Sch. 40 PVC Cap & Riser Section  |              |                    |                                                             | 33.0 - 34.3             |          | 876.7 - 875.4  |      |        |                       |        |  |  |
| Sand Pack Bottom                               |                |                                                                                           |              | DSI "GP #2" Gravel Pack                |              |                    |                                                             | 34.3 - 35.5             |          | 875.4 - 874.2  |      |        |                       |        |  |  |
|                                                |                |                                                                                           |              |                                        |              |                    |                                                             |                         |          |                | -    |        | _                     | 25     |  |  |
|                                                |                |                                                                                           |              |                                        |              |                    | nmont                                                       |                         |          |                | -    |        |                       |        |  |  |
| Well Der                                       | oth (ft,TO     | C):                                                                                       | Depth        | to Water (ft                           |              |                    | Volume (gals):                                              |                         | Volume F | Purged (gals): | -    |        |                       |        |  |  |
| 36.3<br>Develop                                | 7<br>ment Metl | hod:                                                                                      | 5.4          | 5 5.3                                  |              |                    |                                                             |                         | 89.5     |                |      |        |                       |        |  |  |
| Surge b                                        | olock, bailer  | , mega purgel                                                                             | r whale pu   | mp                                     |              |                    |                                                             |                         |          |                |      |        |                       | 30     |  |  |
| Date                                           | Time           | Volume<br>Removed<br>(gals)                                                               | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recovery                                                    | <i>i</i> Data           |          |                |      |        |                       |        |  |  |
| 3/3/18                                         | 1425           | 79.5                                                                                      | 15.2         | 308                                    | 7.29         | 80.4               | 100                                                         |                         |          |                |      |        |                       |        |  |  |
| 3/3/18                                         | 1330           | 9.5                                                                                       | 15.1         | 310                                    | 7.34         | >1000              |                                                             |                         |          |                |      |        |                       | 35     |  |  |
| 3/3/18                                         | 1340           | 24.5                                                                                      | 14.9         | 292                                    | 7.27         | 269.0              |                                                             |                         |          |                |      |        |                       |        |  |  |
| 3/3/18                                         | 1350           | 39.5                                                                                      | 15.1         | 297                                    | 7.30         | 165.0              | <br>22                                                      |                         |          |                |      |        |                       |        |  |  |
| 3/3/18                                         | 1400           | 54.5                                                                                      | 15.2         | 295                                    | 7.26         | 141.0              | 0                                                           | 4                       | 0        | 80 120         |      |        |                       | 40     |  |  |
| 3/3/18                                         | 1435           | 35         89.5         15.2         292         7.23         48.4         Time (minutes) |              |                                        |              |                    | es)                                                         |                         |          |                | 40   |        |                       |        |  |  |
| Samplin                                        | g Equipmo      | ent:                                                                                      |              |                                        |              |                    |                                                             |                         |          |                | 1    |        |                       |        |  |  |
| Comme                                          | ata            |                                                                                           |              |                                        |              |                    |                                                             |                         |          |                | 4    |        |                       |        |  |  |
| Commer                                         | its:           |                                                                                           |              |                                        |              |                    |                                                             |                         |          |                |      |        |                       |        |  |  |
| Grout n                                        | nixing and p   | placement info                                                                            | rmation pr   | ovided by Tri-                         | State Drill  | ing. Scree         | n slot interval 23.2 - 32.9                                 | bgs.                    |          |                | Bori | ng dep | th=35.                | .5 ft. |  |  |
|                 |                 |                             |                      | BO                                                                      | REHOLE                                  | E LOG                                   |                                |                  |                                             |                              |                 |
|-----------------|-----------------|-----------------------------|----------------------|-------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|------------------|---------------------------------------------|------------------------------|-----------------|
| Site Na         | me              | E                           | MDF Ch               | aracterization Project                                                  | Drilling Method                         | S:<br>ISA HO3 Core wit                  | h water c                      | irculation       | 10" air bammer                              | Boring Num                   | ber:            |
|                 | auon.           |                             | C                    | Dak Ridge, TN                                                           | bit, 5 7/8" t                           | ricone bit with air/v                   | water.                         | DTU              |                                             | GW-                          | 994             |
| Drilling        | Firm: T         | ri-State D                  | rilling              |                                                                         | DATE                                    | TIME                                    | DRĬL                           | LED (ft)         | LEVEL (ft)                                  |                              |                 |
| Driller /       | Rig: Sh         | annon Si                    | now/CME              | -550                                                                    |                                         |                                         |                                |                  |                                             | Page                         | 1 of 3          |
| Logged          | by: Da          | vid J. Sug                  | gar                  |                                                                         | ST = Shelby Tu                          | <u>Sampling f</u><br>be                 | Methods:                       | SS = S           | split Spoon                                 | Start                        | Finish          |
| Coordin         | ates: 2         | 9644.991                    | I 38051.             | 04E                                                                     | WS = Waxed Sa<br>SP = Sand Pum          | imple<br>p                              |                                | CS = C<br>C = C  | Continuous Sampler                          | Time                         | Time            |
| Surface         | Elevati         | on: 916.7                   | 7 ft/MSL             |                                                                         | GP or DP = Dire<br>CT = Cuttings        | ct Push                                 |                                | NS = N<br>B = Ba | lot Sampled<br>iler                         | 0857                         | 1253            |
| Surface         | Conditi         | ons / Wea                   | ather: <i>Fla</i>    | at gravel pad adjacent to haul road /                                   | 64°F, Light rain                        |                                         |                                |                  |                                             | Date<br>2/16/18              | Date<br>2/19/18 |
| Remark          | S:              |                             |                      |                                                                         |                                         |                                         |                                |                  |                                             | ·                            |                 |
| Jepth<br>(feet) | ample<br>lethod | ample<br>covery<br>et or %) | ws/6 in<br>or<br>RQD | SAMPLE I                                                                | DESCRIPT                                | ION                                     |                                | raphic<br>Log    | Rema                                        | arks                         | scs             |
|                 | s≥              | C Re S                      | 8                    | Gravel drilling pad                                                     |                                         |                                         |                                | 0                | 3 1/4" ID HSA                               | ntinuous 2"                  |                 |
| -               | NS              |                             |                      | Graver unining pau.                                                     |                                         |                                         |                                | -                | OD, 2' drive split                          | spoon,                       |                 |
| 1—              |                 | 0 7'                        | 2                    | Strong brown (7.5YR 5/6 - 5/8 and                                       | 4/6) CLAYEY S                           | ILT to SILTY CLA                        | ΑΥ                             |                  | Ran center plug v                           | vhile                        |                 |
| 2-              | SS-1            | 70%                         | 3                    | to subangular. Unsorted, massive                                        | ace fine gravel we to mottled appe      | /ith depth, subrou<br>arance. High pla  | nded<br>sticity, _             |                  | No reaction with I                          | HCI. Trace                   | J               |
| -               |                 |                             | 3                    | toughness and dry strength. No d                                        | lilatancy. Moist.                       | Weathered. SUE                          | BSOIL.                         |                  | roots.<br>SS-2 Lab results:                 | Moisture                     |                 |
| 3—              | SS-2            | 1.1'<br>55%                 | 3                    |                                                                         |                                         |                                         | -                              |                  | Content (MC) 22.                            | 8%.<br>s disturbed           |                 |
| -               |                 |                             | 6                    |                                                                         |                                         |                                         |                                |                  | probable soil fill a                        | ssociated                    |                 |
| 4               |                 |                             | 3                    | Below 4.3' mottled appearance wi                                        | th nale brown (2                        | 5V 7/3 7/1) area                        | -                              |                  | On 2/18 used Ing                            | ersoll-Rand                  |                 |
| 5-              | SS-3            | 1.6'                        | 5                    | probably reduction associated with                                      | h desiccation frac                      | ctures.                                 |                                |                  | to 35.0' using 10"                          | hammer bit.                  |                 |
| -               |                 | 80%                         | 11                   | Below 5.1' slightly higher sand cor<br>angular. Chert fragments. No roo | ntent, trace fine gots observed belo    | gravel, subangula<br>ow 5.1'.           | r to                           |                  | Set permanent 6"<br>casing and sealed       | conductor<br>d with          |                 |
| 6—              |                 |                             | 5                    | Below 6.0' color changes to browr                                       | n yellowish browr                       | n (10YR 5/3 - 5/6)                      | . –                            |                  | cement-bentonite<br>SS-3 Lab results:       | grout.<br>MC 23.6%.          |                 |
| -               | <u> </u>        | 1.4'                        | 9                    | consistent silty clay composition.                                      |                                         |                                         |                                |                  | No reaction with I                          | HCI.                         |                 |
| /               | 55-4            | 70%                         | 16                   | 1/4" Diameter root at 8.1'.                                             |                                         |                                         | -                              |                  | SS-4 Lab results:                           | MC 21.7%;<br>% Sand: 90%     |                 |
| 8—              |                 |                             | 18                   | Change at 8.2'.                                                         |                                         |                                         | _                              |                  | Fines.                                      |                              |                 |
| -               |                 | 2.01                        | 10<br>16             | Brown/grayish brown to dark gray<br>completely weathered SHALE (SA      | ish brown (10YR<br>\PROLITE). Thir      | 5/2, 5/3 - 4/2) hig<br>nlv bedded.      | ghly to                        |                  | No reaction with I<br>ML-CL classificat     | HCI. Possibly<br>ion. Hiahlv | / ML            |
| 9—              | SS-5            | 100%                        | 19                   | approximate 45° bedding angle. I                                        | Highly fractured v<br>ure faces Rock    | vith reddish to yel                     | llowish <sup>_</sup><br>ed and | 11               | fractured.                                  | 0,                           |                 |
| 10-             |                 |                             | 29                   | is moldable with added water. Low                                       | w to medium pla                         | sticity. Low tough                      | iness,                         |                  | Below 10 0' black                           | manganese                    |                 |
| -               |                 |                             | 13                   | completely weathered. Slightly m                                        | oist to dry.                            | adon. Thghly to                         |                                |                  | oxide precipitate                           | on fracture                  |                 |
| 11 —            | SS-6            | 2.0'<br>100%                | 15                   |                                                                         |                                         |                                         | _                              |                  | SS-6 Lab results:                           | MC 39.2%.                    |                 |
| -               |                 |                             | 20                   |                                                                         |                                         |                                         |                                | +==1             | 10.9' - 11.4' Yello                         | wish brown to                |                 |
| 12—             |                 |                             | 26                   | Below 12.0' color is highly variable                                    | e but generally 10                      | OYR with the majo                       | ority of                       | 크                | iight yellowish bro<br>6/4 - 6/6) silty cla | wn (10YR<br>y to clay        |                 |
| 13—             | SS-7            | 2.0'                        | 29                   | the color in the grayish brown/dark<br>yellowish brown range (10YR 5/2  | k grayish brown t<br>- 4/4 and 4/2 - 4/ | o yellowish browr<br>4) and light browr | n/dark<br>∩ish <sup></sup>     | 트                | seam, no rock str<br>completely weath       | ucture,<br>ered              |                 |
| -               |                 | 100%                        | 39<br>33             | gray/pale brown (10YR 6/2 - 6/3).                                       |                                         |                                         |                                | <u> </u> ]       | limestone (?). Mo                           | oist.                        |                 |
| 14 —            |                 |                             | 9                    |                                                                         |                                         |                                         | -                              | 1                | Below 12.0' fractu                          | ires have                    |                 |
| 15              | ee 0            | 1.7'                        | 23                   | 14.6' - 14.8' Yellowish brown (10Y                                      | 'R 6/4) silty clay f                    | to clay seam. No                        |                                | ]==1             | yellowish/reddish<br>oxide precipitates     | brown iron                   |                 |
|                 | 00-0            | 85%                         | 15                   | structure. Completely weathered                                         | imestone seam                           | : ).                                    |                                | 드리               |                                             | MC 04 40/                    |                 |
| 16—             |                 |                             | 16                   |                                                                         |                                         |                                         | -                              | 1                | SS-10 Lab results:                          | s: MC 16.6%                  |                 |
| -               |                 | 2 0'                        | 25                   | 16.7' - 16.8' Vellowish brown to bl                                     | ack (10VR 6/4 ·                         | 2/1) silty clay see                     | m                              | []               |                                             |                              |                 |
| 17—             | SS-9            | 100%                        | 39                   | Completely weathered limestone                                          | seam (?).                               | -, i j siity olay seal                  |                                | 1                | Bedding angle ~4                            | 5°.                          |                 |
| 18-             |                 |                             | 27                   |                                                                         |                                         |                                         | -                              |                  |                                             |                              |                 |
| -               |                 |                             | 9                    | Below 20 0' primarily light brownis                                     | h grav pale brow                        | vn to gravish                           |                                |                  | Iron oxide continu                          | ies to be                    |                 |
| 19—             | SS-10           | 1.4'<br>70%                 | 20<br>51             | brown/brown (10YR 6/2 - 6/3 and                                         | 5/2 - 5/3) color.                       | to grayion                              | -                              | <u>+</u>         | associated with fr                          | actures and                  |                 |
|                 |                 |                             | 29                   |                                                                         |                                         |                                         |                                | 1                | bouding breaks.                             |                              |                 |

EMDF Characterization Project Oak Ridge, TN

#### **BOREHOLE LOG**

Boring Number GW-994

Remarks: Blows/6 in or RQD Sample Recovery (feet or %) Graphic Log Sample Method USCS Depth (feet) SAMPLE DESCRIPTION Remarks Light brownish gray/pale brown to grayish brown/brown (10YR 6/2 - 6/3 No reaction with HCl. ~45° ML 27 and 5/2 - 5/3) highly to completely weathered SHALE (SAPROLITE). Bedding angle. 32 2 0' (Cont'd) 21 SS-11 100% 36 Continues to be damp to slightly moist. 37 22 6 9 1.3' SS-12 22.8' - ~23.3' Dark gravish brown/olive brown (2.5Y 4/2 - 4/3) sandy zone. SS-12: Water on bottom 1.5' 23 65% 3 Structure is not apparent. Possible weathered glauconitic zone or sandy of split spoon sampler. siltstone. Wet. First wet zone observed. Soft zone. Sample is very moist to wet. 5 24 Below 24.0' split spoon 14 24.8' - 25.0' Reddish orange iron oxide, pronounced color, iron oxide sampler was wet/muddy on 24 1.5 precipitate/oxidation on fractures. retrieval SS-13 25 75% 50 Below 25.0' becomes layered with color variation greenish gray to dark 100 greenish gray (N 6/ - N 4/) grayish brown to light olive brown (2.5Y 5/2 - 5/4) and very dark brown to very dark grayish brown (10YR 3/2 - 2/2). 26 SS-12 Lab results: MC 18.7%. 49 SS-14 Lab results: MC 13.6%; 49 16 Underlying contact is transitional and subjective. May be as high as 25.0'. 9.2% Gravel; 56.9% Sand; SS-14 27 80% 46 33.9% Fines. 48 Change at 28.0'. 28 Interbedded dark greenish gray (N 5/), grayish brown to light olive brown Limestone seam at contact 19 (2.5Y 5/2 - 5/4) and very dark brown to very dark grayish brown (10YR 3/2 - 2/2) SHALE and LIMESTONE. Some limestone seams may classify as (strong reaction with HCI). 1.4' SS-15 52 70% 29 calcareous siltstone. Thinly bedded. Soft to medium hard. Apparent bedding angle around 45° (disturbed from sampling process). Highly weathered and fractured. Carbonate not leached from interval. SS-15 Lab results: MC 13.3%. 100 28.3' - 28.6 Wet zone in NS weathered shale. Generally sample looks moist to very 30 Limestone content is about 30%. SS-16 0.3'/100% 100/2 SS-16 Split spoon drove on limestone seam. Sample is broken from the slightly moist. 31 sampling process. NS SS-17 Lab results: MC 15.9%. 32 17 1.5 SS-18 Recovery is mostly broken limestone with iron oxide possibly 1121 Finish split-spoon SS-17 83 100% sampling. Bottom of augers at 33 manganese oxide (dark brownish black). 100/4 34.0'. 1436 Start HQ3 core C-1 Core run from 34.0' - 34.6', overdrilled SS-18 interval, 0.6' water circulation at 34.0' NS (cored over SS-18 interval 34 Recovered, very broken sample, mostly limestone. 0.6 SS-18 73 Ċ-1). 100% 100/1 Dark gray to very dark gray (N 4/ - 3/) SHALE and gray to dark gray (N 6/ -Bedding is generally deformed, 35 wavey. Shale does not react with HCI. Limestone has a N 4/) LIMESTONE. Thinly bedded, beds are generally less than 0.2'. Core is highly broken, most correspond with bedding planes and are most 1.3' C-2 0% 62% likely mechanically induced. Moderate to intensely fractured. Moderate to strong reaction with HCI. 36 strong field strength. Fresh to slightly decomposed. Trace healed calcite filled fractures oriented perpendicular to bedding. SS-18 Lab results: MC 14.6%. C-2 34.6' - 36.7' 1454-1510. C-3 36.7' - 41.7' 1514-1545. 37 35.5' - 35.65' Gray to dark gray Interclastic Limestone seam. 37.6' - 38.1' Fracture, oriented 40° to bedding angle. Face 38 has iron oxide weathering 37.4' - 38.1' Gray to dark gray (N 6/ - N 4/) Interclastic Limestone seam. (yellow/reddish brown). Bedding angle ~45° - 50°. 39 Clasts are elliptical oriented along bedding, up to 1" along long axis, 5.0' C-3 0% generally less than 1/2" on short axis. Strong reaction with HCI. Hard. 100% Matrix is unweathered. 40 41.8' - 42.6' Sample is highly broken, trace iron oxide on fracture faces. Too disturbed 41 to determine orientation. At 42.8' fracture oriented perpendicular to bedding. 42 Face is oxidized with iron oxide 42.2' - 43.2' Thinly interbedded limestone and shale, mostly limestone, precipitates. ~60° bedding angle, but orientation may be off. 44.9' - 45.4' Bedding breaks 43 and fracture oriented 4.5 C-4 9% perpendicular to bedding 90% 44.5' - 44.7' Gray to dark gray limestone seam. Trace stylolites. Calcite angle, faces are oxidized with 44 filled fractures up to 2 mm width oriented perpendicular to bedding angle. iron oxide precipitate. C-4 41.7' - 46.7' 1553-1610.

# Eagon & Associates, Inc. EMDF Characterization Project Oak Ridge, TN

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

#### **BOREHOLE LOG**

Boring Number GW-994

| Remark           | ks:              |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
|------------------|------------------|-----------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------|------|
| Depth<br>(feet)  | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DESCRIPTION                                                                                                                                                                                                                                            | Graphic<br>Log | Remarks                                                                          | NSCS |
| 46-              | C-4              | 4.5'<br>90%                       | 9%                      | <ul> <li>Interbedded dark gray to very dark gray (N 4/ - 3/) SHALE and gray to dark gray (N 6/ - N 4/) LIMESTONE. (Cont'd.)</li> <li>44.8' - 46.0' Shale bed, unweathered/fresh. Trace calcite filled fractures oriented perpendicular to bedding.</li> </ul> |                | Limestone reacts strong with<br>HCl. Shale does not react.<br>45° Bedding angle. |      |
| 47 —             |                  |                                   |                         | Below 46.7' thinly hedded broken along hedding planes. No                                                                                                                                                                                                     |                |                                                                                  |      |
| 48—              | C-5              | 2.3'<br>70%                       | 0%                      | weathering/iron oxide observed. Limestone beds, generally less than 0.1' with calcite filled fractures oriented perpendicular to bedding.                                                                                                                     |                | C-5 46.7' - 50.0' 1624-1656.                                                     |      |
| 49               | -                |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| 50 —             |                  |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| -<br>51 —        |                  |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| 52—              |                  |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| -<br>53 —        | NS               |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| 54 —             | -                |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| -<br>55 —        |                  |                                   |                         | Bottom of Borehole = 55.0'.                                                                                                                                                                                                                                   |                | Finish drilling at 1656, 2/16/18,                                                |      |
| -<br>56 —        | -                |                                   |                         | Piezometer GW-994 installed in borehole. See Monitoring Well<br>Installation Report GW-994 for details.                                                                                                                                                       | _              | WL = 10.22 from GS at 1700<br>on 2/16/18.<br>2/17/18 WL = 6.25' from GS at       |      |
| -<br>57 —        |                  |                                   |                         |                                                                                                                                                                                                                                                               | _              | 0830.<br>On 2/19 used T3W rotary rig to<br>ream corehole and advance             |      |
| -<br>58 —        | -                |                                   |                         |                                                                                                                                                                                                                                                               | _              | borehole to 55.0' using 5 7/8"<br>tricone bit with air and water<br>circulation. |      |
| -<br>59—         |                  |                                   |                         |                                                                                                                                                                                                                                                               | _              | Finished drilling at 1253.                                                       |      |
| 60 —             | -                |                                   |                         |                                                                                                                                                                                                                                                               | _              |                                                                                  |      |
| 61—              | -                |                                   |                         |                                                                                                                                                                                                                                                               | -              |                                                                                  |      |
| 62-              |                  |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| 63—              | -                |                                   |                         |                                                                                                                                                                                                                                                               | -              |                                                                                  |      |
| 64 —             |                  |                                   |                         |                                                                                                                                                                                                                                                               | _              |                                                                                  |      |
| 65 —             | -                |                                   |                         |                                                                                                                                                                                                                                                               | _              |                                                                                  |      |
| 66 —<br>-        | -                |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| 67 —             | -                |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| 68               | -                |                                   |                         |                                                                                                                                                                                                                                                               |                |                                                                                  |      |
| 69 <i>—</i><br>- | -                |                                   |                         |                                                                                                                                                                                                                                                               | -              |                                                                                  |      |

| Eagon & Associates, Inc. |                    |                                           |              |                                        |              |                    |                                            |                                   |                                        |                                       | umbe<br>994 |
|--------------------------|--------------------|-------------------------------------------|--------------|----------------------------------------|--------------|--------------------|--------------------------------------------|-----------------------------------|----------------------------------------|---------------------------------------|-------------|
|                          |                    | N                                         | Ionit        | oring                                  | Wel          | l Insta            | allation Re                                | eport                             |                                        | L L L L L L L L L L L L L L L L L L L |             |
| Site Nam                 | ne and Lo          | cation: EML                               | OF Chara     | cterization P                          | roject, O    | ak Ridge, T        | N                                          | Completion D                      | )ate: 3/8/18                           |                                       |             |
| Coordina                 | ites: 2964         | 44.99N 380                                | 51.04E       |                                        |              | Boreh              | ole Depth (ft): 55.0                       |                                   |                                        |                                       |             |
| Elevation                | n Top of C         | asing (ft/MS                              | SL): 918.    | 89                                     |              | Boreh              | ole Diameter (in):10                       | )" (0'-35.0'), 5 7/8              | " (35.0'-55')                          |                                       |             |
| Elevation                | Ground             | Surface (ft/N                             | /ISL): 91    | 6.7                                    |              | Drillin            | 3 1/4" ID<br>g Methods: circulatio         | HSA, HQ3 Core<br>on, 10" air hamm | e with water<br>er bit, 5 7/8" tricone |                                       | 1           |
| nstalled                 | Bv: Fred           | Revnolds/Ti                               | ri-State D   | Drillina                               |              | Comr               | <i>bit with a</i><br>leted Drilling: 2/19/ | air/water<br>/18                  |                                        |                                       |             |
| Supervis                 | ed Bv: S           | hav Beanlan                               | d/Fagon      | & Associate:                           | s Inc        | Drillin            | g Water Used (gals                         | ).                                |                                        |                                       |             |
|                          |                    |                                           | <u>_</u>     |                                        |              |                    |                                            | ,.                                |                                        |                                       |             |
|                          |                    |                                           |              |                                        | vvei         | Desi               | gn                                         |                                   |                                        |                                       | 2<br>2      |
|                          | Com                | ponent                                    |              |                                        |              | Materials          |                                            | Depth (LSD)                       | Elevation                              |                                       |             |
| Well Pi                  | rotector           |                                           |              | 4" Squa                                | re Steel     | Protector w        | Locking Lid                                | -2.5 - 2.5                        | 919.2 - 914.2                          |                                       |             |
| Riser                    |                    |                                           |              | 2" ID Sc                               | hedule 4     | 0                  |                                            | -2.2 - 42.0                       | 918.9 - 874.7                          |                                       |             |
| Surface                  | e Seal             |                                           |              | 3' x 3' C                              | oncrete I    | Pad                |                                            | -0.5 - 0.5                        | 917.2 - 916.2                          |                                       | <u> </u>    |
| Condu                    | ctor Casir         | ng                                        |              | 6" ID Sc                               | h. 40 PV     | ′C, Flush Tł       | nreaded                                    | -0.4 - 35.0                       | 917.1 - 881.7                          |                                       |             |
| Cemer                    | nt Grout           |                                           |              | Cement                                 | Bentonit     | e Grout            |                                            | 0.5 - 32.3                        | 916.2 - 884.4                          |                                       |             |
| Benton                   | ite Seal           |                                           |              | Pel Plug                               | 1/4" Co      | ated Bentor        | nite Pellets                               | 32.3 - 37.0                       | 884.4 - 879.7                          |                                       |             |
| Sand F                   | Pack               |                                           |              | DSI "GP                                | #2" Gra      | vel Pack           |                                            | 37.0 - 53.3                       | 879.7 - 863.4                          |                                       | 4<br>       |
| Screen                   | ı                  |                                           |              | 2" ID Sc                               | hedule 4     | 0, 10-Slot         |                                            | 42.0 - 52.0                       | 874.7 - 864.7                          |                                       |             |
| Well P                   | oint Blank         | κ.                                        |              | 2" ID Sc                               | h. 40 PV     | ′C Cap & R         | ser Section                                | 52.0 - 53.3                       | 864.7 - 863.4                          |                                       |             |
| Sand F                   | Pack Botto         | om                                        |              | DSI "GP                                | #2" Gra      | vel Pack           |                                            | 53.3 - 54.6                       | 863.4 - 862.1                          |                                       | 핕.          |
| Natura                   | l Fill             |                                           |              | Natural                                | Fill         |                    |                                            | 54.6 - 55.0                       | 862.1 - 861.7                          |                                       |             |
|                          |                    |                                           |              | We                                     | ell De       | evelop             | oment                                      |                                   |                                        |                                       |             |
| Nell Dep                 | oth (ft,TOO<br>1   | C):                                       | Depth        | to Water (ft,                          | TOC):        | Well V             | /olume (gals):<br>o                        | Volume F                          | Purged (gals):                         |                                       |             |
| Developr                 | nent Met           | nod:                                      | 0            |                                        |              |                    | 5                                          | 00.0                              |                                        | -                                     | e e         |
| Date                     | Time               | Cumulative<br>Volume<br>Removed<br>(gals) | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recovery [                                 | Data                              |                                        | _                                     |             |
| 3/1/18                   | 1046               | 15.0                                      | 15.8         | 539.1                                  | 9.29         | 340.0              | 100                                        |                                   |                                        |                                       |             |
| 3/1/18                   | 1107               | 40.0                                      | 15.5         | 315.9                                  | 8.53         | 92.1               |                                            |                                   |                                        |                                       | 7           |
| 3/1/18                   | 1125               | 66.0                                      | 15.5         | 317.0                                  | 8.87         | 3.0                |                                            |                                   |                                        |                                       |             |
| 3/1/18                   | 1137               | 76.0                                      | 15.6         | 312.5                                  | 8.73         | 1.9                | · · · · · · · · · · · · · · · · · · ·      |                                   |                                        |                                       |             |
| 3/1/18                   | 1144               | 81.0                                      | 15.7         | 312.5                                  | 8.68         | 2.0                | o                                          | 40                                | 80 120                                 |                                       |             |
| 3/1/18                   | 1152               | 86.0                                      | 15.6         | 310.5                                  | 8.63         | 4.3                |                                            | Time (minute                      | es)                                    |                                       | 8           |
| Sampling                 | g Equipme          | ent:                                      |              |                                        |              |                    |                                            |                                   |                                        | ┫ │                                   |             |
| 20000-0                  | to.                |                                           |              |                                        |              |                    |                                            |                                   |                                        | 4                                     |             |
| Stainles                 | ns:<br>s steel cen | tralizers set at                          | t 17' and 3  | 4' from ground                         | l surface.   | Washed san         | d pack and pellets in u                    | sing tremie pipe. G               | Grout mixing and                       |                                       |             |
| placeme                  | ent informa        | tion provided l                           | by Tri-Stat  | e Drilling. Scr                        | een slot ir  | nterval 42.2 -     | 51.9 bgs.                                  |                                   | J ·                                    | Boring dep                            | th=55.0 f   |

|                     |                  |                                   |                         | BC                                                                                                                                           | REHOLI                                                                                                                                                                                                                                                          | E LOG                            |               |                  |                                                                                                       |                                                                          |                 |  |  |
|---------------------|------------------|-----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------|--|--|
| Site Nar<br>and Loc | me<br>ation:     | E                                 | MDF Ch                  | naracterization Project                                                                                                                      | Drilling Method<br>4 1/4" ID H                                                                                                                                                                                                                                  | s:<br>łollow Stem Auger,         | HQ3 Core      | e with w         | ater circulation.                                                                                     | Boring Nun                                                               | nber:           |  |  |
| Drilling I          | Firm: 7          | ri-State D                        | rilling                 |                                                                                                                                              | DATE                                                                                                                                                                                                                                                            | TIME                             | DEP           | PTH              | WATER                                                                                                 | GW-                                                                      | .995            |  |  |
| Driller /           | Rig: Si          | nannon Si                         | now/CME                 | E-550                                                                                                                                        |                                                                                                                                                                                                                                                                 |                                  | DIVIEL        |                  |                                                                                                       | Page                                                                     | 1 of 2          |  |  |
| Logged              | by: Da           | vid J. Sug                        | gar                     |                                                                                                                                              | ST - Shalby Tu                                                                                                                                                                                                                                                  | Sampling N                       | Methods:      | <u> </u>         | Split Spoon                                                                                           | r age                                                                    |                 |  |  |
| Coordin             | ates: 2          | 9646.821                          | 1 38039.                | 32E                                                                                                                                          | WS = Waxed Sa<br>SP = Sand Pum                                                                                                                                                                                                                                  | ample<br>p                       |               | CS = C<br>C = C  | Continuous Sampler                                                                                    | Start                                                                    | Finish          |  |  |
| Surface             | Elevati          | on: <i>916.</i> 3                 | 8 ft/MSL                |                                                                                                                                              | GP or DP = Dire<br>CT = Cuttings                                                                                                                                                                                                                                | ect Push                         |               | NS = N<br>B = Ba | Not Sampled<br>iller                                                                                  | 1435                                                                     | 0935            |  |  |
| Surface             | Condit           | ons / Wea                         | ather: M                | oist/wet gravel pad / 53°F, Partly clo                                                                                                       | udy                                                                                                                                                                                                                                                             |                                  |               |                  |                                                                                                       | Date<br>2/26/18                                                          | Date<br>2/27/18 |  |  |
| Remark              | s: Bore          | hole insta                        | alled for th            | ne collection of geotech samples and                                                                                                         | d installation of sl                                                                                                                                                                                                                                            | nallow piezometer                |               |                  |                                                                                                       |                                                                          |                 |  |  |
| Depth<br>(feet)     | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD | SAMPLE DE                                                                                                                                    | SCRIPTION                                                                                                                                                                                                                                                       | N                                |               | Graphic<br>Log   | Rema                                                                                                  | arks                                                                     | nscs            |  |  |
| 1<br>2              | NS               |                                   |                         | See adjacent Borehole Log GW-9<br>and stratigraphic interpretations.                                                                         | 994 for detailed lit                                                                                                                                                                                                                                            | thologic descriptio              | ns _<br>      |                  | 4 1/4" ID HSA, ra<br>while augering.                                                                  | n auger plug                                                             | CL              |  |  |
| 3                   | ST-1             | 1.95                              | 900 PSI                 | Description based on inspection c<br>brown (7.5 YR 5/6 - 5/8 and 4/6) a<br>SILTY CLAY. Trace subangular<br>weathered. Moist. High plasticity | ption based on inspection of bottom of ST-1 recovery. Strong<br>(7.5 YR 5/6 - 5/8 and 4/6) and pale brown (2.5Y 7/3 - 7/4) mottled<br>CLAY. Trace subangular to subrounded rock fragments. Highly<br>ered. Moist. High plasticity, toughness, and dry strength. |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| 5                   | NS               |                                   |                         | SUBSOIL.                                                                                                                                     |                                                                                                                                                                                                                                                                 |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| 7-                  | ST-2             | 2.0                               | 1200<br>PSI             | Description based on inspection of<br>Brown/grayish brown to dark gray<br>to completely weathered SHALE (                                    | of bottom of ST-2<br>vish brown (10YR                                                                                                                                                                                                                           | recovery.<br>5/2, 5/3 to 4/2). 1 | –<br>Highly – |                  | Auger cutting buc<br>BS-2 collected fro<br>No reaction with I<br>crushed with wate<br>completely come | ket sample<br>om 6.0' - 8.0'<br>HCI. When<br>er, does not<br>apart/crush |                 |  |  |
| 8                   |                  |                                   |                         | bedding, appears in place. Reddi<br>bedding breaks and fracture faces                                                                        | ish to yellowish b<br>s.                                                                                                                                                                                                                                        | rown iron oxide co               | oats          |                  | High plasticity and is apparent.                                                                      | d toughness                                                              |                 |  |  |
| 9                   |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| 10                  |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| 11—<br>-            |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| 12                  |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| 13—                 |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| 14 —                | NS               |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| 15—                 |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| 16—                 |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  | _             |                  |                                                                                                       |                                                                          |                 |  |  |
| <br>17 —            |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  | _             |                  |                                                                                                       |                                                                          |                 |  |  |
| 18-                 |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  | _             |                  |                                                                                                       |                                                                          |                 |  |  |
| -<br>19—            |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  |               |                  |                                                                                                       |                                                                          |                 |  |  |
| _                   |                  |                                   |                         |                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                  | _             |                  |                                                                                                       |                                                                          |                 |  |  |

BOREHOLE LOG V.2 OAK RIDGE .GPJ CONTAINER CRAFT TEMPLATE WITH PID.GDT 4/4/18

| E               | MDF C            | haracteri<br>Dak Rido             | zation P<br>e. TN       | Project                                            | BOREHOLE LOG                                                                                                                                                                                                                                | Boi            | ring Number<br>GW-995                                                                                                           |      |
|-----------------|------------------|-----------------------------------|-------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|------|
| Remark          | s: Bore          | ehole insta                       | alled for th            | he collection                                      | of geotech samples and installation of shallow piezometer.                                                                                                                                                                                  |                |                                                                                                                                 |      |
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                                    | SAMPLE DESCRIPTION                                                                                                                                                                                                                          | Graphic<br>Log | Remarks                                                                                                                         | NSCS |
| 21-             |                  |                                   |                         | Light brov<br>and 5/2 -<br>(Cont'd.)               | vnish gray/pale brown to grayish brown/brown (10YR 6/2 - 6/3<br>5/3) highly to completely weathered SHALE (SAPROLITE).                                                                                                                      | _              | Limestone not present from 25.0' - 25.5'. No reaction with HCI.                                                                 | CL   |
| 22              | NS               |                                   |                         | Below 25.<br>5/2 - 4/2,<br>Generally<br>disturbed. | 0' grayish brown/dark grayish brown to light olive brown (2.5Y<br>4/3) SHALE (SAPROLITE). Highly broken sample (gravel size).<br>have iron/manganese oxide coatings on most faces. Highly                                                   | -              | Below 25.0' switch to HQ3<br>core, water circulation. Start<br>coring at 1540.                                                  |      |
| 24              |                  |                                   |                         | Below 25.<br>planes, th<br>Below 25.               | <ul><li>5' relatively intact core, very weathered, broken along bedding<br/>inly bedded, iron oxide on bedding contacts.</li><li>9' mostly unweathered, fractures are typically oxidized.</li></ul>                                         |                | C-1 Lost recovery is from the<br>top and bottom of the run.<br>First 0.5' of recovery is gravel<br>size (brown) rock fragments. |      |
| 26—<br>         |                  |                                   |                         | Gray to ve<br>SHALE at<br>bedding a                | t 25.9'.<br>ery dark gray (N 4/ - N 6/) and (5YR 4/1 - 3/1) INTERBEDDED<br>nd LIMESTONE. Thinly bedded, generally <0.1' beds, ~45°<br>ingle. Approximately 30% limestone or calcareous siltstone<br>(induct gray color bues (N 6/ and N 5/) |                | stuffed.<br>Highly/intensely fractured.<br>Shale does not react with HCI.<br>Limestone reacts stronger with                     |      |
| 28              | C-1              | 2.9'<br>58%                       | 0%                      | Below 26.<br>secondary<br>are also c               | 0' most bedding breaks (generally at 0.1' - 0.2' intervals have<br>y calcite on bedding surfaces. Breaks perpendicular to bedding<br>ommon and most have secondary calcite on fracture surfaces.                                            |                | HCI.<br>Finish coring at 1608.<br>Advance HSA over corehole to<br>completion depth.<br>C-1 25 0' - 30 0' 1540-1608              |      |
| 29—<br>         |                  |                                   |                         | 26.5' - 27<br>surfaces.<br>Oxidation<br>and broke  | 0' Trace yellowish/reddish brown iron oxide on fracture<br>not observed below 27.0', but continues to be highly fractured<br>on with secondary calcite along breaks.                                                                        |                | End 2/26/18, 1700 at 33.0'.<br>Begin 2/27/18, 0925, 38°F,                                                                       |      |
| 31              |                  |                                   |                         |                                                    |                                                                                                                                                                                                                                             |                | Sunny.                                                                                                                          |      |
| 32              | NS               |                                   |                         |                                                    |                                                                                                                                                                                                                                             | -              |                                                                                                                                 |      |
| 34 —            |                  |                                   |                         | Bottom of                                          | Borehole = 34.0'.                                                                                                                                                                                                                           |                | 2/27/18 Completed drilling at                                                                                                   |      |
|                 |                  |                                   |                         | Piezomete<br>Installatio                           | er GW-995 installed in borehole. See Monitoring Well<br>n Report GW-995 for details.                                                                                                                                                        |                | 0935.                                                                                                                           |      |
| 36              |                  |                                   |                         |                                                    |                                                                                                                                                                                                                                             |                |                                                                                                                                 |      |
| 38-             |                  |                                   |                         |                                                    |                                                                                                                                                                                                                                             | -              |                                                                                                                                 |      |
| 39 <i>—</i>     |                  |                                   |                         |                                                    |                                                                                                                                                                                                                                             |                |                                                                                                                                 |      |
| 40<br><br>41    |                  |                                   |                         |                                                    |                                                                                                                                                                                                                                             |                |                                                                                                                                 |      |
| 42              |                  |                                   |                         |                                                    |                                                                                                                                                                                                                                             |                |                                                                                                                                 |      |
| 43—<br>         |                  |                                   |                         |                                                    |                                                                                                                                                                                                                                             |                |                                                                                                                                 |      |
| -               |                  |                                   |                         |                                                    |                                                                                                                                                                                                                                             | -              |                                                                                                                                 |      |

| Eago      | on & A      | Associa                     | ntes, l    | nc.                        |              |                     |                               |                 |          |        |          |           | We    | ll Nui<br>GW-9 | mber<br>95 |
|-----------|-------------|-----------------------------|------------|----------------------------|--------------|---------------------|-------------------------------|-----------------|----------|--------|----------|-----------|-------|----------------|------------|
|           |             | Ν                           | loni       | toring                     | Wel          | l Ins               | tallation Re                  | epo             | ort      |        |          |           |       | f              |            |
| Site Nam  | ne and Loo  | cation: EM                  | DF Chara   | acterization F             | Project, Oa  | ak Ridge            | TN                            | Co              | ompleti  | on Dat | e: 3/8/1 | 8         |       |                |            |
| Coordina  | ites: 2964  | 46.82N 380                  | )39.32E    |                            |              | Bo                  | ehole Depth (ft): 34.0        |                 |          |        |          |           |       |                |            |
| Elevation | n Top of C  | asing (ft/M                 | SL): 918   | .76                        |              | Во                  | ehole Diameter (in):7         | 1/2"            |          |        |          |           |       |                |            |
| Elevatior | Ground S    | Surface (ft/I               | MSL): 91   | 6.3                        |              | Dri                 | ling Methods: 4 1/4" ID       | ) Hollo         | ow Ster  | n Auge | r, HQ3 ( | Core with |       |                | Ę          |
| Installed | By: Shan    | non Snow/                   | Tri-State  | Drilling                   |              | Co                  | npleted Drilling: 2/27/       | '18             | 011.     |        |          |           |       |                |            |
| Supervis  | ed By: Da   | avid J. Suaa                | ar/Eagon   | & Associates               | s. Inc.      | Dri                 | ling Water Used (gals         | ): ~7;          | 50       |        |          |           |       |                |            |
|           |             |                             |            |                            |              |                     |                               | ,               |          |        |          |           | -     |                |            |
|           |             |                             |            |                            | vvei         | De                  | sign                          |                 |          |        |          |           |       |                | 10         |
|           | Com         | ponent                      |            |                            |              | Materials           |                               | Dept            | th (LSD  | )      | Elev     | ation     |       |                |            |
| Well P    | rotector    |                             |            | 4" Squa                    | re Steel v   | v/Lockin            | g Lid                         | -2.             | 8 - 2.2  |        | 919.1    | - 914.1   |       |                |            |
| Riser     |             |                             |            | 2" ID Sc                   | hedule 4     | 0 PVC               |                               | -2.5            | 5 - 22.1 |        | 918.8    | - 894.2   |       |                |            |
| Surfac    | e Seal      |                             |            | 3' x 3' C                  | oncrete      |                     |                               | -0.             | 5 - 0.5  |        | 916.8    | - 915.8   |       |                | 15         |
| Cemer     | nt Grout    |                             |            | Cement                     | Bentonit     | e Grout             |                               | 0.5             | 5 - 17.0 |        | 915.8    | - 899.3   |       |                |            |
| Bentor    | ite Seal    |                             |            | Pel-Plug                   | g 1/4" Coa   | ated Ber            | tonite Pellets                | 17.0            | 0 - 19.2 |        | 899.3    | - 897.1   |       |                |            |
| Sand F    | Pack        |                             |            | DSI GP                     | #2 Grave     | el Pack             |                               | 19.2            | 2 - 33.4 |        | 897.1    | - 882.9   |       |                |            |
| Screer    | ı           |                             |            | 2" ID Sc                   | hedule 4     | 0 PVC, <sup>2</sup> | 0-Slot                        | 22.1            | 1 - 32.1 |        | 894.2    | - 884.2   |       |                | 20         |
| Well P    | oint Blank  |                             |            | 2" ID Sc                   | :h. 40 PV    | C Cap &             | Riser Section                 | 32.1            | 1 - 33.4 | ,      | 884.2    | - 882.9   |       |                |            |
| Sand F    | Pack Botto  | m                           |            | DSI GP                     | #2 Grave     | el Pack             |                               | 33.4            | 4 - 34.0 |        | 882.9    | - 882.3   |       |                |            |
|           |             |                             |            |                            |              |                     |                               |                 |          |        |          |           | 1 =   |                |            |
|           |             |                             |            |                            |              |                     |                               |                 |          |        |          |           | ] =   |                | 25<br>     |
|           |             |                             |            | We                         | ell De       | evelo               | opment                        |                 |          |        |          |           |       |                | =          |
| Well Dep  | oth (ft,TOC | C):                         | Depth      | to Water (ft               | ,TOC):       | We                  | ll Volume (gals):             |                 | Volur    | ne Pur | ged (ga  | s):       | 1     |                |            |
| Develop   | nent Meth   | iod:                        | r whole pu |                            |              |                     | 0.0                           |                 | ,        | 00.0   |          |           |       |                |            |
| Surge b   |             | Cumulative                  |            | Specific                   |              |                     | Decessory                     | <b>&gt;</b> -+- |          |        |          |           | ┨╞    |                | 30         |
| Date      | Time        | Volume<br>Removed<br>(gals) | (°C)       | Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | (NTU)               |                               | Jala            | I        |        |          |           |       |                |            |
| 3/2/18    | 0900        | 10.5                        | 15.7       | 345                        | 7.11         | >1000               |                               |                 |          |        |          |           |       |                |            |
| 3/2/18    | 0940        | 33.0                        | 15.0       | 342                        | 7.12         | >1000               | 80<br>≥ 60                    |                 |          |        |          |           |       |                | 35         |
| 3/2/18    | 1510        | 63.0                        | 15.5       | 318                        | 7.20         | >1000               |                               |                 |          |        |          |           |       |                |            |
| 3/2/18    | 1610        | 96.0                        | 15.2       | 320                        | 7.16         | 273.0               | ଥି 20                         |                 |          |        |          |           |       |                |            |
| 3/2/18    | 1705        | 126.0                       | 15.1       | 324                        | 7.21         | 60.4                | 0 <u>0</u>                    | 4               | 0        | 8      | 0        | 120       |       |                | Л          |
| 3/3/18    | 0815        | 156.0                       | 15.1       | 317                        | 7.15         | 5.6                 |                               | Ti              | ime (mi  | nutes) |          |           |       |                |            |
| Samplin   | g Equipme   | ent:                        |            |                            | 1            | 1                   |                               |                 |          |        |          |           | 1     |                |            |
| Commer    | nts:        |                             |            |                            |              |                     |                               |                 |          |        |          |           | 4     |                |            |
| Crow      | iving and - | locomont inf-               | rmotic     | ovided by T=               | State Dailli | na Carra            | n slot interval 22.0.20.0     | haa             |          |        |          |           |       |                |            |
| Giouch    | nang anu p  |                             | manon pi   | Svided by III-             |              | ig. Sciet           | - SIOL IIIIGI VAI 22.2 - 32.0 | იყა.            |          |        |          |           | Borin | g aepth        | =34.0 ft.  |

B-85

|               |               |                           |                     | BO                                                                         | REHOLE                                   | LOG                                      |                           |                                       |                               |                 |
|---------------|---------------|---------------------------|---------------------|----------------------------------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------|---------------------------------------|-------------------------------|-----------------|
| Site Na       | me            | E                         | MDF Ch              | aracterization Project                                                     | Drilling Methods                         | HO3 Core w/wate                          | er 10" air hamme          | r bit 57/8"                           | Boring Num                    | ber:            |
|               | auon.         |                           | C                   | Dak Ridge, TN                                                              | tricone bit y                            | v/air/water.                             |                           |                                       | GW-                           | 998             |
| Drilling      | Firm: 7       | ri-State D                | rilling             |                                                                            | DATE                                     | TIME                                     | DRILLED (ft)              | LEVEL (ft)                            | _                             |                 |
| Driller /     | Rig: Fr       | ed Reyno                  | lds/Mobile          | e 42C                                                                      | 2/14/18                                  | 1654                                     | 19.0                      | 1.41                                  | Page                          | 1 of 2          |
| Logged        | by: <i>Ry</i> | an Hanse                  | 1                   |                                                                            | ST = Shelby Tub                          | <u>Sampling N</u><br>be                  | <u>1ethods:</u><br>SS = S | Split Spoon                           | Ctout                         | Finiah          |
| Coordin       | ates: 2       | 9021.821                  | 1 37742.            | 36E                                                                        | WS = Waxed Sa                            | mple                                     | CS = (                    | Continuous Sampler                    | Start                         | Finish          |
| Surface       | Elevati       | on: 877.7                 | ft/MSL              |                                                                            | GP or DP = Direc                         | ,<br>ct Push                             | NS = 1<br>B = B           | Not Sampled                           | 1355                          | 0919            |
| Surface       | Conditi       | ons / Wea                 | ather: Gr           | avel pad, moist / 50°F, Cloudy, 0-5 S                                      | SW                                       |                                          |                           |                                       | Date<br>2/14/18               | Date<br>2/20/18 |
| Remark        | s: Set u      | ip on con                 | e located           | ~6' south of staked location.                                              |                                          |                                          |                           |                                       |                               |                 |
| ۲.            | ele<br>bo     | ery<br>ery<br>(%)         | 6 in                |                                                                            |                                          |                                          | ic -                      |                                       |                               | Ś               |
| Dept<br>(feel | Samp<br>Metho | Samp<br>Recov<br>(feet or | Blows/<br>or<br>RQI | SAMPLE [                                                                   | DESCRIPTI                                | ON                                       | Grapt<br>Log              | Rema                                  | arks                          | nsc             |
| _             | NS            |                           |                     | ROAD BASE.                                                                 |                                          |                                          | _                         | Ran 2 1/4" HSA (<br>w/center plug wh  | 7" OD)<br>le augering.        |                 |
| 1—            |               |                           | 2                   | Change at 1.0'.                                                            | 2 5Y 5/3 - 4/2) CI                       |                                          | e fine                    | Continuous Ž" O[<br>∫spoon_140 lb byg | ), 2' drive spli<br>traulic   | t ML/CL         |
| -             |               | 1.01                      | 3                   | to coarse grained sand. Trace to                                           | little angular shal                      | e fragments (up to                       | o 1" -                    | hammer.                               |                               |                 |
| 2—            | SS-1          | 60%                       | 4                   | dilatancy. Weathered. Iron and m                                           | nanganese oxide                          | on surface of sha                        | le                        | Ingersoll-Rand T                      | 3W rotary rig                 |                 |
| 3_            |               |                           | 6                   | Trace silt partings 3.2' - 3.3'. Stro                                      | ng reaction with h                       | UIL.<br>ICI. Roots preser                | nt.                       | to ream borehole<br>10" air hammer b  | to 22.0' using<br>it. Set     | 1               |
|               |               |                           | 3                   | Shale clasts are becoming oriente                                          | d in same direction                      | on.                                      |                           | permanent 6" PV<br>sealed with ceme   | C casing and<br>nt bentonite  |                 |
| 4 —           | SS-2          | 2.0'<br>100%              | 6                   | Change at $4.0'$ .                                                         |                                          |                                          |                           |                                       |                               |                 |
| -             |               | 10070                     | 10                  | (SAPROLITE). Shale fragments a                                             | wn highly weathe                         | silt and clay. Sha                       | le                        |                                       |                               |                 |
| 5—            |               |                           | 9                   | fragments have trace to little iron a<br>surface. Laminated to thinly bedd | and manganese o<br>ed (beds are 40°      | oxide on bedding<br>-50°). Verv Stiff.   |                           |                                       |                               |                 |
| -             | 00.0          | 2.0'                      | 11                  | Cohesive. Medium plasticity. No                                            | dilatancy. Weath                         | nered. Dry to mois                       | st.                       |                                       |                               |                 |
| 6             | 55-3          | 100%                      | 12                  | 5.7' - 6.0' Saprolite has been weat                                        | thered down to a                         | silty clay. Abunda                       | ant                       |                                       |                               |                 |
| 7—            |               |                           | 16                  | (CL).                                                                      | Reddish brown to                         | strong brown in c                        | olor                      |                                       |                               |                 |
| _             |               |                           | 7                   | Shale is becoming harder with dep<br>along bedding surfaces.               | oth. Iron and ma                         | nganese oxide pre                        | esent                     | SS 1 Lab results:                     | Moisture                      |                 |
| 8—            | SS-4          | 1.8'<br>90%               | 11                  |                                                                            |                                          |                                          |                           | Content (MC) 18.                      | 9%.                           |                 |
| -             |               |                           | 10                  |                                                                            |                                          |                                          |                           | SS-2 Lab results:                     | MC 22%.                       |                 |
| 9—            |               |                           | 6                   | 9.0' - 9.4' Shale (saprolite) has been<br>Abundant with iron and manganes  | en weathered con<br>se oxide. Reddisl    | npletely to a silty<br>h brown to strong | clay. — — –               |                                       |                               |                 |
| 10-           | 99 F          | 1.6'                      | 12                  | brown in color. (CL).<br>9 4' - 9 6' Iron oxide present on be              | dding surfaces                           | -                                        |                           | SS-3 Lab results:                     | MC 27.4%.                     |                 |
| -             | 00-0          | 80%                       | 12                  |                                                                            |                                          | in color lange ovid                      |                           |                                       |                               |                 |
| 11 —          |               |                           | 9                   | becomes trace. Abundant manga                                              | nese oxide staini                        | ng on bedding                            |                           | 4.3% Gravel; 58.4                     | MC 18.6%;<br>4% Sand;         |                 |
| -             |               |                           | 2                   | surfaces.<br>Below 11.0' saprolite (shale) beco                            | mes gravish olive                        | e (10Y 5/2). Trace                       |                           | 37.3% Fines.                          | MC 26%                        |                 |
| 12—           | SS-6          | 1.5 <sup>°</sup><br>75%   | 3                   | few yellow fine grained silty sand p                                       | partings. Saprolit                       | te is almost compl                       | letely                    | 00-0 Lab results.                     | WIC 2070.                     |                 |
| -             |               |                           | 10                  | bedding surfaces. Wet.                                                     | some non and m                           | anganese oxide a                         |                           |                                       |                               |                 |
| 13—           |               |                           | 3                   | Below 13.2' saprolite (shale) beco                                         | mes harder. San                          | npling process ha                        | s I                       | SS-7 Lab results:                     | MC 23.8%.                     |                 |
| 14 —          | SS-7          | 1.5'                      | 16                  | almost destroyed bedding structur                                          | e.                                       |                                          |                           |                                       |                               |                 |
|               |               | 75%                       | 9                   | Below 14.0' becomes dark gray to<br>becomes trace. Manganese oxide         | e very dark gray (I<br>e becomes trace.  | N 4/ - 3/). Iron oxi<br>Trace subrounde  | de                        | After SS-8 driller water on rods.     | noted ~12' of                 |                 |
| 15—           |               |                           | 9                   | siltstone clasts. Sampling method                                          | I has partially des                      | stroyed structure.                       |                           |                                       |                               |                 |
| -             |               | 4 51                      | 11                  | Below 15.5' trace subrounded lime                                          | estone clasts. Irc                       | n and manganese                          | e [                       |                                       |                               |                 |
| 16—           | SS-8          | 75%                       | 9                   | oxide on clast surfaces. Strong re<br>increasing with depth                | action with HCI.                         | Limestone clasts                         | are +                     | SS-9 Lab results:                     | MC 15.4%.                     |                 |
| 47            |               |                           | 6                   |                                                                            |                                          |                                          |                           | Measured contac<br>of SS-9 due to his | t from bottom<br>gh blow      |                 |
|               |               |                           | 4                   |                                                                            |                                          |                                          | ]                         | counts.                               |                               |                 |
| 18—           | SS-9          | 1.6'                      | 7                   |                                                                            |                                          |                                          |                           | Switch to UC2                         | ro with wet                   |                 |
| -             | -             | oU%                       | 48                  | Change at 18.6'.                                                           |                                          |                                          |                           |                                       |                               |                 |
| 19—           |               | 2.01                      | ວບ                  | thinly bedded. Trace limestone be                                          | eds and partings.                        | SHALE. Laminate<br>Soft sediment         |                           | 1525 Auger refus<br>1654 DTW = 1.41   | ar 19.0°.<br>I BGS.           |                 |
| _             | C-1           | 2.0<br>95.2%              | 0%                  | deformation along shale and limes<br>Moderately decomposed. Modera         | stone. Intact. Mo<br>ately disintegrated | oderate field streng                     | gth                       | Added 1/2 bag 3/<br>chips to hole and | 8" bentonite<br>installed PV0 | ;               |

| E               | MDF C            | haracter<br>Oak Rido              | ization F<br>je, TN     | Project                                 | BOREHOLE LOG                                                                                                                                                                                  | Boi            | ring Number<br>GW-998                                                                               |      |
|-----------------|------------------|-----------------------------------|-------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|------|
| Remar           | ks: Set          | up on con                         | e located               | I ∼6' south of                          | staked location.                                                                                                                                                                              |                |                                                                                                     |      |
| Depth<br>(feet) | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                         | SAMPLE DESCRIPTION                                                                                                                                                                            | Graphic<br>Log | Remarks                                                                                             | nscs |
| - 21            | C-1              | 2.0'<br>95.2%                     | 0%                      | Strong rea<br>intensely f<br>calcite. C | action with HCl after scratched with knife. Intensely to very<br>fractured, most are along bedding planes and healed with<br>alcite veins are stained with iron and manganese oxide.          |                | temporary surface casing to<br>19.0'.<br>2/15/18 at 0840 DTW=2.51                                   |      |
| 21<br>-<br>22-  |                  |                                   |                         | Bedding is<br>20.3' - 20.<br>iron and n | s between 40° and 50°.<br>6' Fracture perpendicular to bedding plane healed with calcite,<br>nanganese oxide.                                                                                 |                | BGS.<br>C-1 19.0' - 21.1', 1041-1119.<br>21.1' - 22.2' Multiple breaks                              |      |
| - 23            | _                |                                   |                         | 20.6' - 20.<br>manganes<br>Change a     | 8' Fracture perpendicular to bedding plane with iron and<br>se oxide.<br>t 22.2'.                                                                                                             |                | along bedding plane. All have<br>iron and manganese oxide.<br>Strong reaction with HCl on           |      |
| 24-             | C-2              | 4.8'<br>96%                       | 13.6%                   | Greenish<br>shale. Co<br>☐ Thinly beo   | gray (10Y 6/1 - 5/1) LIMESTONE. Trace to few thin beds of intacts with shale are wavy with soft sediment deformation. Ided, with beds at 40°-50° angles. Strong. Slightly                     |                | limestone (shale when<br>scratched).<br>22.6' Fracture perpendicular to                             |      |
| 25-             | _                |                                   |                         | decompos<br>Most brea<br>22.5' - 22.    | sed. Slightly disintegrated. Intensely to moderately fractured.<br>ks are along bedding planes, probably mechanically induced.<br>6' Multiple breaks along and perpendicular to bedding plane |                | bedding plan with iron and<br>manganese oxide.<br>23.6 - 23.9' Horizontal                           |      |
| 26-             | -                |                                   |                         | Change a<br>Laminated                   | Ind manganese oxide.<br>t 23.8'.<br>I to thinly INTERBEDDED SHALE and LIMESTONE. Limestone                                                                                                    |                | fractures with iron and<br>manganese oxide. Shale beds<br>increasing with size and                  |      |
| -<br>27 –       | _                |                                   |                         | Shale is d<br>bedded.                   | h gray (10Y 6/1 - 5/1). Massive. Microcrystalline. Strong.<br>ark gray to very dark gray (N 4/ - 3/). Laminated to thinly<br>Strong. Shale and limestone beds are wavy with soft sediment     |                | ☐ quantity with depth. ↓C-2 21.1' - 26.1', 1041-1119. ↓Becoming less weathered with                 |      |
| -<br>28         | -                | 4.01                              |                         | deformation<br>decompose<br>with some   | Shand cross bedding. Slightly disintegrated. Slightly<br>sed. Moderately to intensely fractured along bedding planes<br>e completely healed with calcite.                                     |                | depth/<br>26.0' Horizontal fracture with<br>iron oxide.                                             |      |
| -<br>29         | C-3              | 4.2<br>91.3%                      | 12.6%                   | Greenish<br>Trace mu                    | gray (10Y 6/1 - 5/1) LIMESTONE. Trace glauconite grains.<br>dstone stringers. Massive. Microcrystalline. 26.8' - 27.0'                                                                        |                | 26.8' - 27.2' Vertical fracture<br>with iron and manganese<br>oxide.                                |      |
| -<br>30 —       | -                |                                   |                         | Slightly de                             | ar limestone clasts incorporated into limestone matrix. Strong.<br>composed. Slightly disintegrated. Moderately fractured with<br>and manganese oxide on fracture faces.                      |                | C-3 26.1' - 30.7', 1140-1220.<br>Driller noted blocked tip in<br>barrel. Pull run at 30.7'.         |      |
| -<br>31 –       | C-4              | 0.4'/100%                         | 0%                      | Change a<br>Dark brow                   | t 28.2'.<br>In to very dark brown (7.5YR 3/2 - 2.5/2) SHALE. Trace to few                                                                                                                     |                | 27.4' Fracture perpendicular to<br>bedding plane with iron oxide.<br>28.0', 28.1', 28.2' Fracture   |      |
| 32-             | -                |                                   |                         | 40°-50° ai<br>slickensid                | beds and partings. Laminated to thinly bedded, with beds at ngles. Soft sediment deformation and turbidation. Abundant es along bedding plane. Strong. Fresh to slightly decomposed.          |                | anong bedding plane with iron<br>and manganese oxide.<br>C-4 30.7' - 31.1', 1225-1236.              |      |
| 33-             | -                |                                   |                         | are along<br>Below 31.                  | bedding planes. Strong reaction with HCl when scratched.<br>1' shale becomes olive green in color due to weathering. Iron                                                                     |                | plane with iron oxide. 0.05"<br>Iron halo on each side.                                             | ·    |
| -<br>34 –       | C-5              | 5.0'<br>100%                      | 13.8%                   | Change a<br>Gray to ve                  | t 31.5'.<br>ery dark gray (N 5/ - 3/) LIMESTONE. Massive with trace                                                                                                                           | <br>           | 31.7' - 32.2' Multiple fractures<br>along and perpendicular to                                      |      |
| 35 —            | -                |                                   |                         | Trace glau<br>round (~1                 | Joon (since beds and partings with soft sediment deformation.<br>Joon te grains. 31.6' - 32.0' limestone is oolitic. Oolites are<br>mm diameter). Strong. Slightly decomposed. Very intensely |                | present on all fractures. 31.7' -<br>31.9' Fracture healed with                                     |      |
| 36 -            | -                |                                   |                         | Some frac                               | tures are healed with mudstone.                                                                                                                                                               |                | mudstone.<br>32.8' Break along bedding<br>plane with iron and                                       |      |
| 37 –            | -                |                                   |                         | partings.<br>bedding p                  | Laminated to thinly bedded. Abundant slickensides along<br>lane. Fresh to slightly decomposed. Moderately to intensely<br>Most breaks are along bedding plane and mechanically                |                | 32.8' - 33.0' Shale is iron<br>stained and discolored.                                              |      |
| -<br>38 –       | C-6              | 3.0'                              | 37.7%                   | induced.<br>Strong rea                  | Some are perpendicular to bedding and healed with calcite.<br>action with HCI when scratched.                                                                                                 |                | 36.2' Break along bedding<br>plane with iron oxide.                                                 |      |
| 39 -            | -                |                                   |                         | Change a                                | t 37.5'.                                                                                                                                                                                      |                | stained and discolored.                                                                             |      |
| 40-             |                  |                                   |                         | Thinly bec<br>present al                | Ided. Trace shale beds and partings. Trace marine fossils<br>ong shale bedding breaks. Soft sediment deformation.                                                                             |                | 2/15/18, 1515, DTW = 11.70                                                                          |      |
| 41-             |                  |                                   |                         | along bed<br>with HCl.<br>38,3' Frac    | ding plane have iron oxide on fracture faces. Strong reaction ture with iron oxide.                                                                                                           |                |                                                                                                     |      |
| 42-             |                  |                                   |                         | 38.3' - 38.<br>39.6' Frac<br>oxide.     | 8' Fracture vertical along core axis with iron oxide.<br>ture perpendicular to bedding plane with iron and manganese                                                                          |                | On 2/20/18, used T3W rotary                                                                         |      |
| 43-             |                  |                                   |                         |                                         |                                                                                                                                                                                               |                | advance to 45.0' using 5 7/8"<br>tricone bit with water and air<br>circulation Einished drilling at |      |
| 44              | -                |                                   |                         | Bottom of                               | Borehole at 45.0'.                                                                                                                                                                            |                | 0919.                                                                                               |      |
| -               | -                |                                   |                         | Piezomete<br>Installation               | er GW-998 installed in borehole. See Monitoring Well<br>n Report GW-998 for details.                                                                                                          |                |                                                                                                     |      |

| Eago             | on & A                    | Associa                                   | ntes, l      | nc.                                    |              |                    |                          |                     |                   |                     | We   | }II Nι<br>GW-           | umb<br>998 | er   |
|------------------|---------------------------|-------------------------------------------|--------------|----------------------------------------|--------------|--------------------|--------------------------|---------------------|-------------------|---------------------|------|-------------------------|------------|------|
|                  |                           | Ν                                         | Ionit        | oring                                  | Wel          | I Inst             | allation                 | Rep                 | ort               |                     |      | ľ                       |            |      |
| Site Nan         | ne and Lo                 | cation: EM                                | DF Chara     | cterization F                          | Project, O   | ak Ridge,          | TN                       | С                   | ompletion [       | Date: 3/8/18        |      |                         |            | 0    |
| Coordina         | ates: 2902                | 21.82N 377                                | 742.36E      |                                        |              | Bor                | ehole Depth (ft):        | 15.0                |                   |                     |      |                         |            |      |
| Elevatior        | n Top of C                | asing (ft/M                               | SL): 880.    | 18                                     |              | Bor                | ehole Diameter (in       | ):10" (0'           | -22.0'), 5 7/8    | 3" (22.0'-45.0')    |      |                         |            |      |
| Elevatior        | n Ground                  | Surface (ft/l                             | MSL): 87     | 7.7                                    |              | Drill              | ing Methods: 2 1/4       | " HSA, I<br>mer bit | HQ3 Core w        | /water, 10" air     |      |                         | ·          | 5    |
| Installed        | By: Shar                  | non Snow/                                 | Tri-State I  | Drilling                               |              | Cor                | npleted Drilling: 2      | /20/18              |                   |                     |      |                         |            |      |
| Supervis         | ed By: D                  | avid J. Suga                              | ar/Eagon     | & Associates                           | s, Inc.      | Drill              | ing Water Used (c        | jals): ∼1           | 1500              |                     |      |                         | <br>       |      |
|                  | ,                         |                                           |              |                                        |              |                    | eian                     | , ,                 |                   |                     |      |                         |            |      |
|                  |                           |                                           |              |                                        | VVEI         |                    | sign                     |                     |                   | _                   |      |                         | ·          | 10   |
|                  | Com                       | ponent                                    |              |                                        |              | Materials          |                          | Dep                 | oth (LSD)         | Elevation           |      |                         |            |      |
| Well P           | rotector                  |                                           |              | 4" Squa                                | re Steel     | w/Locking          | Lid                      | -2                  | .8 - 2.2          | 880.5 - 875.5       |      |                         |            |      |
| Riser            |                           |                                           |              | 2" ID Sc                               | hedule 4     | 10 PVC             |                          | -2.                 | 5 - 26.6          | 880.2 - 851.1       |      |                         |            | 15   |
| Surfac           | e Seal                    |                                           |              | 3' x 3' C                              | oncrete      |                    |                          | -0                  | .5 - 0.5          | 878.2 - 877.2       |      |                         |            | 13   |
| Condu            | ctor Casir                | ng                                        |              | 6" ID Sc                               | hedule 4     | 40 PVC, F          | lush Threaded            | -0.                 | 4 - 22.0          | 878.1 - 855.7       |      |                         |            |      |
| Cemer            | nt Grout                  |                                           |              | Cement                                 | Bentoni      | te Grout           |                          | 0.                  | 5 - 21.7          | 877.2 - 856.0       |      |                         |            |      |
| Bentor           | nite Seal                 |                                           |              | Pel-Plug                               | g 1/4" Co    | ated Ben           | onite Pellets            | 21                  | 7 - 24.0          | 856.0 - 853.7       |      |                         |            | 0    |
| Sand F           | Pack                      |                                           |              | DSI GP                                 | #2 Grav      | el Pack            |                          | 24.                 | .0 - 37.9         | 853.7 - 839.8       |      |                         |            | 20   |
| Screer           | า                         |                                           |              | 2" ID Sc                               | hedule 4     | 40 PVC, 1          | 0-Slot                   | 26.                 | .6 - 36.6         | 851.1 - 841.1       |      |                         |            |      |
| Well P           | oint Blank                | <b>x</b>                                  |              | 2" ID Sc                               | h. 40 P∖     | /C Cap &           | Riser Section            | 36.                 | .6 - 37.9         | 841.1 - 839.8       |      |                         |            |      |
| Sand F           | Pack Botto                | om                                        |              | DSI GP                                 | #2 Grav      | el Pack            |                          | 37.                 | .9 - 40.0         | 839.8 - 837.7       |      | ****                    | <u> </u>   |      |
| Bentor           | nite Seal                 |                                           |              | Pel-Pluç                               | g 1/4" Co    | ated Ben           | onite Pellets            | 40.                 | .0 - 45.0         | 837.7 - 832.7       |      |                         |            | 25   |
|                  |                           |                                           |              | We                                     | ell D        | evelo              | pment                    |                     |                   |                     |      |                         |            |      |
| Well Dep<br>40.3 | oth (ft,TOC<br>7          | C):                                       | Depth<br>4.3 | to Water (ft<br>55                     | ,TOC):       | We                 | l Volume (gals):<br>5.8  |                     | Volume F<br>405.0 | Purged (gals):<br>) |      |                         |            |      |
| Bailer, s        | ment Metr<br>surge block, | Tornado pun                               | np           |                                        |              |                    |                          |                     |                   |                     |      |                         |            | 30   |
| Date             | Time                      | Cumulative<br>Volume<br>Removed<br>(gals) | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recover                  | y Data              | a                 |                     |      |                         |            |      |
| 2/26/18          | 1001                      | 5                                         | 15.0         | 962                                    | 7.23         | >1000              | 100                      |                     |                   |                     |      |                         |            |      |
| 2/26/18          | 1020                      | 30                                        | 15.7         | 412                                    | 7.09         | >1000              |                          |                     |                   |                     |      |                         | ·          | 35   |
| 2/26/18          | 1050                      | 105                                       | 15.8         | 364                                    | 6.86         | 104.0              |                          |                     |                   |                     |      |                         |            |      |
| 2/26/18          | 1130                      | 205                                       | 15.7         | 356                                    | 6.81         | 80.6               | <br>                     |                     |                   |                     |      |                         |            |      |
| 2/26/18          | 1210                      | 305                                       | 15.8         | 351                                    | 6.79         | 56.2               | 0                        |                     | 40                | 80 120              |      | Ē                       |            | 40   |
| 2/26/18          | 1250                      | 405                                       | 15.8         | 345                                    | 6.87         | 33.8               |                          | T                   | ime (minute       | es)                 |      |                         |            | 40   |
| Sampling         | g Equipme                 | ent:                                      |              |                                        |              |                    |                          |                     |                   |                     |      |                         |            |      |
| Commer           | nts:                      |                                           |              |                                        |              |                    |                          |                     |                   |                     |      |                         |            |      |
| Grout n          | nixing and p              | lacement info                             | rmation pr   | ovided by Tri-                         | State Drill  | ing. Scree         | n slot interval 26.8 - 3 | 6.5 bgs.            |                   |                     | Bori | <u>88888</u><br>na dep' | h=45.      | 0 ft |

|                    |                            |                                  |                                                                       | BO                                                                                                                                                                                                                                                               | REHOLE                                                                                                                  | E LOG                                                                                            |                       |                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |        |
|--------------------|----------------------------|----------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Site Na<br>and Loo | me<br>cation:              | E                                | MDF Ch                                                                | aracterization Project                                                                                                                                                                                                                                           | Drilling Methods<br>4 1/4" ID H                                                                                         | s:<br>ISA. HQ Core w/wat                                                                         | er.                   |                  |                                                                                                                                                                                                                                                                                                                                                                     | Boring Num                                                                                                                                                                                                | ber:   |
| Drilling           | Eirm: 7                    | ri Stata D                       | C                                                                     | Jak Ridge, IN                                                                                                                                                                                                                                                    |                                                                                                                         |                                                                                                  | DEP                   | ГН               | WATER                                                                                                                                                                                                                                                                                                                                                               | GW-                                                                                                                                                                                                       | 999    |
| Drillor /          | Pia: Er                    | n-State D                        | niiiiiy                                                               | - P42C                                                                                                                                                                                                                                                           | DATE                                                                                                                    |                                                                                                  | DRILLE                | D (ft)           | LEVEL (ft)                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |        |
|                    | hy: Sh                     | eu Regno                         | and                                                                   | 6 6420                                                                                                                                                                                                                                                           |                                                                                                                         | Sampling M                                                                                       | ethods:               |                  |                                                                                                                                                                                                                                                                                                                                                                     | Page                                                                                                                                                                                                      | 1 of 2 |
| Coordin            | by. Sh                     | 0025 011                         | 1 27750                                                               | E0E                                                                                                                                                                                                                                                              | ST = Shelby Tu<br>WS = Waxed Sa                                                                                         | be<br>Imple                                                                                      |                       | SS = S<br>CS = C | plit Spoon<br>continuous Sampler                                                                                                                                                                                                                                                                                                                                    | Start                                                                                                                                                                                                     | Finish |
| Surface            | Eloveti                    | 9025.011                         |                                                                       | 30E                                                                                                                                                                                                                                                              | SP = Sand Pum<br>GP or DP = Dire                                                                                        | p<br>ct Push                                                                                     | (                     | C = C<br>NS = N  | oring<br>lot Sampled                                                                                                                                                                                                                                                                                                                                                | Time                                                                                                                                                                                                      | Time   |
| Surface            |                            |                                  |                                                                       |                                                                                                                                                                                                                                                                  | CT = Cuttings                                                                                                           |                                                                                                  |                       | B = Bai          | iler                                                                                                                                                                                                                                                                                                                                                                | Date                                                                                                                                                                                                      | Date   |
| Surface            | Conalu                     | ons / wea                        | ather: Gr                                                             | aver pad, dry / 70°F, Sunny                                                                                                                                                                                                                                      |                                                                                                                         |                                                                                                  |                       |                  |                                                                                                                                                                                                                                                                                                                                                                     | 2/20/18                                                                                                                                                                                                   | 3/2/18 |
| Remark             | s: Borir                   | ng installe                      | d for colle                                                           | ection of geotech samples and for in                                                                                                                                                                                                                             | stallation of shall                                                                                                     | ow piezometer.                                                                                   |                       |                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |        |
| Depth<br>(feet)    | Sample<br>Method           | Sample<br>Recovery<br>(feet or % | Blows/6 ir<br>or<br>RQD                                               | SAMPLE I                                                                                                                                                                                                                                                         | DESCRIPTI                                                                                                               | ION                                                                                              | :                     | Graphic<br>Log   | Rema                                                                                                                                                                                                                                                                                                                                                                | arks                                                                                                                                                                                                      | NSCS   |
|                    | HSA<br>ST-1<br>HSA<br>ST-2 | 0.85                             | 800 PSI<br>900 PSI<br>900 PSI<br>1300<br>PSI<br>1500<br>PSI/<br>0.35' | See Borehole Log for adjacent bo<br>description and stratigraphic interp<br>At 4.5' sample was light bluish gra<br>noted on bottom of sample with irr<br>surface, could be bedding plane s<br>At 5.85' sample was gray (7.5YR<br>manganese oxide noted on beddin | ring GW-998 for<br>pretation.<br>ay SHALE (SAPR<br>on oxide and mar<br>urface.<br>6/1 - 5/1) SAPRC<br>ng plane surface: | detailed lithologic<br>ROLITE). Fracture<br>nganese oxide on<br>DLITE. Iron and<br>s. Micaceous. |                       |                  | Ran 4 1/4" ID HS<br>plug to target dep<br>tube and bucket s<br>Pushed Shelby tu<br>Advanced augers<br>depth and switch-<br>Core with water.<br>borehole with 4 1<br>using CME 550.<br>Pushed Shelby tu<br>Pressure noted in<br>column.<br>Pushed Shelby tu<br>before refusal.<br>Bulk sample colle<br>- 4.5' of cuttings f<br>Bulk sample (BS-<br>from 5.0' - 6.0'. | A with center<br>ths of Shelby<br>amples.<br>to target<br>ed to HQ<br>Then reamen<br>(4" ID HSA<br>the 2.0' down<br>be 2.0' down<br>be 0.85'<br>the 0.85'<br>cted from 4.0<br>rom augers.<br>2) collected | ,      |
|                    | ST-3                       | 2.0                              | 850 PSI<br>900 PSI<br>1000<br>PSI<br>1000                             | At 12.5' sample was light brownist                                                                                                                                                                                                                               | h gray to grayish                                                                                                       | brown (2.5Y 6/2                                                                                  | -<br>-<br>-<br>5/2) - |                  | Pushed Shelby tu<br>2.0' from 10.5' to<br>tube is wet.                                                                                                                                                                                                                                                                                                              | ibe (ST-3)<br>12.5'. Shelb <u>y</u>                                                                                                                                                                       | /      |
| 13                 |                            |                                  | PSI                                                                   | plane surfaces. Wet.                                                                                                                                                                                                                                             | nanganese oxide                                                                                                         |                                                                                                  | "'y                   |                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |        |
| - 14               | HSA                        |                                  |                                                                       |                                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                  | -                     |                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |        |
| - 15               |                            |                                  |                                                                       |                                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                  |                       |                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |        |
| 16—                |                            |                                  |                                                                       |                                                                                                                                                                                                                                                                  | E(0) bisklasse (1                                                                                                       |                                                                                                  |                       |                  | Below 17.0' react                                                                                                                                                                                                                                                                                                                                                   | s with HCI.                                                                                                                                                                                               |        |
| 17                 | SS-1                       | 1.2                              | 15<br>41                                                              | (SAPROLITE). Laminated beddin<br>Iron staining and precipitate through                                                                                                                                                                                           | ghout bedding pl                                                                                                        | ily crumbled with h<br>anes. Weathered.                                                          | iand. –               |                  | Auger refusal at 1                                                                                                                                                                                                                                                                                                                                                  | 9.1'.                                                                                                                                                                                                     |        |
| 18—                | HSA                        |                                  | 50/3                                                                  | Low to medium plasticity and toug                                                                                                                                                                                                                                | jnness. Moist.                                                                                                          |                                                                                                  |                       |                  | Spoon was bent v                                                                                                                                                                                                                                                                                                                                                    | when                                                                                                                                                                                                      |        |
| -<br>19—<br>-      | SS-2                       | 0.9                              | 7<br>15<br><del>50/3.5</del>                                          | Gray to olive gray (5Y 5/1 - 4/2) S<br>in iron and manganese oxide alon<br>Below 19.0' olive gray (5Y 5/2 - 4/<br>Calcite precipitate/crystals along f                                                                                                           | HALE. Laminate<br>ig bedding planes<br>2) limestone. Ve<br>rracture surfaces.                                           | ed bedding. Decrea<br>s to little.<br>ery intensely fractur<br>Wet.                              | ase<br><br>red        |                  | 1430-1500 Went<br>start coring. WL<br>1511, TD = 19.1.                                                                                                                                                                                                                                                                                                              | for water to<br>= 5.85 at                                                                                                                                                                                 |        |

| Remarks:     Borng installed for collection of geotech samples and for installation of shalow plazometer.     Image: State of the samples and for installation of shalow plazometer.       Image: State of the samples and for installation of shalow plazometer.     Image: State of the samples and for installation of shalow plazometer.     Image: State of the samples and for installation of shalow plazometer.       Image: State of the samples and for installation of shalow plazometer.     Image: State of the samples and for installation of shalow plazometer.     Image: State of the samples and for installation of shalow plazometer.       Image: State of the samples.     Image: State of the samples and for installation of shalow plazometer.     Image: State of the samples and for installation of shalow plazometer.     Image: State of the samples and for installation of samples.       Image: State of the samples.     Image: State of the samples and and samples.     Image: State of the samples and and samples.     Image: State of the samples and and samples.       Image: State of the samples.     Image: State of the samples.     Image: State of the samples.     Image: State of the samples.       Image: State of the samples.     Image: State of the samples.     Image: State of the samples.     Image: State of the samples.     Image: State of the samples.       Image: State of the samples.     Image: State of the samples.     Image: State of the samples.     Image: State of the samples.     Image: State of the samples.       Image: State of the samples.     Image: State of the samplesameter.     Image: State of                                                                                                                                                                                                                                                                                                                                                                                                   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EMDF C           | haracter<br>Oak Ridg              | ization F<br>ge, TN     | Project                                                                         | BOREHOLE LOG                                                                                                                                                                                                                                                                                                                                                                | E       | Borii | ng Number<br>GW-999                                                                                                                                                                          |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|-------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rks: Bori        | ing installe                      | ed for coll             | ection of geo                                                                   | tech samples and for installation of shallow piezometer.                                                                                                                                                                                                                                                                                                                    |         |       |                                                                                                                                                                                              |      |
| 21         C-1         2.2         86.45         Light any to greenish pray, (N 7-10Y CH) LMESTONE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample<br>Method | Sample<br>Recovery<br>(feet or %) | Blows/6 in<br>or<br>RQD |                                                                                 | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                          | Graphic | Log   | Remarks                                                                                                                                                                                      | nscs |
| 22         Slightly decomposed. Sightly decomposed. Si | 21-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C-1              | 2.2'<br>100%                      | 56.4%                   | Light gray<br>Microcrys<br>with soft s<br>angles. S<br>in thicknes<br>along bed | to greenish gray (N 7/ - 10Y 6/1) LIMESTONE.<br>alline. Trace to few thin beds of shale. Shale beds are wavey<br>ediment deformation and bioturbation. Beds are at 40°-50°<br>hale beds range in thickness from less than 1mm to up to 5mm<br>ss. Trace glauconite crystals. Trace calcite seams/stringers<br>ding planes. Trace calcite crystals. Field strength is strong |         |       | Auger refusal at 19.1', split<br>spoon sampled to 19.3'.<br>Switching over to HQ Core.<br>C-1: 19.3' - 21.5' 1645-1711.<br>19.7' - 19.9' 45° angle fracture<br>with iron staining present on |      |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                |                                   |                         | Slightly de<br>fractured<br>20.45' - 20<br>20.75' - 2'<br>plane/frac            | <ul> <li>Sightly disintegrated. Intensely to moderately with iron and manganese oxide and calcite precipitate.</li> <li>Shale bed.</li> <li>'Shale bed.</li> <li>'Shale bed. Very intensely fractured along bedding ture surfaces.</li> <li>Trace iron staining observed throughout core, to be along bedde.</li> </ul>                                                     | -<br> - |       | surface.<br>20.2' - 20.4' 40° angle fracture<br>with iron staining along<br>bedding plane.<br>20.45' - 20.6' 40° angle<br>fracture along bedding plane.                                      |      |
| 26         Pisconter GW.909 installed in borohole. See Monitoring Well         211, *** 212, **************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                |                                   |                         | Below 21.<br>parallel to<br>Bottom of                                           | 1' limestone becomes clastic with clasts elongated and oriented<br>bedding plane.<br>Borehole = 22.0'.                                                                                                                                                                                                                                                                      |         |       | 20.6' - 20.75' 30° angle<br>fracture, iron and manganese<br>oxide along face, fractures                                                                                                      |      |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                |                                   |                         | Piezomete<br>Installation                                                       | er GW-999 installed in borehole. See Monitoring Well<br>n Report GW-999 for details.                                                                                                                                                                                                                                                                                        |         |       | 21.1' - 21.25' 60° angle<br>fracture.<br>2/20/18 Done for day at 1711.<br>2/21/18 at 0810 WL = 0.90'.                                                                                        |      |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | _       |       | TD = 21.5'.<br>Start augering hole at 0834<br>from 19.1'. 0855 Stopped<br>augering, had only gone 2"                                                                                         |      |
| 30     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - </td <td>28-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>with rig. Pulling rig off hole<br/>and setting temporary 6"<br/>casing to 19.0'.<br/>On 3/2/18 used CME-55 to</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | _       |       | with rig. Pulling rig off hole<br>and setting temporary 6"<br>casing to 19.0'.<br>On 3/2/18 used CME-55 to                                                                                   |      |
| 31-     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             |         |       | overdrill corehole and advance<br>borehole to 22.0' using 4 1/4"<br>ID HSA augers.<br>Completed drilling at 1045.                                                                            |      |
| 33-     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | _       |       |                                                                                                                                                                                              |      |
| 34     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - </td <td>33-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | _       |       |                                                                                                                                                                                              |      |
| 100     35     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td< td=""><td>- 4/18<br/>- 4/1/</td><td>-</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 4/18<br>- 4/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | _       |       |                                                                                                                                                                                              |      |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.01<br>HI 36 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             |         |       |                                                                                                                                                                                              |      |
| 1     38     -     -     -     -     -       39     -     -     -     -     -       40     -     -     -     -       40     -     -     -     -       40     -     -     -     -       41     -     -     -     -       41     -     -     -     -       42     -     -     -     -       43     -     -     -     -       43     -     -     -     -       44     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EMPLATE WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             |         |       |                                                                                                                                                                                              |      |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38 -<br>39 -<br>39 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             |         |       |                                                                                                                                                                                              |      |
| 41-     -       41-     -       42-     -       43-     -       43-     -       43-     -       -     -       -     -       -     -       -     -       -     -       -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | _       |       |                                                                                                                                                                                              |      |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GD: 41-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | _       |       |                                                                                                                                                                                              |      |
| Й – – – – – – – – – – – – – – – – – – –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42-<br>3/10 27 09K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             |         |       |                                                                                                                                                                                              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | от атонаходина и страна и стр | -                |                                   |                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             |         |       |                                                                                                                                                                                              |      |

| Eagon                            | <b>ı &amp;</b> A | ssocia                      | ites, I      | nc.                                    |              |                    |                            |       |                   |                | W        | ell N<br>GW                                                                                      | umber<br>-999 |
|----------------------------------|------------------|-----------------------------|--------------|----------------------------------------|--------------|--------------------|----------------------------|-------|-------------------|----------------|----------|--------------------------------------------------------------------------------------------------|---------------|
|                                  |                  | Μ                           | onit         | oring                                  | Wel          | l Ins              | allation R                 | Re    | port              |                |          |                                                                                                  |               |
| Site Name                        | and Loc          | cation: EM                  | DF Chara     | acterization                           | Project, (   | Dak Ridg           | e, TN                      |       | Completion D      | ate: 3/8/18    |          | 9 4 4 4                                                                                          | 0.0           |
| Coordinate                       | es: 2902         | 25.01N 37                   | 750.58E      |                                        |              | Bor                | ehole Depth (ft): 22.      | .0    |                   |                |          |                                                                                                  |               |
| Elevation T                      | Fop of C         | asing (ft/M                 | SL): 880     | .11                                    |              | Bor                | ehole Diameter (in):7      | 7 1/2 | " (0'-22.0')      |                |          |                                                                                                  |               |
| Elevation G                      | Ground S         | Surface (ft/l               | MSL): 87     | 77.6                                   |              | Dril               | ng Methods: 4 1/4"         | ID H  | ISA, HQ Core      | w/water.       |          |                                                                                                  | 2.5           |
| Installed By                     | y: Shan          | non Snow/                   | Tri-State    | Drilling                               |              | Со                 | pleted Drilling: 3/2/      | /18   |                   |                |          |                                                                                                  |               |
| Supervised                       | d By: Sh         | nay Beanlai                 | nd/Eagor     | n & Associat                           | es, Inc.     | Dril               | ing Water Used (gal        | s):   |                   |                |          |                                                                                                  |               |
|                                  |                  | -                           |              |                                        | Wal          |                    | ian                        | ,     |                   |                |          |                                                                                                  |               |
|                                  |                  |                             |              |                                        | AAGI         |                    | ngn                        |       |                   |                |          |                                                                                                  | 5.0           |
|                                  | Comp             | onent                       |              |                                        |              | Materials          |                            | De    | epth (LSD)        | Elevation      |          |                                                                                                  |               |
| Well Prot                        | tector           |                             |              | 4" Squa                                | re Steel I   | Protector          | w/Locking Lid              |       | -2.8 - 2.2        | 880.4 - 875.4  |          |                                                                                                  |               |
| Riser                            |                  |                             |              | 2" ID Sc                               | hedule 4     | 0                  |                            | -2    | 2.5 - 10.3        | 880.1 - 867.4  |          |                                                                                                  |               |
| Surface \$                       | Seal             |                             |              | 3' x 3' C                              | oncrete I    | Pad                |                            |       | -0.5 - 1.0        | 878.1 - 876.6  |          |                                                                                                  | 1.0           |
| Bentonite                        | e Seal           |                             |              | Enviro F                               | Plug Med     | ium Chip           | ;                          |       | 1.0 - 4.8         | 876.6 - 872.8  |          | 3888                                                                                             |               |
| Bentonite                        | e Seal           |                             |              | Pel Plug                               | j 1/4" Co    | ated Ben           | onite Pellets              |       | 4.8 - 8.3         | 872.8 - 869.4  |          |                                                                                                  |               |
| Sand Pa                          | ck               |                             |              | DSI "GF                                | 9 #2" Gra    | vel Pack           |                            | 8     | 3.3 - 21.6        | 869.4 - 856.0  |          |                                                                                                  |               |
| Screen                           |                  |                             |              | 2" ID Sc                               | hedule 4     | 0, 10-Slo          |                            | 1     | 0.3 - 20.3        | 867.4 - 857.3  |          |                                                                                                  | 10.0          |
| Well Poir                        | nt Blank         |                             |              | 2" ID Sc                               | hedule 4     | 0 Cap &            | Riser Section              | 2     | 0.3 - 21.6        | 857.3 - 856.0  |          |                                                                                                  |               |
| Natural F                        | Fill             |                             |              | Natural                                | Fill         |                    |                            | 2     | 1.6 - 22.0        | 856.0 - 855.6  |          |                                                                                                  |               |
|                                  |                  |                             |              |                                        |              |                    |                            |       |                   |                |          |                                                                                                  | 40.5          |
|                                  |                  |                             |              |                                        |              |                    |                            |       |                   |                |          |                                                                                                  | 12.5          |
|                                  |                  |                             |              | We                                     | ell De       | evelo              | pment                      |       |                   |                |          |                                                                                                  |               |
| Well Depth<br>24.10<br>Developme | n (ft,TOC        | ;):<br>od:                  | Depth<br>3.  | to Water (ft.<br>41                    | ,TOC):       | We                 | Volume (gals):<br>3.4      |       | Volume F<br>114.5 | ourged (gals): |          |                                                                                                  |               |
| Surge bloc                       | ck, bailer,      | mega purge                  | er whale pl  | ımp                                    |              |                    |                            |       |                   |                | E        |                                                                                                  | 15.0          |
| Date                             | Time             | Volume<br>Removed<br>(gals) | Temp<br>(°C) | Specific<br>Conductivity<br>(µmhos/cm) | рН<br>(S.U.) | Turbidity<br>(NTU) | Recovery                   | Da    | ata               |                |          |                                                                                                  |               |
| 3/5/18                           | 1005             | 12.0                        | 14.7         | 546                                    | 7.15         | >1000              | 100                        |       |                   |                |          |                                                                                                  |               |
| 3/5/18                           | 1015             | 24.5                        | 15.3         | 461                                    | 7.13         | >1000              |                            |       |                   |                |          |                                                                                                  | 17.5          |
| 3/5/18                           | 1040             | 44.5                        | 15.1         | 440                                    | 7.15         | >1000              |                            |       |                   |                |          |                                                                                                  |               |
| 3/5/18                           | 1100             | 64.5                        | 15.1         | 432                                    | 7.08         | 97.4               |                            |       |                   |                |          |                                                                                                  |               |
| 3/5/18                           | 1140             | 94.5                        | 15.4         | 425                                    | 6.98         | 27.9               | 0                          | 5     | 10                | 15 20          |          |                                                                                                  |               |
| 3/5/18                           | 1200             | 114.5                       | 15.6         | 422                                    | 6.95         | 23.4               |                            |       | Time (minute      | s)             |          |                                                                                                  |               |
| Sampling E                       | Equipme          | nt:                         |              | I                                      |              | 1                  | 1                          |       |                   |                |          |                                                                                                  |               |
| Comments                         | :                |                             |              |                                        |              |                    |                            |       |                   |                | 6229     | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>7<br>6<br>7<br>7<br>7<br>7<br>7 |               |
| -                                |                  |                             |              |                                        |              |                    |                            |       |                   |                | ( 100/10 |                                                                                                  |               |
| Grout mix                        | ing and p        | lacement inf                | ormation p   | provided by Tr                         | i-State Dri  | lling. Scre        | en slot interval 10.4 - 20 | 0.1 b | gs.               |                | Bor      | ing de                                                                                           | oth=22.0 f    |

B-93

#### PHASE I CHARACTERIZATION ENVIRONMENTAL MANAGEMENT DISPOSAL FACILITY CENTRAL BEAR CREEK VALLEY SITE (7c)

1

April 2018



GW-978 56.1' – 71.5' Sand Pack Interval 59.5' – 69.6' Screened Interval

B-97



GW-978 56.1' – 71.5' Sand Pack Interval 59.5' – 69.6' Screened Interval

April 2018



GW-979 21.2' – 37.8' Sand Pack Interval 26.3' – 36.3' Screened Interval

21.1'- 21.3' Very intensely fractured along bedding planes and some at an angle perpendicular to bedding direction. Iron staining throughout.

B-99

April 2018



GW-980R 55.0° – 72.3' Sand Pack Interval 59.9° – 70.0' Screened Interval

67.0'- 67.3' Bedding plane break with apparent depositional slickensides. Trace calcite coating and fine pyrite crystals

59.2'- 60.1' Zone with healed (calcite filled) fractures, generally oriented perpendicular to bedding angle. At 59.2', 59.5', and 59.8' fractures are open but appear broken by the drilling process 5

April 2018



GW-981 20.0' – 34.0' Sand Pack Interval 22.1' – 32.1' Screened Interval

April 2018

24.0'- 24.9' Broken zone, fractures oriented perpendicular to bedding (possibly associated with healed fractures where the calcite infilling has been removed). Trace thin secondary calcite on fracture faces.

25.4'- 26.3' High angle fracture, jagged/rough face. Trace secondary calcite and possibly celestite.



GW-982 99.2' – 114.5' Sand Pack Interval 102.1' – 112.1' Screened Interval

April 2018

102.0' – 102.3' Fracture zone/bedding breaks. Faces are oxidized with iron oxide coatings. Continues to be intensely fractured. Bedding angle is near 45°.

 $107.6^{\circ} - 107.9^{\circ}$  Fracture 90° to bedding plane. Face has thin coating of calcite. No oxidation.



**41.0**° – 48.0° Sand Pack Interval 41.0° – 46.0° Screened Interval

At 49.8' Fracture (appears mechanically broken)  $\sim 2$ mm calcite filled, broken face is striated at orientation of 30° from the fracture angle

At 50.5' Horizontal break, rough face. Trace pyrite.

April 2018



GW-987 13.3' – 27.9' Sand Pack Interval 16.1' – 26.1' Screened Interval 17.5' - 20.0' Interval highly fractured. Primarily along bedding planes, trace fractures oriented perpendicular to bedding. Fracture faces are generally coated with manganese oxide precipitates.



GW-987 13.3' – 27.9' Sand Pack Interval 16.1' – 26.1' Screened Interval

April 2018

21.4' – 21.7' Dark yellowish brown to black iron oxide/manganese oxide on bedding breaks



GW-987 13.3' – 27.9' Sand Pack Interval 16.1' – 26.1' Screened Interval April 2018 22.4' – 22.8' Several bedding breaks with oxidation (yellowish brown) faces. Fracture perpendicular to bedding angle is also oxidized At 23.2'Secondary calcite on bedding break, thin coating.



GW-988 59.6' – 74.0' Sand Pack Interval 61.9' – 71.9' Screened Interval  $70.0^{\circ} - 70.6^{\circ}$  Vertical fracture along the bedding plane that appears to turn from  $60^{\circ}$  to near vertical. Fractures are fresh.



GW-989 30.0' – 45.0' Sand Pack Interval 33.6' – 43.6' Screened Interval

34.1' – 34.3' Broken zone, bedding breaks and fractures perpendicular to bedding. Oxidized with iron oxide precipitates on fracture faces.

April 2018

32.0' - 33.6' Most bedding breaks are oxidized with iron oxide precipitates on fracture surfaces.



GW-989 30.0' – 45.0' Sand Pack Interval 33.6' – 43.6' Screened Interval April 2018 32.0' – 33.6' Most bedding breaks are oxidized with iron oxide precipitates on fracture surfaces. 34.1' - 34.3' Broken zone, bedding breaks and fractures perpendicular to bedding. Oxidized with iron oxide precipitates on fracture faces.

EMDF 1-989 2/28/18 0.0'-45.0'. B-110 17.9 2F 1 2F.2 2F.3 2F.4 2F.5 2F.6 2F.7 2F.8 2F.9 2F.9 10 2F.1 3F



GW-989 30.0' – 45.0' Sand Pack Interval 33.6' – 43.6' Screened Interval

April 2018

41.9' – 42.3' Broken zone with iron oxide along bedding planes and perpendicular fractures. Oxidized with iron oxide precipitates on fracture faces.



GW-993 19.8' – 35.5' Sand Pack Interval 23.0' – 33.0' Screened Interval

26.0' - 26.7' Multiple high angle fractures with iron and manganese oxide precipitate.

27.3' – 27.5' 40-50 degree fracture, iron staining present.

April 2018


GW-993 19.8' – 35.5' Sand Pack Interval 23.0' – 33.0' Screened Interval

27.8' – 28.1' Core is highly broken due to composition (mudstone/shale) and sampling procedure. Iron staining along fractures, along bedding planes, and along fractures perpendicular to bedding angles.

28.1' - 28.6' Rubble zone, very intensely fractured, all pieces rounded due to composition and sampling procedure. Iron staining, iron oxide, and manganese oxide observed along fracture faces. Calcite precipitate also observed along fracture faces.



GW-994 37.0° – 54.6° Sand Pack Interval 42.0° – 52.0° Screened Interval

 $37.6^{\circ} - 38.1^{\circ}$  Fracture oriented 90° to bedding angle. Face has iron oxide weathering



37.6' – 38.1' Fracture oriented 90° to bedding angle. Face has iron oxide weathering

44.9' - 45.4' Bedding breaks and fractures oriented perpendicular to bedding angle. Faces oxidized with iron oxide precipitates.

At 42.8 fracture oriented perpendicular to bedding. Face is oxidized with iron oxide precipitates.

GW-994 37.0' – 54.6' Sand Pack Interval 42.0' – 52.0' Screened Interval

050011 0110 21010 EMDF Gw-995, C-1 25.0'-30.0 .8 PRAPPOZSETE = 9 .5 Lathia .6 **1 F** 1 1 **F** 2 **F** 3 .7 8 9 2 COSTCO.

GW-995 19.2' – 34.0' Sand Pack Interval 22.1' – 32.1' Screened Interval

Below 25.5' Core is very weathered, broken along bedding planes, iron oxide on bedding planes



GW-995 19.2' – 34.0' Sand Pack Interval 22.1' – 32.1' Screened Interval 26.5' – 27.0' Trace yellowish/reddish brown iron oxide on fracture surfaces





GW-998 24.0' – 40.0' Sand Pack Interval 26.6' – 36.6' Screened Interval

April 2018

26.8' – 27.2' Vertical fracture with iron and manganese oxide precipitates.

At 27.4' Fracture perpendicular to bedding plane with iron and manganese oxide precipitates.

At 28.0', 28.1', and 28.2' Fractures along bedding planes with iron and manganese oxide precipitates.

22



GW-998 24.0' – 40.0' Sand Pack Interval 26.6' – 36.6' Screened Interval

April 2018

At 31.6' Fracture along bedding plane with iron oxide precipitates.

31.7' -32.2' Multiple fractures along and perpendicular to bedding plane with iron oxide present on all fractures. • At 32.8' Break along bedding plane with iron and manganese oxide precipitates.

23



26.6' - 36.6' Screened Interval

plane with iron oxide precipitate.

stained and discolored.

along core axis with iron oxide.



- GW-998 24.0' 40.0' Sand Pack Interval 26.6' 36.6' Screened Interval
- At 39.6' Fracture perpendicular to bedding plane with iron and manganese oxide.



#### **APPENDIX C**

#### SLUG TEST DATA

#### TABLE C.1. SUMMARY OF SLUG TESTING RESULTS PHASE I CHARACTERIZATION ENVIRONMENTAL MANAGEMENT DISPOSAL FACILITY CENTRAL BEAR CREEK VALLEY SITE (7c)

|                     |             |           |                | Bouwer-Rice             |
|---------------------|-------------|-----------|----------------|-------------------------|
|                     | Screen      | Saturated |                | Calculated              |
| Well                | Depth       | Thickness | Type of        | Hydraulic Conductvity   |
| No.                 | (feet)      | (feet)    | Test           | cm/sec                  |
|                     |             |           | Bar In         | 4.17 x 10 <sup>-4</sup> |
| GW-979              | 26.3 - 36.3 | 9.7       | Bar Out        | 4.96 x 10 <sup>-4</sup> |
|                     |             |           | Average        | 4.56 x 10 <sup>-4</sup> |
|                     |             |           | Bar In         | 6.39 x 10 <sup>-5</sup> |
| GW-981              | 22.1 - 32.1 | 9.7       | Bar Out        | 4.61 x 10 <sup>-5</sup> |
|                     |             |           | Average        | 5.50 x 10 <sup>-5</sup> |
|                     |             |           | Bar In         | 5.04 x 10 <sup>-3</sup> |
| GW-983              | 79.2 - 89.2 | 9.7       | Bar Out        | 4.96 x 10 <sup>-3</sup> |
|                     |             |           | Average        | 5.00 x 10 <sup>-3</sup> |
|                     |             |           | Bar In         | 9.52 x 10 <sup>-5</sup> |
| GW-987              | 16.1 - 26.1 | 9.7       | Bar Out        | 9.75 x 10 <sup>-5</sup> |
|                     |             |           | Average        | 9.64 x 10 <sup>-5</sup> |
|                     |             |           | Bar In         | 1.42 x 10 <sup>-4</sup> |
| GW-989              | 33.6 - 43.6 | 9.7       | Bar Out        | 6.68 x 10 <sup>-5</sup> |
|                     |             |           | Geometric Mean | 9.74 x 10 <sup>-5</sup> |
|                     |             |           | Bar In         | 5.88 x 10 <sup>-4</sup> |
| GW-993 <sup>1</sup> | 23.0 - 33.0 | 9.7       | Bar Out        | 6.98 x 10 <sup>-4</sup> |
|                     |             |           | Average        | 6.43 x 10 <sup>-4</sup> |
|                     |             |           | Bar In         | 1.85 x 10 <sup>-4</sup> |
| GW-995              | 22.1 - 32.1 | 9.8       | Bar Out        | 1.84 x 10 <sup>-4</sup> |
|                     |             |           | Average        | 1.85 x 10 <sup>-4</sup> |
|                     |             |           | Bar In         | 5.14 x 10 <sup>-4</sup> |
| GW-999              | 10.3 - 20.3 | 9.7       | Bar Out        | 4.54 x 10 <sup>-4</sup> |
|                     |             |           | Average        | 4.84 x 10 <sup>-4</sup> |

<sup>1</sup> Average borehole radius of screened interval in GW-993 assumed to be 17.4 inches based on volume of sand pack required. <sup>2</sup> Saturated thickness equals the actual measured slotted interval of 10-foot screen section. Length of filter pack disregarded.

































#### FLUTe<sup>TM</sup> TESTS

#### **APPENDIX D**

#### PHASE I CHARACTERIZATION EMDF CENTRAL BEAR CREEK VALLEY SITE (7C) TECHNICAL REPORT REVISION 0 – APRIL 2018

APPENDIX D

FLUTe Tests

| GW | /-9 | 78 |  |
|----|-----|----|--|
|----|-----|----|--|


A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.

The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.

### GW-978



D-6



D-7



The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

| Revers   | <b>se head profile Borehole no.</b> GW-978 Oak Ridge Strata G d |         | date:      | 2/19/2018 |            |          |               |             |              |             |              |            |               |                |             |              |
|----------|-----------------------------------------------------------------|---------|------------|-----------|------------|----------|---------------|-------------|--------------|-------------|--------------|------------|---------------|----------------|-------------|--------------|
|          |                                                                 |         |            |           |            |          |               |             |              |             |              |            |               |                |             |              |
|          |                                                                 |         |            |           |            |          |               |             |              |             |              |            |               |                |             |              |
|          |                                                                 |         |            |           |            |          |               |             | synthetic    |             |              |            |               |                | If helow    |              |
|          | head in                                                         |         |            |           | Water      |          |               | flow        | flow meter   |             |              |            |               | DTi used in    | not equal   | Best         |
| interval | the                                                             |         |            | bottom    | table in   |          | mid point     | into/out of | rate gal/min |             |              |            |               | the            | to 1.0, DTi | estimates    |
| depths   | interval                                                        | blended | top of     | of        | formation  |          | of intervals  | hole        | at           | low T       |              |            |               | calculation    | was         | for low T    |
| (ft)     | (ft bgs)                                                        | head    | interval   | interval  | (ft bgs)   | interval | (ft)          | (liters/hr) | boundaries   | intervals   | boundries of | of meas. i | range of plot | (cm2/s)        | modified    | intervals    |
| 82.08    | 10.75                                                           | 10.75   | 76.845     | 82.08     | 10.75      | 1        | 80.46         | 6.03709585  | 0.0265       | 0           | 82.08        | 82.08      | 0             | 100 0.02070541 | 3           | 1            |
| 76.845   | 10.75                                                           | 10.75   | 65         | 76.845    | 12.5196905 | 2        | 70.9225       | 3.561968762 | 0.0421       | 0           | 76.845       | 76.845     | 0             | 100 0.03657569 | <u>i</u>    | 1 13.1617324 |
| 76.845   | 12.51969                                                        | 10.75   | 58         | 65        | 11.8847998 | 3        | 61.5          | 8.367427113 | 0.0788       | 0           | 65           | 65         | 0             | 100 0.05008890 | 2           | 1 13.1617324 |
| 65       | 12.51969                                                        | 10.75   | 47         | 58        | 15.0609197 | 4        | 52.5          | -6.35009474 | 0.0509       | 15.06091965 | 58           | 58         | 0             | 100 0.03499489 | 2           | 4 13.1617324 |
| 65       | 11.8848                                                         | 10.75   | 36         | 47        | 14.34278   | 5        | 41.5          | -3.49309741 | 0.0356       | 14.34277995 | 47           | 47         | 0             | 100 0.03402663 | <u>)</u>    | 3 13.1617324 |
| 58       | 11.8848                                                         | 10.75   | 25         | 36        | 15.5734649 | 6        | 30.5          | -8.12329957 | 0.0000       | 0           | 36           | 36         | 0             | 100 0.03417482 | <u>)</u>    | 1            |
| 58       | 15.06092                                                        | 10.75   | 0          | 25        | #DIV/0!    | 7        | 12.5          | #DIV/0!     | #DIV/0!      | #DIV/0!     | 25           | 25         | 0             | 100            | <u>)</u>    | 1            |
| 47       | 15.06092                                                        | 10.75   | 0          | 0         | #DIV/0!    | 8        | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0             | 100            | <u>/</u>    | 1            |
| 47       | 14.34278                                                        | 10.75   | 0          | 0         | #DIV/0!    | 9        | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0             | 100            | <u>/</u>    | 1            |
| 30       | 14.342/8                                                        | 10.75   | 0          | 0         | #DIV/0!    | 10       | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0             | 100            | <u>/</u>    | 1            |
| 25       | 15.57340                                                        | 10.75   | 0          | 0         | #DIV/0!    | 12       | 0             | #DIV/0      | #DIV/0       | #DIV/0      | 0            | 0          | 0             | 100            | <u>/</u>    | 1            |
| 25       | #DIV/01                                                         | 10.75   | 0          | 0         | #DIV/01    | 13       | 0             | #DIV/01     | #DIV/01      | #DIV/01     | 0            | 0          | 0             | 100            | <u>'</u>    | 1            |
| 0        | #DIV/0!                                                         | 10.75   | 0          | 0         | #DIV/0!    | 14       | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0<br>0        | 100            | <u>-</u>    | 1            |
| 0        | #DIV/0!                                                         | 0       | 0          | 0         | #DIV/0!    | 15       | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0             | 100            | 5           | 1            |
| 0        | #DIV/0!                                                         | 0       | 0          | 0         | #DIV/0!    | 16       | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0             | 100            | 5           | 1            |
| 0        | #DIV/0!                                                         | 0       | 0          | 0         | #DIV/0!    | 17       | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0             | 100            | 5           | 1            |
| 0        | #DIV/0!                                                         | 0       | 0          | 0         | #DIV/0!    | 18       | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0             | 100            | )           | 1            |
| 0        | #DIV/0!                                                         | 0       | 0          | 0         | #DIV/0!    | 19       | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0             | 100            | )           | 1            |
| 0        | #DIV/0!                                                         | 0       | 0          | 0         | #DIV/0!    | 20       | 0             | #DIV/0!     | #DIV/0!      | #DIV/0!     | 0            | 0          | 0             | 100            | )           | 1            |
| 0        | #DIV/0!                                                         | 0       | 0          | 0         | #DIV/0!    | 21       | 0             | #DIV/0!     | 0.0000       | #DIV/0!     | 0            | 0          | 0             | 100            | )           | 1            |
| 0        | #DIV/0!                                                         |         |            |           |            |          |               |             |              |             |              |            |               |                |             |              |
| 0        | #DIV/0!                                                         |         |            |           |            |          |               |             |              |             |              |            |               |                |             |              |
| 0        | #DIV/0!                                                         |         | total hole | depth     | 82.08      | ft bgs   |               |             |              |             |              |            |               |                |             |              |
| 0        | #DIV/0!                                                         |         | hole diam  | eter      | 0          | in.      |               |             |              |             |              |            |               |                |             |              |
| 0        | #DIV/0!                                                         |         | casing dep | otn       | 0          | TT bgs   | integral of h | ole flow    |              |             |              |            |               |                |             |              |
| 0        | #DIV/0!                                                         |         | casing dia | m.        | 0          | in.      | IS 0??        | #DIV/0!     |              |             |              |            |               |                |             |              |
| 0        | #DIV/0!                                                         |         |            |           |            |          |               |             |              |             |              |            |               |                |             |              |

This page intentionally left blank.

| Results of FLUTe profiling for hole     |                            |                          |                 |  |  |  |  |  |  |  |
|-----------------------------------------|----------------------------|--------------------------|-----------------|--|--|--|--|--|--|--|
| no. GW-982 for                          | Strata-G Oak Ridge         |                          |                 |  |  |  |  |  |  |  |
|                                         |                            |                          |                 |  |  |  |  |  |  |  |
| Water Table depth                       | 52.375 ft BGS              |                          |                 |  |  |  |  |  |  |  |
| Hole depth                              | <u>125.3</u> ft вдs        |                          |                 |  |  |  |  |  |  |  |
| liner length                            | 130 ft BGS                 |                          |                 |  |  |  |  |  |  |  |
| casing depth                            | 50 ft BGS                  |                          |                 |  |  |  |  |  |  |  |
| hole diameter                           | 6 inches                   |                          |                 |  |  |  |  |  |  |  |
| liner diameter                          | 6.5 inches                 |                          |                 |  |  |  |  |  |  |  |
| date of measurement                     | 2/19/2019                  |                          |                 |  |  |  |  |  |  |  |
| The profile was measured to a de        | pth of                     | 53.741 ft                |                 |  |  |  |  |  |  |  |
| The flow rate per unit driving pres     | sure was                   | 0.00217                  | gal/min/ft      |  |  |  |  |  |  |  |
| The transmissivity for the remain       | ainder of the hole is:     | 0.0045 cm sq./se         | ec.             |  |  |  |  |  |  |  |
| The average conductivity for the        | he remaining               | 71.559 ft of the hole is | 2.06E-06 cm/sec |  |  |  |  |  |  |  |
| I otal borehole transmissivit           | <b>y is</b> 0.051813 cm2/s | S                        |                 |  |  |  |  |  |  |  |
| Comments:                               |                            |                          |                 |  |  |  |  |  |  |  |
| Contact for questions at<br>carl Keller |                            |                          |                 |  |  |  |  |  |  |  |
| Phone: 505-455-                         | 1300                       |                          |                 |  |  |  |  |  |  |  |

A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.

The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.

### GW-982





D-13

This page intentionally left blank.

| GW- | 986 |
|-----|-----|
|-----|-----|



A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.

The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.

### GW-986







The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

| Revers   | rse head profile Borehole no. GW-986 O. Ridge c |         |                   |            | date:      | 2/23/2018      |             |             |               |             |              |           |               |     |             |               |           |   |
|----------|-------------------------------------------------|---------|-------------------|------------|------------|----------------|-------------|-------------|---------------|-------------|--------------|-----------|---------------|-----|-------------|---------------|-----------|---|
|          |                                                 |         |                   |            |            |                |             |             |               |             |              |           |               |     |             |               |           |   |
|          |                                                 |         |                   |            |            |                |             |             |               |             |              |           |               |     |             |               |           |   |
|          |                                                 |         |                   |            |            |                |             |             |               |             |              |           |               |     |             |               |           |   |
|          | head in                                         |         |                   |            | Water      |                | mid         | flow        | synthetic     |             |              |           |               |     | DTi used in | If below not  | Best      |   |
| interval | the                                             |         |                   | bottom     | table in   |                | point of    | into/out of | flow meter    |             |              |           |               |     | the         | equal to 1.0, | estimates | ; |
| depths   | interval                                        | blended | top of            | of         | formation  |                | intervals   | hole        | rate gal/min  | low T       |              |           |               |     | calculation | DTi was       | for low T |   |
| (ft)     | (ft bgs)                                        | head    | interval          | interval   | (ft bgs)   | interval       | (ft)        | (liters/hr) | at boundaries | intervals   | boundries of | f meas. i | range of plot |     | (cm2/s)     | modified      | intervals |   |
| 59.42    | 5                                               | 5       | 49                | 59.42      | 5          | 1              | 54.295      | 1.927215    | 0.0085        | 0           | 59.42        | 59.42     | 0             | 100 | 0.031840557 | :             | L         |   |
| 49       | 5                                               | 5       | 39                | 49         | 6.29331233 | 2              | 44          | -1.2967647  | 0.0028        | 0           | 49           | 49        | 0             | 100 | 0.015933604 | :             | L #DIV/0! |   |
| 49       | 6.293312                                        | 5       | 35                | 39         | 5.70049765 | 3              | 37          | -0.1215002  | 0.0022        | 5.700497648 | 39           | 39        | 0             | 100 | 0.007437049 | :             | L #DIV/0! |   |
| 39       | 6.293312                                        | 5       | 30                | 35         | 5.95886618 | 4              | 32.5        | -0.6129673  | -0.0005       | 0           | 35           | 35        | 0             | 100 | 0.013716775 | :             | L #DIV/0! |   |
| 39       | 5.700498                                        | 5       | 19                | 30         | 5.51968049 | 5              | 24.5        | 0.10401723  | 0.0000        | 0           | 30           | 30        | 0             | 100 | 0.029689104 | :             | L #DIV/0! |   |
| 35       | 5.700498                                        | 5       | 0                 | 19         | #DIV/0!    | 6              | 9.5         | #DIV/0!     | #DIV/0!       | #DIV/0!     | 19           | 19        | 0             | 100 | 0           |               | L         |   |
| 35       | 5.958866                                        | 5       | 0                 | 0          | #DIV/0!    | /              | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           |               | L         |   |
| 30       | 5.958800                                        | 5       | 0                 | 0          | #DIV/0!    | 8              | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           |               | L         |   |
| 19       | 5 51968                                         | 5       | 0                 | 0          | #DIV/0!    | 10             | 0           | #DIV/0!     | #DIV/0        | #DIV/0      | 0            | 0         | 0             | 100 | 0           | ·<br>·        | L<br>I    |   |
| 19       | 5 51968                                         | 5       | 0                 | 0          | #DIV/01    | 11             | 0           | #DIV/0      | #DIV/0        | #DIV/01     | 0            | 0         | 0             | 100 | 0           |               | L<br>     |   |
| 0        | #DIV/0!                                         | 5       | 0                 | 0          | #DIV/0!    | 12             | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           |               | -         |   |
| 0        | #DIV/0!                                         | 5       | 0                 | 0          | #DIV/0!    | 13             | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           |               | L         |   |
| 0        | #DIV/0!                                         | 0       | 0                 | 0          | #DIV/0!    | 14             | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           | :             | L         |   |
| 0        | #DIV/0!                                         | 0       | 0                 | 0          | #DIV/0!    | 15             | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           | :             | L         |   |
| 0        | #DIV/0!                                         | 0       | 0                 | 0          | #DIV/0!    | 16             | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           | :             | L         |   |
| 0        | #DIV/0!                                         | 0       | 0                 | 0          | #DIV/0!    | 17             | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           | :             | L         |   |
| 0        | #DIV/0!                                         | 0       | 0                 | 0          | #DIV/0!    | 18             | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           | :             | L         |   |
| 0        | #DIV/0!                                         | 0       | 0                 | 0          | #DIV/0!    | 19             | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           | :             | L         |   |
| 0        | #DIV/0!                                         | 0       | 0                 | 0          | #DIV/0!    | 20             | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!     | 0            | 0         | 0             | 100 | 0           |               | L         |   |
| 0        | #DIV/0!                                         | 0       | 0                 | 0          | #DIV/0!    | 21             | 0           | #DIV/0!     | 0.0000        | #DIV/0!     | 0            | 0         | 0             | 100 | 0           | :             | L         |   |
| 0        | #DIV/0!                                         |         |                   |            |            |                |             |             |               |             |              |           |               |     |             |               |           |   |
| 0        | #DIV/0!                                         |         | 4 - 4 - 1 h - 1 - | al a sa ba | 50.42      | 64 h           |             |             |               |             |              |           |               |     |             |               |           |   |
| 0        | #DIV/0!                                         |         | total nole        | ueptn      | 59.42      | in bgs         |             |             |               |             |              |           |               |     |             |               |           |   |
| 0        | #DIV/0!                                         |         | casing der        | oth        | 0          | iii.<br>ft has | integral of | f hole flow |               |             |              |           |               |     |             |               |           |   |
| 0        | #DIV/0!                                         |         | casing dep        | m          | 0          | in             | is 0??      | #DIV/0      |               |             |              |           |               |     |             |               |           |   |
| 0        | #DIV/0                                          |         | casing uld        |            | 0          |                | 13 011      | #DIV/0!     |               |             |              |           |               |     |             |               |           |   |
| 0        | πDIV/0!                                         |         |                   |            |            |                |             |             |               |             |              |           |               |     |             |               |           | _ |

This page intentionally left blank.

| GW | -988 |
|----|------|
|----|------|



A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.

The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.

### GW-988





D-23



The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

| Revers   | se head profile Borehole no. GW-988 Oak Ridge Strata G |         |            |          | date:      | 2/22/2018 |            |             |                |                 |           |            |               |     |             |              |      |             |
|----------|--------------------------------------------------------|---------|------------|----------|------------|-----------|------------|-------------|----------------|-----------------|-----------|------------|---------------|-----|-------------|--------------|------|-------------|
|          |                                                        |         |            |          |            |           |            |             |                |                 |           |            |               |     |             |              |      |             |
|          | head in                                                |         |            |          | Water      |           | mid        | flow        | synthetic flow |                 |           |            |               |     | DTi used in | If helow not | Re   | st          |
| interval | the                                                    |         |            | bottom   | table in   |           | point of   | into/out of | meter rate     |                 |           |            |               |     | the         | equal to 1.0 | . es | timates for |
| depths   | interval                                               | blended | top of     | of       | formation  |           | intervals  | hole        | gal/min at     |                 |           |            |               |     | calculation | DTi was      | lo   | w T         |
| (ft)     | (ft bgs)                                               | head    | interval   | interval | (ft bgs)   | interval  | (ft)       | (liters/hr) | boundaries     | low T intervals | boundries | of meas. i | range of plot |     | (cm2/s)     | modified     | in   | tervals     |
| 79       | 13.9                                                   | 13.9    | 75.36541   | 79       | 13.9       | 1         | 77.1825    | 0.099569377 | 0.0004         | 0               | 79        | 79         | 0             | 100 | 0.056713747 |              | 1    |             |
| 75.36541 | 13.9                                                   | 13.9    | 60         | 75.36541 | 13.996706  | 2         | 67.68271   | -0.10711975 | 0.0000         | 13.99670602     | 75.36541  | 75.36541   | 0             | 100 | 0.012096122 |              | 1    | #DIV/0!     |
| 75.36541 | 13.99671                                               | 13.9    | 30         | 60       | 13.9141733 | 3         | 45         | 0.007550369 | 0.0000         | 0               | 60        | 60         | 0             | 100 | 0.037669134 |              | 1    | #DIV/0!     |
| 60       | 13.99671                                               | 13.9    | 0          | 30       | #DIV/0!    | 4         | 15         | #DIV/0!     | #DIV/0!        | #DIV/0!         | 30        | 30         | 0             | 100 | 0           |              | 1    | #DIV/0!     |
| 60       | 13.91417                                               | 13.9    | 0          | 0        | #DIV/0!    | 5         | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    | #DIV/0!     |
| 30       | 13.91417                                               | 13.9    | 0          | 0        | #DIV/0!    | 6         | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 30       | #DIV/0!                                                | 13.9    | 0          | 0        | #DIV/0!    | 7         | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 13.9    | 0          | 0        | #DIV/0!    | 8         | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 13.9    | 0          | 0        | #DIV/0!    | 9         | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 13.9    | 0          | 0        | #DIV/0!    | 10        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 13.9    | 0          | 0        | #DIV/0!    | 11        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 13.9    | 0          | 0        | #DIV/0!    | 12        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 13.9    | 0          | 0        | #DIV/0!    | 13        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 0       | 0          | 0        | #DIV/0!    | 14        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 0       | 0          | 0        | #DIV/0!    | 15        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 0       | 0          | 0        | #DIV/0!    | 16        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 0       | 0          | 0        | #DIV/0!    | 17        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 0       | 0          | 0        | #DIV/0!    | 18        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 0       | 0          | 0        | #DIV/0!    | 19        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 0       | 0          | 0        | #DIV/0!    | 20        | 0          | #DIV/0!     | #DIV/0!        | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                | 0       | 0          | 0        | #DIV/0!    | 21        | 0          | #DIV/0!     | 0.0000         | #DIV/0!         | 0         | 0          | 0             | 100 | 0           |              | 1    |             |
| 0        | #DIV/0!                                                |         |            |          |            |           |            |             |                |                 |           |            |               |     |             |              |      |             |
| 0        | #DIV/0!                                                |         |            | 1        | =0         | I         |            |             |                |                 |           |            |               |     |             |              |      |             |
| 0        | #DIV/0!                                                |         | total noie | depth    | /9         | it bgs    |            |             |                |                 |           |            |               |     |             |              |      |             |
| 0        | #DIV/0!                                                |         | nole diam  | eter     | 0          | in.       |            |             |                |                 |           |            |               |     |             |              |      |             |
| 0        | #DIV/0!                                                |         | casing dep | otn      | 0          | IT bgs    | integral o | r noie flow |                |                 |           |            |               |     |             |              |      |             |
| 0        | #DIV/0!                                                |         | casing dia | m.       | 0          | in.       | IS 0??     | #DIV/0!     |                |                 |           |            |               |     |             |              |      |             |
| 0        | #DIV/0!                                                |         |            |          |            |           |            |             |                |                 |           |            |               |     |             |              |      |             |

This page intentionally left blank.

| Results of FLUTe pr+O1:Y40ofiling for hole                |                        |                          |                 |  |  |  |  |  |  |
|-----------------------------------------------------------|------------------------|--------------------------|-----------------|--|--|--|--|--|--|
| no. GW-992 for                                            | Strata G Oak Ridge     |                          |                 |  |  |  |  |  |  |
|                                                           |                        |                          |                 |  |  |  |  |  |  |
| Water Table depth                                         | 1.5 ft BGS             |                          |                 |  |  |  |  |  |  |
| Hole depth                                                | 54.833 ft BGS          |                          |                 |  |  |  |  |  |  |
| liner length                                              | 60 ft BGS              |                          |                 |  |  |  |  |  |  |
| casing depth                                              | 31 ft BGS              |                          |                 |  |  |  |  |  |  |
| hole diameter                                             | 6 inches               |                          |                 |  |  |  |  |  |  |
| liner diameter                                            | 6.5 inches             |                          |                 |  |  |  |  |  |  |
| date of measurement                                       | 2/27/2018              |                          |                 |  |  |  |  |  |  |
| The profile was measured to a d                           | epth of                | 51.124 ft                |                 |  |  |  |  |  |  |
| The flow rate per unit driving pres                       | ssure was              | 0.02047                  | gal/min/ft      |  |  |  |  |  |  |
| The transmissivity for the rem                            | ainder of the hole is: | 0.042393 cm sq./sec      | ;               |  |  |  |  |  |  |
| The average conductivity for                              | the remaining          | 3.7092 ft of the hole is | 3.75E-04 cm/sec |  |  |  |  |  |  |
| Total borehole transmissiv                                | ity is 0.107572 cm2/s  |                          |                 |  |  |  |  |  |  |
| Comments:                                                 |                        |                          |                 |  |  |  |  |  |  |
| Contact for questions a<br>carl Keller<br>Phone: 505-455- | bout data or reduction |                          |                 |  |  |  |  |  |  |

A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.

The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.

### GW-992







The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

| Reverse  | e head   | profile I | Borehol     | e no.    | GW-992     | 2 RHP p  | orofle (    | Dak Ridg    | date:        | 2/27/2018       |             |           |               |     |             |               |        |        |
|----------|----------|-----------|-------------|----------|------------|----------|-------------|-------------|--------------|-----------------|-------------|-----------|---------------|-----|-------------|---------------|--------|--------|
|          |          |           |             |          |            |          |             |             |              |                 |             |           |               |     |             |               |        |        |
|          |          |           |             |          |            |          |             |             |              |                 |             |           |               |     |             |               |        |        |
|          |          |           |             |          |            |          |             |             | synthetic    |                 |             |           |               |     |             |               |        |        |
|          | head in  |           |             |          | Water      |          | mid         | flow        | flow meter   |                 |             |           |               |     | DTI used in | If below not  | Best   |        |
| interval | the      |           |             | bottom   | table in   |          | point of    | into/out of | rate gal/min |                 |             |           |               |     | the         | equal to 1.0, | estin  | nates  |
| depths   | interval | blended   | top of      | of       | formation  |          | intervals   | hole        | at           |                 |             |           |               |     | calculation | DTi was       | for lo | JW T   |
| (ft)     | (ft bgs) | head      | interval    | interval | (ft bgs)   | interval | (ft)        | (liters/hr) | boundaries   | low T intervals | boundries o | f meas. i | range of plot | [   | (cm2/s)     | modified      | inter  | vals   |
| 54.833   | 1.6185   | 1.5       | 51.123      | 54.833   | 1.6185     | 1        | 52.978      | 1.89554973  | 0.0083       | 0               | 54.833      | 54.833    | 0             | 100 | 0.04239261  |               | 1      |        |
| 51.123   | 1.6185   | 1.5       | 46          | 51.123   | 1.6185     | 2        | 48.5615     | e           | 0.0083       | 1.6185          | 51.123      | 51.123    | 0             | 100 | 0.00058122  |               | 1 #D   | /IV/0! |
| 51.123   | 1.6185   | 1.5       | 37          | 46       | 1.99391215 | 3        | 41.5        | 0.1058208   | 0.0088       | 0               | 46          | 46        | 0             | 100 | 0.03005474  |               | 1 #D   | /V/0!  |
| 46       | 1.6185   | 1.5       | 29          | 37       | 2.56087528 | 4        | 33          | -2.0273595  | -0.0001      | 0               | 37          | 37        | 0             | 100 | 0.03454306  |               | 1 #D   | /V/0!  |
| 46       | 1.993912 | 1.5       | 0           | 29       | #DIV/0!    | 5        | 14.5        | #DIV/0!     | #DIV/0!      | #DIV/0!         | 29          | 29        | 0             | 100 | 0           |               | 1 #D   | /V/0!  |
| 37       | 1.993912 | 1.5       | 0           | 0        | #DIV/0!    | 6        | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           |               |        |        |
| 37       | 2.560875 | 1.5       | 0           | 0        | #DIV/0!    | /        | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           |               | 1      |        |
| 29       | 2.560875 | 1.5       | 0           | 0        | #DIV/0!    | 8        | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           |               |        |        |
| 29       | #DIV/0!  | 1.5       | 0           | 0        | #DIV/0!    | 9        | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           |               |        |        |
| 0        | #DIV/0!  | 1.5       | 0           | 0        | #DIV/0!    | 10       | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           |               |        |        |
| 0        | #DIV/0!  | 1.5       | 0           | 0        | #DIV/0!    | 11       | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           |               | 1      |        |
| 0        | #DIV/0!  | 1.5       | 0           | 0        | #DIV/0!    | 12       | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           | •             | 1      |        |
| 0        | #DIV/0!  | 1.5       | 0           | 0        | #DIV/0!    | 13       | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           |               | 1      |        |
| 0        | #DIV/0!  | 0         | 0           | 0        | #DIV/0!    | 14       | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           |               | 1      |        |
| 0        | #DIV/0!  | 0         | 0           | 0        | #DIV/0!    | 15       | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           |               | 1      |        |
| 0        | #DIV/0!  | 0         | 0           | 0        | #DIV/0!    | 10       | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           | •             | 1      |        |
| 0        | #DIV/0!  | 0         | 0           | 0        | #DIV/0     | 10       | 0           | #DIV/0      | #DIV/0       | #DIV/0          | 0           | 0         | 0             | 100 | 0           | •             | 1      |        |
| 0        | #DIV/0!  | 0         | 0           | 0        | #DIV/0!    | 10       | 0           | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0           | 0         | 0             | 100 | 0           | •             | 1      |        |
| 0        | #DIV/0!  | 0         | 0           | 0        | #DIV/0     | 19       | 0           | #DIV/0      | #DIV/0       | #DIV/0          | 0           | 0         | 0             | 100 | 0           | •             | 1      |        |
| 0        | #DIV/0   | 0         | 0           | 0        | #DIV/0!    | 20       | 0           | #DIV/0      | . #DIV/0:    | #DIV/0          | 0           | 0         | 0             | 100 | 0           | •             | 1      |        |
| 0        | #DIV/0   | 0         | 0           | 0        | #DIV/0:    | 21       | 0           | #DIV/0:     | . 0.0000     | #DIV/0:         | 0           | 0         | 0             | 100 | 0           | •             | L      |        |
| 0        | #DIV/0   |           |             |          |            |          |             |             |              |                 |             |           |               |     |             |               |        |        |
| 0        | #DIV/0   |           | total hole  | denth    | 54 822     | ft høs   |             |             |              |                 |             |           |               |     |             |               |        |        |
| 0        | #DIV/0   |           | hole diam   | eter     | 0000       | in       |             |             |              |                 |             |           |               |     |             |               |        |        |
| 0        | #DIV/0   |           | casing dor  | th       | 0          | ft høs   | integral of | hole flow   |              |                 |             |           |               |     |             |               |        |        |
| 0        | #DIV/01  |           | casing dia  | m        | 0          | in       | is 0??      | #DIV/01     |              |                 |             |           |               |     |             |               |        |        |
| 0<br>0   | #DIV/0   |           | cushing ulu |          |            |          | 15 0: :     |             |              |                 |             |           |               |     |             |               |        |        |
| 0        | #DIV/0!  |           |             |          |            |          |             |             |              |                 |             |           |               |     |             |               |        |        |

This page intentionally left blank.

| Results of FLUTe profiling for hole    |                            |                          |                 |  |  |  |  |  |  |  |  |
|----------------------------------------|----------------------------|--------------------------|-----------------|--|--|--|--|--|--|--|--|
| no. GW-994 for                         | Strata-G Oak Ridge         |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
| Water Table depth                      | 7.06 ft BGS                |                          |                 |  |  |  |  |  |  |  |  |
| Hole depth                             | 54.75 ft BGS               |                          |                 |  |  |  |  |  |  |  |  |
| liner length                           | 60 ft BGS                  |                          |                 |  |  |  |  |  |  |  |  |
| casing depth                           | 35 ft BGS                  |                          |                 |  |  |  |  |  |  |  |  |
| hole diameter                          | 6 inches                   |                          |                 |  |  |  |  |  |  |  |  |
| liner diameter                         | 6.5 inches                 |                          |                 |  |  |  |  |  |  |  |  |
| date of measurement                    | 2/21/1987                  |                          |                 |  |  |  |  |  |  |  |  |
| The profile was measured to a de       | pth of                     | 52.024 ft                |                 |  |  |  |  |  |  |  |  |
| The flow rate per unit driving pres    | sure was                   | 0.03347 g                | jal/min/ft      |  |  |  |  |  |  |  |  |
| The transmissivity for the remain      | ainder of the hole is:     | 0.069317 cm sq./sec      |                 |  |  |  |  |  |  |  |  |
| The average conductivity for the       | ne remaining               | 2.7264 ft of the hole is | 8.34E-04 cm/sec |  |  |  |  |  |  |  |  |
| I otal borehole transmissivit          | <b>y is</b> 0.098448 cm2/s |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
| Comments:                              |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
|                                        |                            |                          |                 |  |  |  |  |  |  |  |  |
| O and a state of the same of the state | and data an and setting    |                          |                 |  |  |  |  |  |  |  |  |
| Contact for questions at               | out data or reduction      |                          |                 |  |  |  |  |  |  |  |  |
| Phone: 505-455-                        | 1300                       |                          |                 |  |  |  |  |  |  |  |  |

A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.

The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.

### GW-994



GW-994





The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

| Revers   | verse head profile Borehole no. GW-994 Oak Ridge Strata G |         |            |          |            |          | trata G     | date:       | 2/22/2018     |                 |             |            |               |     |             |              |         |        |
|----------|-----------------------------------------------------------|---------|------------|----------|------------|----------|-------------|-------------|---------------|-----------------|-------------|------------|---------------|-----|-------------|--------------|---------|--------|
|          |                                                           |         |            |          |            |          |             |             |               |                 |             |            |               |     |             |              |         |        |
|          |                                                           |         |            |          |            |          |             |             |               |                 |             |            |               |     |             |              |         |        |
|          |                                                           |         |            |          |            |          |             |             |               |                 |             |            |               |     |             |              |         |        |
|          | head in                                                   |         |            |          | Water      |          | mid         | flow        | synthetic     |                 |             |            |               |     | DTi used in | If below not | Best    |        |
| interval | the                                                       |         |            | bottom   | table in   |          | point of    | into/out of | flow meter    |                 |             |            |               |     | the         | equal to 1.0 | , estin | nates  |
| depths   | interval                                                  | blended | top of     | of       | formation  |          | intervals   | hole        | rate gal/min  |                 |             |            |               |     | calculation | DTi was      | for lo  | ow T   |
| (ft)     | (ft bgs)                                                  | head    | interval   | interval | (ft bgs)   | interval | (ft)        | (liters/hr) | at boundaries | low T intervals | boundries o | of meas. i | range of plot | _   | (cm2/s)     | modified     | inter   | vals   |
| 54.75    | 7.06                                                      | 7.06    | 52.02362   | 54.75    | 7.06       | 1        | 53.38681    | 519.1099214 | 2.2768        | 0               | 54.75       | 54.75      | 0             | 100 | 0.060535883 | -            | 1       |        |
| 52.02362 | 7.06                                                      | 7.06    | 48         | 52.02362 | 7.94175274 | 2        | 50.01181    | 148.9073127 | 2.9299        | 7.941752744     | 52.02362    | 52.02362   | 0             | 100 | 0.017562951 | -            | 2 #D    | 01V/0! |
| 52.02362 | 7.941753                                                  | 7.06    | 30         | 48       | 8.58422717 | 3        | 39          | 244.9294767 | 4.0042        | 0               | 48          | 48         | 0             | 100 | 0.029130553 |              | 1 #D    | 01V/0! |
| 48       | 7.941753                                                  | 7.06    | 0          | 30       | #DIV/0!    | 4        | 15          | #DIV/0!     | #DIV/0!       | #DIV/0!         | 30          | 30         | 0             | 100 | 0           | -            | 1 #D    | 01V/0! |
| 48       | 8.584227                                                  | 7.06    | 0          | 0        | #DIV/0!    | 5        | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | -            | 1 #D    | 01V/0! |
| 30       | 8.584227                                                  | 7.06    | 0          | 0        | #DIV/0!    | 6        | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           |              | 1       |        |
| 30       | #DIV/0!                                                   | 7.06    | 0          | 0        | #DIV/0!    | 7        | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | -            | 1       |        |
| 0        | #DIV/0!                                                   | 7.06    | 0          | 0        | #DIV/0!    | 8        | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | -            | 1       |        |
| 0        | #DIV/0!                                                   | 7.06    | 0          | 0        | #DIV/0!    | 9        | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | -            | 1       |        |
| 0        | #DIV/0!                                                   | 7.06    | 0          | 0        | #DIV/0!    | 10       | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | -            | 1       |        |
| 0        | #DIV/0!                                                   | 7.06    | 0          | 0        | #DIV/0!    | 11       | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | -            | 1       |        |
| 0        | #DIV/0!                                                   | 7.06    | 0          | 0        | #DIV/0!    | 12       | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | •            | 1       |        |
| 0        | #DIV/0!                                                   | 7.06    | 0          | 0        | #DIV/0!    | 13       | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | •            | 1       |        |
| 0        | #DIV/0!                                                   | 0       | 0          | 0        | #DIV/0!    | 14       | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | -            | 1       |        |
| 0        | #DIV/0!                                                   | 0       | 0          | 0        | #DIV/0!    | 15       | 0           | #DIV/0!     | #DIV/0!       | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | -            | 1       |        |
| 0        | #DIV/0!                                                   | 0       | 0          | 0        | #DIV/0!    | 10       | 0           | #DIV/0!     | #DIV/0        | #DIV/0!         | 0           | 0          | 0             | 100 | 0           |              | 1       |        |
| 0        | #DIV/0!                                                   | 0       | 0          | 0        | #DIV/0!    | 10       | 0           | #DIV/0!     | #DIV/0        | #DIV/0          | 0           | 0          | 0             | 100 | 0           | •            | 1       | ļ      |
| 0        | #DIV/0!                                                   | 0       | 0          | 0        | #DIV/0!    | 10       | 0           | #DIV/0!     | #DIV/0        | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | •            | 1       |        |
| 0        | #DIV/0!                                                   | 0       | 0          | 0        | #DIV/0     | 19       | 0           | #DIV/0!     | #DIV/0        | #DIV/0          | 0           | 0          | 0             | 100 | 0           | •            | 1       |        |
| 0        | #DIV/0!                                                   | 0       | 0          | 0        | #DIV/0     | 20       | 0           | #DIV/0!     |               | #DIV/0!         | 0           | 0          | 0             | 100 | 0           | •            | 1       |        |
| 0        | #DIV/01                                                   | U       | 0          | 0        | #DIV/0:    | 21       | 0           | #010/0:     | - 0.0000      | #01070:         | U           | 0          | 0             | 100 | 0           | •            | 1       |        |
| 0        | #DIV/01                                                   |         |            |          |            |          |             |             |               |                 |             |            |               |     |             |              |         |        |
| 0        | #DIV/01                                                   |         | total hole | denth    | 54 75      | ft høs   |             |             |               |                 |             |            |               |     |             |              |         |        |
| 0        | #DIV/01                                                   |         | hole diam  | eter     | 6          | in.      |             |             |               |                 |             |            |               |     |             |              |         |        |
| 0        | #DIV/01                                                   |         | casing der | oth      | 0          | ft bgs   | integral of | f hole flow |               |                 |             |            |               |     |             |              |         |        |
| 0        | #DIV/0!                                                   |         | casing dia | m.       | 6          | in.      | is 0??      | #DIV/0!     |               |                 |             |            |               |     |             |              |         |        |
| 0        | #DIV/01                                                   |         | B uiu      |          |            |          |             |             |               |                 |             |            |               |     |             |              |         |        |
| 0        |                                                           |         |            |          |            |          |             |             |               |                 |             |            |               |     |             |              |         |        |

This page intentionally left blank.

| GW-9 | 998 |
|------|-----|
|------|-----|



A drop in flow rate is usually associated with loss into the hole wall.

The magnitude of the drop in velocity is a direct measure of the loss into the hole wall.

The agreement between the black monotonic fit and the yellow smoothed flow/velocity curve of the first graph is an

indication of the data reliability.

The transmissivity curve of the second graph is calculated from the monotonic flow rate curve.

### GW-998



GW-998



D-41


GW-998

The first graph shows the head profile calculated over the interval of measurement. The assumption is that the head is constant between the "stopping elevations", the depth at which the liner is stopped to allow equilibration below the liner.

The bold red squares indicate that the calculation is unreliable because it depends of the measurement of a very low transmissivity in the measurement interval. That is because the FLUTe transmissivity profiling method does not measure the transmissivity to better than 1% of the transmissivity below the depth of the liner.

The estimated heads for the red square intervals are based on the either the equilibrium heads measured or assumed to lie between the more reliable head in the higher flow zone above and below the low transmissivity interval. It is reasonable to assume that the head in the low T interval with be between the higher flow zones above and below the low T interval.

The first, and deepest, interval is very reliable because the transducer is allowed to equilibrate in that interval totally isolated by the bottom of the borehole and the liner above. It is also a low transmissivity interval because the liner is halted with only a low remaining transmissivity.

The Second graph is the transmissivity distribution from the FLUTe T profile which is used in the head profile.

The Third graph is the flow calculated into and out of the open borehole using the transmissivity of each interval, the head calculated, and the open hole blended head. The Fourth graph is the a synthetic flow log based on the third graph data. The flow is plotted at the boundaries of the measurement intervals.

# GW-998

| Reverse  | e head   | profile | Borehol    | e no.     | GW-998     | 3 Oak F  | Ridge S <sup>.</sup> | trata G     | date:        | 2/21/2018       |              |         |               |     |             |              |            |          |
|----------|----------|---------|------------|-----------|------------|----------|----------------------|-------------|--------------|-----------------|--------------|---------|---------------|-----|-------------|--------------|------------|----------|
|          |          |         |            |           |            |          |                      |             |              |                 |              |         |               |     |             |              |            |          |
|          |          |         |            |           |            |          |                      |             |              |                 |              |         |               |     |             |              |            |          |
|          |          |         |            |           |            |          |                      |             | sumth atia   |                 |              |         |               |     |             |              |            |          |
|          | hoodin   |         |            |           | Wator      |          | mid                  | flow        | synthetic    |                 |              |         |               |     | DTi used in | If holow no  | .+ D       | oct      |
| interval | the      |         |            |           | table in   |          | noint of             | into/out of | rate gal/min |                 |              |         |               |     | the         | equal to 1 ( | л D<br>Л D | stimates |
| denths   | interval | blended | ton of     | hottom of | formation  |          | intervals            | hole        | at           |                 |              |         |               |     | calculation | DTi was      | л, с<br>f  | or low T |
| (ft)     | (ft bgs) | head    | interval   | interval  | (ft bgs)   | interval | (ft)                 | (liters/hr) | boundaries   | low T intervals | boundries of | meas. i | range of plot |     | (cm2/s)     | modified     | ri<br>vi   | ntervals |
| 45.08    | 1.45     | 1.45    | 40.2       | 45.08     | 1.45       | 1        | 42.64                | -1.74266785 | -0.0076      | 0               | 45.08        | 45.08   | 0             | 100 | 0.056839968 |              | 1          |          |
| 40.2     | 1.45     | 1.45    | 37         | 40.2      | 1.60586612 | 2        | 38.6                 | -0.71643114 | -0.0108      | 1.605866123     | 40.2         | 40.2    | 0             | 100 | 0.015       | •            | 1.5        | #DIV/0!  |
| 40.2     | 1.605866 | 1.45    | 32         | 37        | 1.35262602 | 3        | 34.5                 | -0.90525555 | -0.0148      | 0               | 37           | 37      | 0             | 100 | 0.045320456 |              | 1          | #DIV/0!  |
| 37       | 1.605866 | 1.45    | 20         | 32        | 0.81364878 | 4        | 26                   | 3.36435454  | 0.0000       | 0               | 32           | 32      | 0             | 100 | 0.085899113 |              | 1          | #DIV/0!  |
| 37       | 1.352626 | 1.45    | 0          | 20        | #DIV/0!    | 5        | 10                   | #DIV/0!     | #DIV/0!      | #DIV/0!         | 20           | 20      | 0             | 100 | 0           |              | 1          | #DIV/0!  |
| 32       | 1.352626 | 1.45    | 0          | 0         | #DIV/0!    | 6        | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 32       | 0.813649 | 1.45    | 0          | 0         | #DIV/0!    | 7        | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 20       | 0.813649 | 1.45    | 0          | 0         | #DIV/0!    | 8        | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 20       | #DIV/0!  | 1.45    | 0          | 0         | #DIV/0!    | 9        | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 0        | #DIV/0!  | 1.45    | 0          | 0         | #DIV/0!    | 10       | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 0        | #DIV/0!  | 1.45    | 0          | 0         | #DIV/0!    | 11       | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 0        | #DIV/0!  | 1.45    | 0          | 0         | #DIV/0!    | 12       | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 0        | #DIV/0!  | 1.45    | 0          | 0         | #DIV/0!    | 13       | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           | •            | 1          |          |
| 0        | #DIV/0!  | 0       | 0          | 0         | #DIV/0!    | 14       | 0                    | #DIV/0!     | #DIV/0       | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 0        | #DIV/0:  | 0       | 0          | 0         | #DIV/0     | 15       | 0                    | #DIV/0!     | #DIV/0       | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 0        | #DIV/0   | 0       | 0          | 0         | #DIV/0     | 10       | 0                    | #DIV/01     | #DIV/0       | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 0        | #DIV/0   | 0       | 0          | 0         | #DIV/0     | 18       | 0                    | #DIV/01     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           | •            | 1          |          |
| 0        | #DIV/0!  | 0       | 0          | 0         | #DIV/0!    | 19       | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           |              | 1          |          |
| 0        | #DIV/0!  | 0       | 0          | 0         | #DIV/0!    | 20       | 0                    | #DIV/0!     | #DIV/0!      | #DIV/0!         | 0            | 0       | 0             | 100 | 0           | •            | 1          |          |
| 0        | #DIV/0!  | 0       | 0          | 0         | #DIV/0!    | 21       | 0                    | #DIV/0!     | 0.0000       | #DIV/0!         | 0            | 0       | 0             | 100 | 0           | •            | 1          |          |
| 0        | #DIV/0!  |         |            |           |            |          |                      |             | -            |                 |              |         |               |     |             |              |            |          |
| 0        | #DIV/0!  |         |            |           |            |          |                      |             |              |                 |              |         |               |     |             |              |            |          |
| 0        | #DIV/0!  |         | total hole | depth     | 45.08      | ft bgs   |                      |             |              |                 |              |         |               |     |             |              |            |          |
| 0        | #DIV/0!  |         | hole diam  | eter      | 0          | in.      |                      |             |              |                 |              |         |               |     |             |              |            |          |
| 0        | #DIV/0!  |         | casing dep | oth       | 0          | ft bgs   | integral of          | hole flow   |              |                 |              |         |               |     |             |              |            |          |
| 0        | #DIV/0!  |         | casing dia | n.        | 0          | in.      | is 0??               | #DIV/0!     |              |                 |              |         |               |     |             |              |            |          |
| 0        | #DIV/0!  |         |            |           |            |          |                      |             |              |                 |              |         |               |     |             |              |            |          |

This page intentionally left blank.

# **APPENDIX E**

# **GEOTECHNICAL LABORATORY REPORTS**

This page intentionally left blank.

Appendix E – Laboratory Test Results

This Page Intentionally Left Blank.

Appendix E.1 – Soil Index Testing

This Page Intentionally Left Blank.



| Mater                              | ial Test                      | Report                                         |                |                             |                            | Project<br>Report                 | No.:<br>lo:                | 11880<br>ASM:FH   | 18-W00338         |
|------------------------------------|-------------------------------|------------------------------------------------|----------------|-----------------------------|----------------------------|-----------------------------------|----------------------------|-------------------|-------------------|
| Client:                            | Strata-G, LLC                 | -                                              |                | CC:                         |                            | This report                       | shall not be repr          | oduced (in part c | or whole) without |
| Project:                           | EMDF Site 7c                  | c Characterization                             | ı              |                             |                            |                                   | constent of:               | Λ                 |                   |
|                                    | Oak Ridge, T                  | ennessee                                       |                |                             |                            | AASH                              |                            | mothy a           | More              |
|                                    |                               |                                                |                |                             |                            | Reviewe                           | а ву. тіпіо                | ITY A. MOOLE      | , JI.             |
| Material                           | Details                       |                                                |                |                             |                            |                                   |                            |                   |                   |
| Source<br>Descriptio<br>Specificat | Geote<br>n Native<br>ion USCS | echnical Drilling S<br>e Existing Materia<br>S | amples<br>I    | Sample<br>Locatic<br>Sampli | ed From<br>on<br>na Method | Split Spo<br>Oak Rid<br>Split Spo | oon<br>ge, Tennesse<br>oon | e                 |                   |
| Sample                             | Details                       |                                                |                |                             |                            |                                   |                            |                   |                   |
| Sample ID                          |                               | FH                                             | 18-W00338-S0 F | H18-W00338-S0 F             | H18-W00338-S0 F            | H18-W00338-S0 F                   | -<br>H18-W00338-S0 F       | H18-W00338-S0     |                   |
| Field Sam                          | ple ID                        |                                                | GW978-SS1      | GW978-SS3                   | GW978-SS4                  | GW978-SS5                         | GW978-SS8                  | GW978-SS9         |                   |
| Date Samp                          | bled                          |                                                | 2/10/2018      | 2/10/2018                   | 2/10/2018                  | 2/10/2018                         | 2/10/2018                  | 2/10/2018         |                   |
| Other Te                           | est Results                   |                                                |                |                             |                            |                                   |                            |                   |                   |
| Descriptio                         | n                             | Method                                         |                |                             | Resi                       | ults                              |                            |                   | Limits            |
| Water Conte                        | ent (%)                       | ASTM D 2216                                    | 21.8           | 19.3                        | 24.0                       | 21.0                              | 11.5                       | 11.7              |                   |
| Method                             |                               |                                                | В              | В                           | В                          | В                                 | В                          | В                 |                   |
| Group Syml                         | loc                           | ASTM D 2487                                    |                |                             | CL                         |                                   |                            |                   |                   |
| Group Nam                          |                               |                                                |                |                             | Sandy lean clay            |                                   |                            |                   | ,                 |
| Material retained                  | 1 on 425µm (No. 40) (%)       | ASTIVI D 4318                                  |                |                             | 12.1                       |                                   |                            |                   |                   |
| Method of F                        | emoval                        |                                                |                |                             | 12.1                       |                                   |                            |                   |                   |
| Grooving To                        | ol Type                       |                                                |                |                             | Metal                      |                                   |                            |                   |                   |
| Specimen p                         | reparation method             |                                                |                |                             | Wet                        |                                   |                            |                   |                   |
| Drying Meth                        | iod                           |                                                |                |                             | Air                        |                                   |                            |                   |                   |
| Special sele                       | ection process                |                                                |                |                             | Quartered                  |                                   |                            |                   |                   |
| Rolling Meth                       | nod for PL                    |                                                |                |                             | Hand                       |                                   |                            |                   |                   |
| As Received V                      | Vater Content (%)             |                                                |                |                             | 24.0                       |                                   |                            |                   |                   |
| Liquid Limit                       | Device Type                   |                                                |                |                             | Manual                     |                                   |                            |                   |                   |
| Liquid Limit                       |                               |                                                |                |                             | 45                         |                                   |                            |                   |                   |
| Plastic Limit                      | t                             |                                                |                |                             | 21                         |                                   |                            |                   |                   |
| Plasticity Inc                     | dex                           |                                                |                |                             | 24                         |                                   |                            |                   |                   |
|                                    | Procedure                     |                                                |                |                             |                            |                                   |                            |                   |                   |
| Method                             | ained While                   | ASTM D 6913                                    |                |                             | Air Dried                  |                                   |                            |                   |                   |
| Group Nam                          |                               |                                                |                |                             | Sandy lean clay            |                                   |                            |                   |                   |
| Group Sym                          | nol                           |                                                |                |                             | CI                         |                                   |                            |                   |                   |
| Composite                          | Sieving Used                  |                                                |                |                             | No                         |                                   |                            |                   |                   |
| Dispersion I                       | Vethod                        |                                                |                |                             | Dispersant by hand         |                                   |                            |                   |                   |
| Drior Tootin                       | n                             |                                                |                |                             | Atterberg limits           |                                   |                            |                   |                   |

Comments



|             |                     |                            |           |                 |                                                         | Fax: (248) 486-5050                 |
|-------------|---------------------|----------------------------|-----------|-----------------|---------------------------------------------------------|-------------------------------------|
| Mater       | rial Te             | est Report                 |           |                 | Project No.:<br>ReportNo:                               | 1188070011-05B<br>ASM:FH18-W00338   |
| Client:     | Strata-G            | , LLC                      |           | CC:             | This report shall not be re<br>the written constent of: | produced (in part or whole) without |
| Project:    | EMDF \$             | Site 7c Characterization   |           |                 |                                                         | 1                                   |
|             | Oak Rid             | lge, Tennessee             |           |                 | AASHID                                                  | Similary a More of                  |
|             |                     |                            |           |                 | Reviewed By: Tim                                        | nothy A. Moore, Jr.                 |
|             | <b>D</b> - ( - '  - |                            |           |                 |                                                         |                                     |
| Materiai    | Details             |                            |           |                 |                                                         |                                     |
| Source      |                     | Geotechnical Drilling Same | ples      | Sampled From    | Split Spoon                                             |                                     |
| Descriptio  | n                   | Native Existing Material   |           | Location        | Oak Ridge, Tennes                                       | see                                 |
| Specificat  | ion                 | USCS                       |           | Sampling Method | Split Spoon                                             |                                     |
| Sample      | Details             |                            |           |                 |                                                         |                                     |
| Sample ID   | )                   | FH18-V                     | /00338-SQ |                 |                                                         |                                     |
| Field Sam   | ple ID              | GW                         | 978-SS1Ó  |                 |                                                         |                                     |
| Date Sam    | pled                | 2/*                        | 10/2018   |                 |                                                         |                                     |
| Other Te    | est Resi            | ılts                       |           |                 |                                                         |                                     |
| Descriptio  | n                   | Method                     |           | Resu            | Its                                                     | Limits                              |
| Water Conte | ent (%)             | ASTM D 2216                | 11.1      |                 |                                                         |                                     |
| Method      |                     |                            | В         |                 |                                                         |                                     |



| Mater                                                                         | rial Te                     | st Re     | eport                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         | Project No.:<br>ReportNo:                                                                                                                        | 118<br>MAT:FH18                                                                                                               | 8070011-05B<br>-W00338-S03 |
|-------------------------------------------------------------------------------|-----------------------------|-----------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Client:                                                                       | Strata-G                    | , LLC     | -                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CC:                       |       |         | This report shall not to                                                                                                                         | pe reproduced (in pa                                                                                                          | rt or whole) without       |
| Project:                                                                      | EMDF S                      | ite 7c Ch | aracteriza                                                 | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |       |         |                                                                                                                                                  | л.                                                                                                                            |                            |
|                                                                               | Oak Rid                     | ge, Tenn  | essee                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         | Reviewed By:                                                                                                                                     | Timothy A. Moo                                                                                                                | a More fr<br>re, Jr.       |
| Sample D                                                                      | etails                      |           |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         | Atterberg L                                                                                                                                      | imit:                                                                                                                         |                            |
| Sample II<br>Field Sam<br>Location<br>Sampled<br>Date Sam<br>Source           | )<br>1ple ID<br>By<br>1pled |           | FH18-V<br>GW978<br>Oak Rid<br>Mike Pa<br>2/10/20<br>Geotec | V00338-S0<br>-SS4<br>dge, Tenne<br>artenio<br>18<br>hnical Drill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )3<br>essee<br>ing Sample | is.   |         | L<br>P<br>Plas                                                                                                                                   | iquid Limit: 4<br>lastic Limit: 2<br>ticity Index: 24                                                                         | 5<br>1<br>4                |
| Material                                                                      |                             |           | Native I                                                   | Existing Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aterial                   | ,0    |         | Sample Des                                                                                                                                       | scription:                                                                                                                    |                            |
| Specifica<br>Sampling<br>Contracto                                            | tion<br>Method<br>or        |           | Split Sp<br>N/A                                            | oon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |       |         | Brown mottle                                                                                                                                     | d sandy lean cla                                                                                                              | ay (CL)                    |
|                                                                               |                             |           |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         | Grading: AS                                                                                                                                      | STM D 6913                                                                                                                    |                            |
| % Pa<br>100 -<br>90 -<br>80 -<br>70 -<br>60 -<br>50 -<br>10 -<br>10 -<br>10 - |                             | 2.36mm    | 2.0mm                                                      | Line of the second seco | 425µm<br>300µm            | 150µm | ZShim   | Drying by:<br>Date Tested:<br>Tested By:<br>Sieve Size<br>3/8in<br>No.4<br>No.8<br>No.10<br>No.16<br>No.30<br>No.40<br>No.50<br>No.100<br>No.200 | Oven<br>2/15/2018<br>David Cook<br>% Passing<br>100.0<br>99.5<br>97.2<br>96.4<br>93.6<br>89.7<br>87.9<br>85.9<br>80.3<br>65.3 | Limits                     |
|                                                                               |                             |           |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         | -                                                                                                                                                |                                                                                                                               |                            |
| COBBLES                                                                       | GRA                         | /EL       | Coaree                                                     | SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fine                      | FINES | (65.3%) | <b>D85:</b> 0.2684                                                                                                                               | <b>D60:</b> N/A                                                                                                               | <b>D50:</b> N/A            |
| (0.0%)                                                                        | (0.0%)                      | (0.5%)    | (3.1%)                                                     | (8.5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (22.6%)                   | Silt  | Clay    | <b> D30:</b> N/A                                                                                                                                 | <b>D15:</b> N/A                                                                                                               | D10: N/A                   |



|          |                               |                                                  | · uxi (= i0) ·                                                                |            |
|----------|-------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------|------------|
| Mate     | rial Test Report              | Project No.: 11880700<br>ReportNo: MAT:FH18-W003 | 11-05B<br>38-S03                                                              |            |
| Client:  | Strata-G, LLC                 | CC:                                              | This report shall not be reproduced (in part or whol the written constent of: | e) without |
| Project: | EMDF Site 7c Characterization |                                                  | A m of an                                                                     | 1          |
|          | Oak Ridge, Tennessee          |                                                  | AASHID<br>ACCERDITATION                                                       | ore h      |

Reviewed By: Timothy A. Moore, Jr.

#### Sample Details

| Sample ID         | FH18-W00338-S03      |
|-------------------|----------------------|
| Field Sample ID   | GW978-SS4            |
| Location          | Oak Ridge, Tennes    |
| Sampled By        | Mike Partenio        |
| Date Sampled      | 2/10/2018            |
| Date Completed    |                      |
| Source            | Geotechnical Drillin |
| Material          | Native Existing Mate |
| Specification     | USCS                 |
| Sampling Method   | Split Spoon          |
| Contractor        | N/A                  |
| Dispersion Method |                      |

GW978-SS4 Oak Ridge, Tennessee Mike Partenio 2/10/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

#### **Other Test Results**

| Description                             | Method      | Result          | Limits |
|-----------------------------------------|-------------|-----------------|--------|
| Water Content (%)                       | ASTM D 2216 | 24.0            |        |
| Method                                  |             | В               |        |
| Date Tested                             |             | 2/15/2018       |        |
| Group Symbol                            | ASTM D 2487 | CL              |        |
| Group Name                              |             | Sandy lean clay |        |
| Date Tested                             |             | 2/20/2018       |        |
| Approximate maximum grain size          | ASTM D 4318 |                 |        |
| Material retained on 425µm (No. 40) (%) |             | 12.1            |        |
| Method of Removal                       |             |                 |        |
| Grooving Tool Type                      |             | Metal           |        |
| Specimen preparation method             |             | Wet             |        |
| Drying Method                           |             | Air             |        |
| Special selection process               |             | Quartered       |        |
| Rolling Method for PL                   |             | Hand            |        |
| As Received Water Content (%)           |             | 24.0            |        |
| Liquid Limit Device Type                |             | Manual          |        |
| Liquid Limit                            |             | 45              |        |
| Plastic Limit                           |             | 21              |        |
| Plasticity Index                        |             | 24              |        |
| Liquid Limit Procedure                  |             | Multipoint (A)  |        |
| Date Tested                             |             | 2/15/2018       |        |
| Method                                  | ASTM D 6913 | Method B        |        |
| Sample Obtained While                   |             | Air-Dried       |        |
| Group Name                              |             | Sandy lean clay |        |
| Group Symbol                            |             | CL              |        |
| Composite Sieving Used                  |             | No              |        |



|                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         | Fax: (248) 486-5050                                                                    |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Mater                                                                                                                                             | rial Test Report                                                                                                                                                                                                                                                                                        | Project No.:         1188070011-05B           ReportNo:         MAT:FH18-W00338-S03    |  |  |  |  |  |  |
| Client:                                                                                                                                           | Strata-G, LLC CC:                                                                                                                                                                                                                                                                                       | This report shall not be reproduced (in part or whole) without the written constent of |  |  |  |  |  |  |
| Project:                                                                                                                                          | EMDF Site 7c Characterization                                                                                                                                                                                                                                                                           | A - A amon A                                                                           |  |  |  |  |  |  |
|                                                                                                                                                   | Oak Ridge, Tennessee                                                                                                                                                                                                                                                                                    | AASHIO multure a moulture                                                              |  |  |  |  |  |  |
|                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         | Reviewed By: Timothy A. Moore, Jr.                                                     |  |  |  |  |  |  |
| Sample D                                                                                                                                          | etails                                                                                                                                                                                                                                                                                                  |                                                                                        |  |  |  |  |  |  |
| Sample IL<br>Field Sam<br>Location<br>Sampled I<br>Date Sam<br>Date Com<br>Source<br>Material<br>Specificat<br>Sampling<br>Contractc<br>Dispersio | J       FH18-W00338-S03         iple ID       GW978-SS4         Oak Ridge, Tennessee         By       Mike Partenio         ipled       2/10/2018         ipleted       Geotechnical Drilling Samples         Native Existing Material       USCS         Method       Split Spoon         or       N/A |                                                                                        |  |  |  |  |  |  |
| Other Tes                                                                                                                                         | at Results                                                                                                                                                                                                                                                                                              |                                                                                        |  |  |  |  |  |  |
| Descriptio<br>Dispersion<br>Prior Testi                                                                                                           | n Method<br>ng                                                                                                                                                                                                                                                                                          | Result     Limits       Dispersant by hand     Atterberg limits                        |  |  |  |  |  |  |



|                                                                 |                                                 |                                               |                                  |                      |                                           |                                                                              |                                           |                                           | Fax: (2                                 | 48) 486-5050           |
|-----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------|----------------------|-------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------|
| Materi                                                          | ial Tes                                         | t Repoi                                       | t                                |                      |                                           |                                                                              | Project<br>ReportN                        | No.:<br>lo:                               | 11880<br>ASM:FH                         | 70011-05B<br>18-W00381 |
| Client:                                                         | Strata-G, L                                     | LC                                            |                                  |                      | CC:                                       | CC: This report shall not be reproduced (in patheet the written constent of: |                                           |                                           | oduced (in part o                       | r whole) without       |
| Project:                                                        | EMDF Site                                       | 7c Characteriz                                | Characterization                 |                      |                                           |                                                                              |                                           |                                           | Λ                                       |                        |
|                                                                 | Oak Ridge                                       | , Tennessee                                   |                                  |                      |                                           |                                                                              | Reviewee                                  | d By: Timot                               | mothy a                                 | More of                |
|                                                                 |                                                 |                                               |                                  |                      |                                           |                                                                              |                                           |                                           | · · ·                                   |                        |
| Material I                                                      | Details                                         |                                               |                                  |                      |                                           |                                                                              |                                           |                                           |                                         |                        |
| Source                                                          | G                                               | eotechnical Drilli                            | ng Samples                       |                      | Sample                                    | d From                                                                       | Split Spo                                 | on<br>T                                   |                                         |                        |
| Specificatio                                                    | n Na<br>Din Ui                                  | nified Soil Classi                            | iterial<br>fication Syste        | em                   | Locatio<br>Samplii                        | n<br>ng Method                                                               | Split Spoon                               |                                           |                                         |                        |
| Sample D                                                        | Details                                         |                                               |                                  |                      |                                           |                                                                              |                                           |                                           |                                         |                        |
| Sample ID<br>Field Samp<br>Date Sampl                           | le ID<br>led                                    |                                               | FH18-W0038<br>GW980-3<br>2/13/20 | 1-S0 F<br>SS2<br>018 | H18-W00381-S0 F<br>GW980-SS3<br>2/13/2018 | H18-W00381-S0 F<br>GW980-SS4<br>2/13/2018                                    | H18-W00381-S0 F<br>GW980-SS6<br>2/13/2018 | H18-W00381-S0 F<br>GW980-SS8<br>2/13/2018 | H18-W00381-S0<br>GW980-SS9<br>2/13/2018 |                        |
| Particle S                                                      | Size Distr                                      | ibution                                       |                                  |                      |                                           |                                                                              |                                           |                                           |                                         |                        |
| Method:<br>ASTM D 422<br>Description                            | 2                                               | Sieve Si<br>1½in (37<br>1in (25.0             | <b>ze</b><br>(.5mm)<br>(mm)      | 100<br>91<br>83      |                                           | % Pa                                                                         | assing                                    |                                           |                                         | Limits                 |
| Analysis of P<br>Distribution ir<br>Particles >75<br>Drying by: | article Size<br>n Soils. Sievin<br>5μm, Hydrome | g for 3/8in (9.3<br>ter No.4 (4.7<br>No.10 (2 | 5mm)<br>5mm)<br>75mm)<br>0mm)    | 74<br>55<br>40       |                                           |                                                                              |                                           |                                           |                                         |                        |
| oven                                                            |                                                 | 110.40 (4                                     | zoμin)                           | 51                   |                                           |                                                                              |                                           |                                           |                                         |                        |

### **Other Test Results**

Washed:

Sample Washed

No.100

No.200 (75µm)

27

23

| Description                             | Method            |                       |                 | Results | 6    |      |      | Limits |
|-----------------------------------------|-------------------|-----------------------|-----------------|---------|------|------|------|--------|
| Water Content (%)                       | ASTM D 2216       | 13.8                  | 15.1            | 15.0    | 12.6 | 14.5 | 10.2 |        |
| Method                                  |                   | В                     | В               | В       | В    | В    | В    |        |
| Dispersion device                       | ASTM D 422 Disper | sion Cup and<br>Mixer |                 |         |      |      |      |        |
| Dispersion time (min)                   |                   | 1                     |                 |         |      |      |      |        |
| Shape                                   |                   |                       |                 |         |      |      |      |        |
| Hardness                                |                   |                       |                 |         |      |      |      |        |
| Approximate maximum grain size          | ASTM D 4318       |                       |                 |         |      |      |      |        |
| Material retained on 425µm (No. 40) (%) |                   |                       |                 |         |      |      |      |        |
| Method of Removal                       |                   |                       |                 |         |      |      |      |        |
| Grooving Tool Type                      |                   |                       | Plastic         |         |      |      |      |        |
| Specimen preparation method             |                   |                       | Wet             |         |      |      |      |        |
| Drying Method                           |                   |                       | Air             |         |      |      |      |        |
| Special selection process               |                   | (                     | Quartering      |         |      |      |      |        |
| Rolling Method for PL                   |                   |                       | Hand            |         |      |      |      |        |
| As Received Water Content (%)           |                   |                       | 15.1            |         |      |      |      |        |
| Liquid Limit Device Type                |                   |                       | Manual          |         |      |      |      |        |
| Liquid Limit                            |                   |                       | N/A             |         |      |      |      |        |
| Plastic Limit                           |                   |                       | NP              |         |      |      |      |        |
| Plasticity Index                        |                   |                       | NP              |         |      |      |      |        |
| Liquid Limit Procedure                  |                   | Ν                     | /lultipoint (A) |         |      |      |      |        |
| •                                       |                   |                       |                 |         |      |      |      |        |
| Comments                                |                   |                       |                 |         |      |      |      |        |
|                                         |                   |                       |                 |         |      |      |      |        |
| INP = NOTI Plasuc                       |                   |                       |                 |         |      |      |      |        |
|                                         |                   |                       | F 10            |         |      |      |      |        |
|                                         |                   |                       | E-12            |         |      |      |      |        |



| Mate     | rial Test Report              | Project No.:         1188070011-0           ReportNo:         ASM:FH18-W003 |                                                                                      |
|----------|-------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Client:  | Strata-G, LLC                 | CC:                                                                         | This report shall not be reproduced (in part or whole) with the written constent of: |
| Project: | EMDF Site 7c Characterization |                                                                             |                                                                                      |
|          | Oak Ridge, Tennessee          |                                                                             | AASHID Samethy a Moore                                                               |
|          |                               |                                                                             | Reviewed By: Timothy A. Moore, Jr.                                                   |
| Materia  | I Details                     |                                                                             |                                                                                      |
| Source   | Geotechnical Drilling Samples | Sampled From                                                                | Split Spoon                                                                          |

| Source<br>Description<br>Specification<br>Sample Details | Geotechnical Drilling S<br>Native Existing Materia<br>USCS | Samples<br>al                            | Sample<br>Locatio<br>Sampli                 | ed From<br>on<br>ng Method               | Split Spoon<br>Oak Ridge, Tennessee<br>Split Spoon |        |
|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|----------------------------------------------------|--------|
| Sample ID<br>Field Sample ID<br>Date Sampled             | FI                                                         | H18-W00381-S0<br>GW980-SS10<br>2/13/2018 | FH18-W00381-S0 F<br>GW980-SS12<br>2/13/2018 | H18-W00381-S0<br>GW980-SS13<br>2/13/2018 |                                                    |        |
| Other Test Resu                                          | ilts                                                       |                                          |                                             |                                          |                                                    |        |
| Description<br>Water Content (%)<br>Method               | Method<br>ASTM D 2216                                      | 4.3<br>B                                 | 11.7<br>B                                   | <b>Resu</b><br>12.3<br>B                 | ults                                               | Limits |



|                       |                                     |                                                                |                               | Project No.:                                                   | 11880                                      | 70011-05B                              |
|-----------------------|-------------------------------------|----------------------------------------------------------------|-------------------------------|----------------------------------------------------------------|--------------------------------------------|----------------------------------------|
| Mater                 | ial Test R                          | eport                                                          |                               | ReportNo:                                                      | MAT:FH18-W                                 | 00381-S01                              |
| Client:               | Strata-G, LLC                       |                                                                | CC:                           | This report shall not b<br>the written constent o              | e reproduced (in part or<br>f:             | whole) without                         |
| Project:              | EMDF Site 7c Ch                     | aracterization                                                 |                               |                                                                | 1                                          |                                        |
|                       | Oak Ridge, Tenr                     | iessee                                                         |                               |                                                                | Simothy a.                                 | Morely                                 |
|                       |                                     |                                                                |                               | Reviewed By:                                                   | Timothy A Moore                            | lr.                                    |
| Semple D              | otoilo                              |                                                                |                               | Reviewed By.                                                   |                                            | 01.                                    |
| Sample ID             | elans                               |                                                                |                               |                                                                |                                            |                                        |
| Field Sam             | ple ID                              | GW980-SS2                                                      |                               |                                                                |                                            |                                        |
| Location<br>Sampled E | Зv                                  | Oak Ridge, Tennessee<br>Mike Partenio                          |                               |                                                                |                                            |                                        |
| Date Sam              | pled                                | 2/13/2018                                                      |                               |                                                                |                                            |                                        |
| Source<br>Material    |                                     | Native Existing Material                                       | nples                         | Sample Des                                                     | cription.                                  |                                        |
| Specificat            | ion<br>Mothod                       | Unified Soil Classification                                    | n System                      | Brown silty sa                                                 | and with gravel (SN                        | 1)                                     |
| Contracto             | r                                   | N/A                                                            |                               |                                                                |                                            | -,                                     |
|                       |                                     |                                                                |                               |                                                                |                                            |                                        |
| Particle S            | ize Distribution                    |                                                                |                               | Grading: AS                                                    | TM D 422                                   |                                        |
|                       |                                     |                                                                |                               | Drying by:<br>Date Tested:                                     | Oven<br>2/28/2018                          |                                        |
|                       |                                     |                                                                |                               | Tested By:                                                     | Sheila Bowers                              |                                        |
| % Pas                 | ssing                               |                                                                |                               |                                                                |                                            |                                        |
|                       | $\mathbf{\lambda}$                  |                                                                |                               | Sieve Size                                                     | % Passing<br>100                           | Limits                                 |
| 90                    | /                                   |                                                                |                               | 1in                                                            | 91                                         |                                        |
| 80                    | /                                   |                                                                |                               | 3/8in                                                          | 83<br>74                                   |                                        |
| 70 - · ·              | ·····                               |                                                                | •••••                         | No.4                                                           | 55<br>40                                   |                                        |
| 60                    | ····· /···                          | •••••••••••••••••••••••••                                      | *****                         | No.40                                                          | 31                                         |                                        |
| 50 - + -              | ·····/                              | •••••••                                                        |                               | No.100<br>No.200                                               | 27<br>23                                   |                                        |
| 40                    |                                     |                                                                |                               | 28.9 μm                                                        | 13.4                                       |                                        |
| 30 - + -              |                                     |                                                                |                               | 11.6 µm                                                        | 8.1                                        |                                        |
| 20                    |                                     |                                                                |                               | 8.3 μm<br>6.0 μm                                               | 7.3<br>5.9                                 |                                        |
| 10                    |                                     |                                                                |                               | 3.0 µm                                                         | 4.5                                        |                                        |
| ot                    |                                     |                                                                |                               |                                                                | 2.1                                        |                                        |
|                       | 1½in<br>1in<br>½in<br>3/8in<br>No.4 | No.10<br>No.40<br>Io.100<br>Io.200                             | 3 µm<br>3 µm<br>3 µm          |                                                                |                                            |                                        |
|                       |                                     | z z 🕺<br>Sieve                                                 | 2 E 8 F                       |                                                                |                                            |                                        |
|                       |                                     |                                                                |                               |                                                                |                                            |                                        |
| COBBLES               | GRAVEL                              | SAND                                                           | FINES                         |                                                                | <b>D00</b> . 5 7005 -                      |                                        |
| (0.0%)                | Coarse Fine<br>(12.8%) (32.2%)      | Coarse<br>(15.0%)         Medium<br>(9.0%)         Fin<br>(8.0 | e Silt Cla<br>%) (17.6%) (5.4 | <b>D35:</b> 14.8651<br><b>D30:</b> 0.3276<br><b>Cu:</b> 341.34 | D60: 5.7005 D<br>D15: 0.0339 D<br>Cc: 1.13 | <b>50:</b> 3.5602<br><b>10:</b> 0.0167 |



|                                                                                                                                                 |                                                                    |                                                                                                                                                                                                             |                                                            | Fax: (248) 486-5050                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|
| Mater                                                                                                                                           | rial Tes                                                           | st Report                                                                                                                                                                                                   | Project No.:<br>ReportNo: M/                               | 1188070011-05B<br>AT:FH18-W00381-S01 |
| Client:                                                                                                                                         | Strata-G, I                                                        | LC <b>CC</b> :                                                                                                                                                                                              | This report shall not be repro<br>the written constent of: | duced (in part or whole) without     |
| Project:                                                                                                                                        | EMDF Sit                                                           | e 7c Characterization                                                                                                                                                                                       |                                                            |                                      |
|                                                                                                                                                 | Oak Ridge                                                          | e, Tennessee                                                                                                                                                                                                |                                                            | insthey a More of                    |
|                                                                                                                                                 |                                                                    |                                                                                                                                                                                                             | Reviewed By: Timoth                                        | וא A. Moore, Jr.                     |
| Sample D                                                                                                                                        | etails                                                             |                                                                                                                                                                                                             |                                                            |                                      |
| Sample II<br>Field Sam<br>Location<br>Sampled<br>Date Sam<br>Date Com<br>Source<br>Material<br>Specificat<br>Sampling<br>Contracto<br>Dispersio | D<br>pple ID<br>pled<br>pleted<br>tion<br>Method<br>or<br>n Method | FH18-W00381-S01<br>GW980-SS2<br>Oak Ridge, Tennessee<br>Mike Partenio<br>2/13/2018<br>Geotechnical Drilling Samples<br>Native Existing Material<br>Unified Soil Classification System<br>Split Spoon<br>N/A |                                                            |                                      |
| Other Tes                                                                                                                                       | st Results                                                         |                                                                                                                                                                                                             |                                                            |                                      |
| Descriptio                                                                                                                                      | on                                                                 | Method                                                                                                                                                                                                      | Result                                                     | Limits                               |
| VVater Con                                                                                                                                      | itent (%)                                                          | ASTM D 2216                                                                                                                                                                                                 | 13.8                                                       |                                      |
| Date Testa                                                                                                                                      | he                                                                 |                                                                                                                                                                                                             | B<br>2/26/2018                                             |                                      |
| Dispersion                                                                                                                                      | u device                                                           | ASTM D 422                                                                                                                                                                                                  | Dispersion Cup and Mixer                                   |                                      |
| Dispersion<br>Shape<br>Hardness                                                                                                                 | time (min)                                                         |                                                                                                                                                                                                             | 1                                                          |                                      |



| Mater                               | ial Tes                                   | t Report                                               |                                                      |                                          |                                                        | Project<br>Report                      | t No.:<br>No:                               | 1188<br>ASM:FF                           | 070011-05E<br>118-W00342 |
|-------------------------------------|-------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------|--------------------------------------------------------|----------------------------------------|---------------------------------------------|------------------------------------------|--------------------------|
| Client:                             | Strata-G, L                               | LC                                                     |                                                      | CC:                                      |                                                        | This report                            | t shall not be rep                          | oduced (in part o                        | or whole) without        |
| Project:                            | EMDF Site                                 | • 7c Characterizatic                                   | 'n                                                   |                                          |                                                        |                                        |                                             |                                          |                          |
|                                     | Oak Ridge                                 | , Tennessee                                            |                                                      |                                          |                                                        |                                        |                                             | thy A Moore                              | More A                   |
|                                     | Detelle                                   |                                                        |                                                      |                                          |                                                        |                                        |                                             |                                          |                          |
| Material                            | Details                                   |                                                        | <u> </u>                                             | <u> </u>                                 | · -                                                    | 0 114 0                                |                                             |                                          |                          |
| Source<br>Descriptio<br>Specificati | n Na<br>ion U                             | eotechnical Drilling S<br>ative Existing Materi<br>SCS | Samples<br>al                                        | Sample<br>Locatio<br>Sampli              | ed From<br>on<br>ing Method                            | Split Sp<br>Oak Rid<br>Split Sp        | ooon<br>dge, Tennesse<br>ooon               | e                                        |                          |
| Sample                              | Details                                   |                                                        |                                                      |                                          |                                                        |                                        |                                             |                                          |                          |
| Sample ID<br>Field Sam<br>Date Samp | ple ID<br>bled                            | FI                                                     | H18-W00342-S0 F<br>GW982-SS <sup>1</sup><br>2/7/2018 | H18-W00342-S0 F<br>GW982-SS3<br>2/7/2018 | <sup>FH18-W00342-S0 F<br/>GW982-SS4<br/>2/7/2018</sup> | H18-W00342-S0<br>GW982-SS5<br>2/7/2018 | FH18-W00342-S0 I<br>GW982-SSຄົ້<br>2/7/2018 | FH18-W00342-S0<br>GW982-SS10<br>2/7/2018 |                          |
| Other Te                            | est Result                                | S                                                      |                                                      |                                          |                                                        |                                        |                                             |                                          |                          |
| Descriptio                          | n                                         | Method                                                 |                                                      |                                          | Resi                                                   | ilts                                   |                                             |                                          | Limits                   |
| Water Conte<br>Method               | ent (%)                                   | ASTM D 2216                                            | 11.0<br>B                                            | 13.1<br>B                                | 12.5<br>В                                              | 12.3<br>B                              | 13.9<br>B                                   | 10.8<br>B                                |                          |
| Group Symbol<br>Group Name          | ool<br>e                                  | ASTM D 2487                                            |                                                      |                                          |                                                        | CL<br>Sandy lean clay                  |                                             |                                          |                          |
| Approximate m<br>Material retained  | naximum grain size<br>1 on 425µm (No. 40) | ASTM D 4318                                            | ł                                                    |                                          |                                                        | 28.3                                   |                                             |                                          |                          |
| Method of R<br>Grooving To          | Removal<br>ool Type                       |                                                        |                                                      |                                          |                                                        | Metal                                  |                                             |                                          |                          |
| Specimen p                          | reparation meth                           | nod                                                    |                                                      |                                          |                                                        | Wet                                    |                                             |                                          |                          |
| Drying Meth                         | od                                        |                                                        |                                                      |                                          |                                                        | Air                                    |                                             |                                          |                          |
| Special sele                        | ection process                            |                                                        |                                                      |                                          |                                                        | Quartered                              |                                             |                                          |                          |
| Rolling Meth                        | nod for PL                                |                                                        |                                                      |                                          |                                                        | Hand                                   |                                             |                                          |                          |
| As Received w                       |                                           |                                                        |                                                      |                                          |                                                        | IZ.3<br>Manual                         |                                             |                                          |                          |
| Liquid Limit                        | Device Type                               |                                                        |                                                      |                                          |                                                        | 33                                     |                                             |                                          |                          |
| Plastic Limit                       | ł                                         |                                                        |                                                      |                                          |                                                        | 23                                     |                                             |                                          |                          |
| Plasticity Inc                      | dex                                       |                                                        |                                                      |                                          |                                                        | 10                                     |                                             |                                          |                          |
| Liquid Limit                        | Procedure                                 |                                                        |                                                      |                                          |                                                        | Multipoint (A)                         |                                             |                                          |                          |
| Method                              |                                           | ASTM D 6913                                            | 1                                                    |                                          |                                                        | Method B                               | Method B                                    |                                          |                          |
| Sample Obt                          | ained While                               |                                                        |                                                      |                                          |                                                        | Air-Dried                              | Air-Dried                                   |                                          |                          |
| Group Name                          | e                                         |                                                        |                                                      |                                          |                                                        | Sandy lean clay                        | N/A                                         |                                          |                          |
| Group Symb                          | loc                                       |                                                        |                                                      |                                          |                                                        | CL                                     | N/A                                         |                                          |                          |
| Composite S                         | Sieving Used                              |                                                        |                                                      |                                          |                                                        | No                                     | No                                          |                                          |                          |
| Dispersion N                        | Vethod                                    |                                                        |                                                      |                                          |                                                        | Dispersant by hand                     | Dispersant by hand                          |                                          |                          |
| Prior Testing                       | g                                         |                                                        |                                                      |                                          |                                                        | Atterberg limits                       | Atterberg limits                            |                                          |                          |

Comments



|                                      |                         |                                                           |                                        |                                           |                                            |                                          |                                          | Fax: (248) 486-5050               |
|--------------------------------------|-------------------------|-----------------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|
| Mater                                | ial Tes                 | t Report                                                  |                                        |                                           |                                            | Project<br>Report                        | No.:<br>No:                              | 1188070011-05B<br>ASM:FH18-W00342 |
| Client:                              | Strata-G, L             | LC                                                        |                                        | CC:                                       |                                            | This report                              | shall not be reproc                      | luced (in part or whole) without  |
| Project:                             | EMDF Site               | • 7c Characterization                                     | 1                                      |                                           |                                            |                                          |                                          |                                   |
|                                      | Oak Ridge               | , Tennessee                                               |                                        |                                           |                                            |                                          |                                          | methy a More of                   |
|                                      |                         |                                                           |                                        |                                           |                                            | Reviewe                                  |                                          |                                   |
| Material                             | Details                 |                                                           |                                        |                                           |                                            |                                          |                                          |                                   |
| Source<br>Description<br>Specificati | י <b>n</b> Na<br>ion U  | eotechnical Drilling Sa<br>ative Existing Material<br>SCS | mples                                  | Sample<br>Locatio<br>Sampl                | ed From<br>on<br>ing Method                | Split Sp<br>Oak Rid<br>Split Sp          | oon<br>lge, Tennessee<br>oon             |                                   |
| Sample                               | Details                 |                                                           |                                        |                                           |                                            |                                          |                                          |                                   |
| Sample ID<br>Field Samp<br>Date Samp | ple ID<br>pled          | FH1<br>G                                                  | 8-W00342-S0 F<br>W982-SS13<br>2/7/2018 | H18-W00342-S0 F<br>GW982-SS16<br>2/8/2018 | FH18-W00342-S0 F<br>GW982-SS18<br>2/8/2018 | -H18-W00342-S1<br>GW982-SS21<br>2/8/2018 | FH18-W00342-S1<br>GW982-SS23<br>2/8/2018 |                                   |
| Other Te                             | est Result              | 5                                                         |                                        |                                           |                                            |                                          |                                          |                                   |
| Description                          | n                       | Method                                                    |                                        |                                           | Res                                        | ults                                     |                                          | Limits                            |
| Water Conte<br>Method                | ent (%)                 | ASTM D 2216                                               | 11.9<br>B                              | 4.7<br>B                                  | 8.9<br>B                                   | 7.0<br>B                                 | 5.5<br>B                                 |                                   |
| Group Symb                           | loc                     | ASTM D 2487                                               |                                        |                                           |                                            | SC<br>Clavey sand                        |                                          |                                   |
| Approximate m                        | e<br>naximum grain size | ASTM D 4318                                               |                                        |                                           |                                            | Clayey Sana                              |                                          |                                   |
| Material retained                    | i on 425µm (No. 40) (   | .%)                                                       |                                        |                                           |                                            | 54.5                                     |                                          |                                   |
| Grooving To                          | centoval<br>col Type    |                                                           |                                        |                                           |                                            | Metal                                    |                                          |                                   |
| Specimen pr                          | reparation meth         | nod                                                       |                                        |                                           |                                            | Wet                                      |                                          |                                   |
| Drying Meth                          | iod                     |                                                           |                                        |                                           |                                            | Air                                      |                                          |                                   |
| Special sele                         | ction process           |                                                           |                                        |                                           |                                            | Quartereo<br>Hand                        |                                          |                                   |
| As Received W                        | Vater Content (%)       |                                                           |                                        |                                           |                                            | 7.0                                      |                                          |                                   |
| Liquid Limit                         | Device Type             |                                                           |                                        |                                           |                                            | Manual                                   |                                          |                                   |
| Liquid Limit                         |                         |                                                           |                                        |                                           |                                            | 28                                       |                                          |                                   |
| Plastic Limit                        | t                       |                                                           |                                        |                                           |                                            | 19                                       |                                          |                                   |
| Plasticity Inc                       | Jex                     |                                                           |                                        |                                           |                                            | 9                                        |                                          |                                   |
|                                      | Procedure               |                                                           |                                        |                                           |                                            | Multipoint (A)                           |                                          |                                   |
| Methou<br>Sample Obt                 | cined While             | ASTNI D 0913                                              |                                        |                                           |                                            |                                          |                                          |                                   |
| Group Name                           |                         |                                                           |                                        |                                           |                                            | Clavev sand                              |                                          |                                   |
| Group Symt                           | bol                     |                                                           |                                        |                                           |                                            | SC                                       |                                          |                                   |
| Composite S                          | Sieving Used            |                                                           |                                        |                                           |                                            | No                                       |                                          |                                   |
| Dispersion N                         | Method                  |                                                           |                                        |                                           |                                            | Dispersant by hand                       |                                          |                                   |
| Prior Testino                        | g                       |                                                           |                                        |                                           |                                            | Atterberg limits                         |                                          |                                   |



| Mater                                                                 | ial Test R                   | Report                                                              |                                                        |                                       |                      |               | Project No.:<br>ReportNo:                                           | 118<br>MAT:FH18-                                             | 8070011-05B<br>W00342-S04 |
|-----------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------|----------------------|---------------|---------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|
| Client:                                                               | Strata-G, LLC                |                                                                     |                                                        | CC:                                   |                      |               | This report shall not to                                            | be reproduced (in par                                        | t or whole) without       |
| Project:                                                              | EMDF Site 7c C               | haracterizatio                                                      | 'n                                                     |                                       |                      |               |                                                                     | 1                                                            |                           |
|                                                                       | Oak Ridge, Ter               | inessee                                                             |                                                        |                                       |                      |               | Reviewed By:                                                        | Timothy A. Moor                                              | a More //<br>re, Jr.      |
| Sample D                                                              | etails                       |                                                                     |                                                        |                                       |                      |               | Atterberg L                                                         | imit:                                                        |                           |
| Sample ID<br>Field Sam<br>Location<br>Sampled I<br>Date Sam<br>Source | ple ID<br>3y<br>pled         | FH18-W0<br>GW982-S<br>Oak Ridg<br>Mike Part<br>2/7/2018<br>Geotechr | 00342-S04<br>SS5<br>e, Tennes<br>enio<br>nical Drillin | see<br>g Sample                       | ·S                   |               | L<br>P<br>Plas                                                      | iquid Limit: 33<br>lastic Limit: 23<br>ticity Index: 10      |                           |
| Material                                                              |                              | Native Ex                                                           | sisting Mat                                            | erial                                 | .0                   |               | Sample Des                                                          | cription:                                                    |                           |
| Specificat<br>Sampling<br>Contracto                                   | ion<br>Method<br>r           | Split Spoo<br>N/A                                                   | on                                                     |                                       |                      |               | Brown sandy                                                         | lean clay (CL)                                               |                           |
|                                                                       |                              |                                                                     |                                                        |                                       |                      |               | Grading: AS                                                         | STM D 6913                                                   |                           |
| % Pas<br>100                                                          | ssing                        |                                                                     |                                                        | ********                              |                      |               | Drying by:<br>Date Tested:<br>Tested By:<br>Sieve Size<br>3/8in     | Oven<br>2/15/2018<br>David Cook<br><b>% Passing</b><br>100.0 | Limits                    |
| 80<br>80<br>60<br>50                                                  |                              |                                                                     | <u> </u>                                               | · · · · · · · · · · · · · · · · · · · | /                    |               | No.4<br>No.8<br>No.10<br>No.16<br>No.30<br>No.40<br>No.50<br>No.100 | 91.0<br>90.0<br>83.3<br>75.0<br>71.7<br>68.4<br>61.1         |                           |
| 40 + · · · · · · · · · · · · · · · · · ·                              |                              | *************                                                       | ·····                                                  | <br>                                  | ••••••••••<br>•••••• | · · · · · · · | 100.200                                                             | 50.6                                                         |                           |
| 10 - • •                                                              |                              | *******                                                             |                                                        |                                       |                      |               |                                                                     |                                                              |                           |
| 0                                                                     | 9.5mm -<br>4.75mm -          | 2.36mm +<br>2.0mm +<br>1.18mm +                                     | 600µm -<br>425µm -                                     | 300µm -                               | 150µm -              | 75µm          |                                                                     |                                                              |                           |
| COBBLES                                                               | GRAVEL                       |                                                                     | SAND                                                   |                                       | FINES                | (50.8%)       |                                                                     | <b>D00</b> : 0 1000                                          |                           |
| (0.0%)                                                                | Coarse Fine<br>(0.0%) (2.2%) | Coarse<br>(7.8%)                                                    | Medium<br>(18.3%)                                      | Fine<br>(20.9%)                       | Silt                 | Clay          | <b>D30:</b> N/A                                                     | D60: 0.1393<br>D15: N/A                                      | D50: N/A<br>D10: N/A      |



|          |                               |     |                                            | (=)                                          |
|----------|-------------------------------|-----|--------------------------------------------|----------------------------------------------|
| Mate     | rial Test Report              |     | Project No.:<br>ReportNo:                  | 1188070011-05B<br>MAT:FH18-W00342-S04        |
| Client:  | Strata-G, LLC                 | CC: | This report shall not the written constent | be reproduced (in part or whole) without of: |
| Project: | EMDF Site 7c Characterization |     |                                            | and man A                                    |
|          | Oak Ridge, Tennessee          |     | AASHID                                     | Simothy a More of                            |
|          |                               |     | Reviewed By:                               | Timothy A. Moore, Jr.                        |

### Sample Details

| Sample ID         |
|-------------------|
| Field Sample ID   |
| Location          |
| Sampled By        |
| Date Sampled      |
| Date Completed    |
| Source            |
| Material          |
| Specification     |
| Sampling Method   |
| Contractor        |
| Dispersion Method |

FH18-W00342-S04 GW982-SS5 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

#### **Other Test Results**

| Description                             | Method      | Result          | Limits |
|-----------------------------------------|-------------|-----------------|--------|
| Water Content (%)                       | ASTM D 2216 | 12.3            |        |
| Method                                  |             | В               |        |
| Date Tested                             |             | 2/15/2018       |        |
| Group Symbol                            | ASTM D 2487 | CL              |        |
| Group Name                              |             | Sandy lean clay |        |
| Date Tested                             |             | 2/20/2018       |        |
| Approximate maximum grain size          | ASTM D 4318 |                 |        |
| Material retained on 425µm (No. 40) (%) |             | 28.3            |        |
| Method of Removal                       |             |                 |        |
| Grooving Tool Type                      |             | Metal           |        |
| Specimen preparation method             |             | Wet             |        |
| Drying Method                           |             | Air             |        |
| Special selection process               |             | Quartered       |        |
| Rolling Method for PL                   |             | Hand            |        |
| As Received Water Content (%)           |             | 12.3            |        |
| Liquid Limit Device Type                |             | Manual          |        |
| Liquid Limit                            |             | 33              |        |
| Plastic Limit                           |             | 23              |        |
| Plasticity Index                        |             | 10              |        |
| Liquid Limit Procedure                  |             | Multipoint (A)  |        |
| Date Tested                             |             | 2/15/2018       |        |
| Method                                  | ASTM D 6913 | Method B        |        |
| Sample Obtained While                   |             | Air-Dried       |        |
| Group Name                              |             | Sandy lean clay |        |
| Group Symbol                            |             | CL              |        |
| Composite Sieving Used                  |             | No              |        |



|                                                                                                                                                                                       |                                                                                                                                                                              |                                       | Fax: (248) 486-5100                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|
| Material Te                                                                                                                                                                           | st Report                                                                                                                                                                    | Project No.:<br>ReportNo:             | 1188070011-05B<br>MAT:FH18-W00342-S04    |
| Client: Strata-G,                                                                                                                                                                     | LLC CC:                                                                                                                                                                      | This report shall not                 | be reproduced (in part or whole) without |
| Project: EMDF S<br>Oak Rid                                                                                                                                                            | ite 7c Characterization<br>ge, Tennessee                                                                                                                                     |                                       | Simility a More J                        |
|                                                                                                                                                                                       |                                                                                                                                                                              | Reviewed By:                          | Timothy A. Moore, Jr.                    |
| Sample Details                                                                                                                                                                        |                                                                                                                                                                              |                                       |                                          |
| Sample ID<br>Field Sample ID<br>Location<br>Sampled By<br>Date Sampled<br>Date Completed<br>Source<br>Material<br>Specification<br>Sampling Method<br>Contractor<br>Dispersion Method | FH18-W00342-S04<br>GW982-SS5<br>Oak Ridge, Tennessee<br>Mike Partenio<br>2/7/2018<br>Geotechnical Drilling Samples<br>Native Existing Material<br>USCS<br>Split Spoon<br>N/A |                                       |                                          |
| Other Test Results                                                                                                                                                                    |                                                                                                                                                                              | _                                     |                                          |
| Description Dispersion Method Prior Testing                                                                                                                                           | Method                                                                                                                                                                       | Re<br>Dispersant by h<br>Atterberg li | i <b>sult Limits</b><br>nand<br>imits    |
|                                                                                                                                                                                       |                                                                                                                                                                              |                                       |                                          |



| Mater                                                                 | ial Test R                   | eport                                                                                      |                                  |               | Project No.:<br>ReportNo:                                                                                   | 1188<br>MAT:FH18-                                                                                  | 3070011-05B<br>W00342-S05             |
|-----------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|---------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|
| Client:                                                               | Strata-G, LLC                |                                                                                            | CC:                              |               | This report shall not b                                                                                     | e reproduced (in part                                                                              | or whole) without                     |
| Project:                                                              | EMDF Site 7c Ch              | aracterization                                                                             |                                  |               |                                                                                                             |                                                                                                    |                                       |
|                                                                       | Oak Ridge, Tenr              | nessee                                                                                     |                                  |               | Reviewed By:                                                                                                | Simethy C<br>Timothy A. Moor                                                                       | More fr<br>e, Jr.                     |
| Sample D                                                              | etails                       |                                                                                            |                                  |               |                                                                                                             |                                                                                                    |                                       |
| Sample ID<br>Field Sam<br>Location<br>Sampled I<br>Date Sam<br>Source | )<br>ple ID<br>By<br>pled    | FH18-W00342-<br>GW982-SS8<br>Oak Ridge, Ten<br>Mike Partenio<br>2/7/2018<br>Geotechnical D | S05<br>nessee<br>rilling Samples |               |                                                                                                             |                                                                                                    |                                       |
| Material                                                              | lion                         | Native Existing                                                                            | Material                         |               | Sample Des                                                                                                  | cription:                                                                                          |                                       |
| Sampling<br>Contracto                                                 | Method<br>or                 | Split Spoon<br>N/A                                                                         |                                  |               | Dark brown c<br>shale                                                                                       | layey sand with i                                                                                  | unweathered                           |
| Destinte O                                                            |                              |                                                                                            |                                  |               | Grading: AS                                                                                                 | TM D 6913                                                                                          |                                       |
| % Par                                                                 |                              |                                                                                            |                                  |               | Drying by:<br>Date Tested:<br>Tested By:                                                                    | Oven<br>2/15/2018<br>David Cook                                                                    |                                       |
| 100                                                                   | 9.5mm                        | Sieve                                                                                      | 425µm<br>300µm                   | 75hm          | Sieve Size<br>½in<br>3/8in<br>No.4<br>No.8<br>No.10<br>No.16<br>No.30<br>No.40<br>No.50<br>No.100<br>No.200 | % Passing<br>100.0<br>98.6<br>95.2<br>91.2<br>90.4<br>87.5<br>83.2<br>81.0<br>77.1<br>44.4<br>29.3 | Limits                                |
| COBBLES                                                               | GRAVEL                       | SAND                                                                                       | )                                | FINES (29.3%) |                                                                                                             | <b>Dea</b> : 0.0000                                                                                | <b>DE0</b> : 0 1000                   |
| (0.0%)                                                                | Coarse Fine<br>(0.0%) (4.8%) | Coarse Medium<br>(4.8%) (9.4%                                                              | m Fine<br>) (51.7%)              | Silt Clay     | <b>D30:</b> 0.0774                                                                                          | 0.2088 D15: N/A                                                                                    | <b>D50:</b> 0.1689<br><b>D10:</b> N/A |



|          |                               |     |                                            | (=)                                          |
|----------|-------------------------------|-----|--------------------------------------------|----------------------------------------------|
| Mate     | rial Test Report              |     | Project No.:<br>ReportNo:                  | 1188070011-05B<br>MAT:FH18-W00342-S05        |
| Client:  | Strata-G, LLC                 | CC: | This report shall not the written constent | be reproduced (in part or whole) without of: |
| Project: | EMDF Site 7c Characterization |     |                                            | A man A                                      |
|          | Oak Ridge, Tennessee          |     | AASHID                                     | Similary a Moore of                          |
|          |                               |     | Reviewed By:                               | Timothy A. Moore, Jr.                        |

### Sample Details

| Sample ID         | FH18-W00342-S05       |
|-------------------|-----------------------|
| Field Sample ID   | GW982-SS8             |
| Location          | Oak Ridge, Tennes     |
| Sampled By        | Mike Partenio         |
| Date Sampled      | 2/7/2018              |
| Date Completed    |                       |
| Source            | Geotechnical Drilling |
| Material          | Native Existing Mate  |
| Specification     | USCS                  |
| Sampling Method   | Split Spoon           |
| Contractor        | N/A                   |
| Dispersion Method |                       |

82-SS8 Ridge, Tennessee Partenio 018 echnical Drilling Samples e Existing Material S Spoon

#### **Other Test Results**

| Description            | Method      | Result             | Limits |
|------------------------|-------------|--------------------|--------|
| Water Content (%)      | ASTM D 2216 | 13.9               |        |
| Method                 |             | В                  |        |
| Date Tested            |             | 2/15/2018          |        |
| Method                 | ASTM D 6913 | Method B           |        |
| Sample Obtained While  |             | Air-Dried          |        |
| Group Name             |             | N/A                |        |
| Group Symbol           |             | N/A                |        |
| Composite Sieving Used |             | No                 |        |
| Dispersion Method      |             | Dispersant by hand |        |
| Prior Testing          |             | Atterberg limits   |        |



| Mater                                                                  | ial Te               | est R           | eport                                                      | 1                                                                 |                        |       |         | Project No.:<br>ReportNo:                                                                                                             | 118<br>MAT:FH18                                                                                                                       | 8070011-05B<br>-W00342-S10            |
|------------------------------------------------------------------------|----------------------|-----------------|------------------------------------------------------------|-------------------------------------------------------------------|------------------------|-------|---------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Client:                                                                | Strata-O             | G, LLC          | -                                                          |                                                                   | CC:                    |       |         | This report shall not                                                                                                                 | be reproduced (in par                                                                                                                 | t or whole) without                   |
| Project:                                                               | EMDF                 | Site 7c Ch      | aracterizat                                                | ion                                                               |                        |       |         |                                                                                                                                       | J.                                                                                                                                    | <i>m</i> 10 <i>A</i>                  |
|                                                                        | Oak Rid              | dge, Tenr       | essee                                                      |                                                                   |                        |       |         | Reviewed By:                                                                                                                          | Timothy A. Moor                                                                                                                       | re, Jr.                               |
| Sample D                                                               | etails               |                 |                                                            |                                                                   |                        |       |         | Atterberg L                                                                                                                           | imit:                                                                                                                                 |                                       |
| Sample ID<br>Field Sam<br>Location<br>Sampled B<br>Date Samp<br>Source | ple ID<br>3y<br>pled |                 | FH18-V<br>GW982<br>Oak Ric<br>Mike Pa<br>2/8/201<br>Geotec | /00342-S1<br>-SS21<br>Ige, Tenne<br>Irtenio<br>8<br>pnical Drilli | 0<br>ssee<br>ng Sample | S     |         | l<br>P<br>Plas                                                                                                                        | Liquid Limit: 28<br>Plastic Limit: 19<br>Plicity Index: 9                                                                             | 3                                     |
| Material                                                               |                      |                 | Native I                                                   | Existing Ma                                                       | aterial                | •     |         | Sample Des                                                                                                                            | scription:                                                                                                                            |                                       |
| Specificat<br>Sampling<br>Contracto                                    | ion<br>Method<br>r   |                 | Split Sp<br>N/A                                            | oon                                                               |                        |       |         | Brown clayey                                                                                                                          | / sand (SC)                                                                                                                           |                                       |
|                                                                        |                      |                 |                                                            |                                                                   |                        |       |         | Grading: AS                                                                                                                           | STM D 6913                                                                                                                            |                                       |
| % Pas<br>100<br>90<br>80<br>60<br>50<br>40<br>10<br>0<br>0             | ssing                | 4.76mm          | 2.0mm                                                      | jeve                                                              | 425µm<br>300µm         | 150um | Zsum +  | Date Tested<br>Tested By:<br>3/8in<br>1/2in<br>3/8in<br>No.4<br>No.8<br>No.10<br>No.16<br>No.30<br>No.40<br>No.50<br>No.100<br>No.200 | 2/15/2018<br>David Cook<br>% Passing<br>100.0<br>98.6<br>96.2<br>85.3<br>71.6<br>70.0<br>60.4<br>49.8<br>45.5<br>41.5<br>34.5<br>28.5 | Limits                                |
|                                                                        | CPA                  |                 |                                                            | SAND                                                              |                        | EINES | (28 5%) |                                                                                                                                       |                                                                                                                                       |                                       |
| (0.0%)                                                                 | Coarse<br>(0.0%)     | Fine<br>(14.7%) | Coarse<br>(15.3%)                                          | Medium<br>(24.5%)                                                 | Fine<br>(17.0%)        | Silt  | Clay    | <b>D85:</b> 4.6778 <b>D30:</b> 0.0892                                                                                                 | <b>D60:</b> 1.1503<br><b>D15:</b> N/A                                                                                                 | <b>D50:</b> 0.6077<br><b>D10:</b> N/A |



| Mate     | rial Test Report              | Project No.:         1188070011-05B           ReportNo:         MAT:FH18-W00342-S10 |                                                                                         |
|----------|-------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Client:  | Strata-G, LLC                 | CC:                                                                                 | This report shall not be reproduced (in part or whole) without the written constent of: |
| Project: | EMDF Site 7c Characterization |                                                                                     | and and and                                                                             |
|          | Oak Ridge, Tennessee          |                                                                                     | AASHIO                                                                                  |

Reviewed By: Timothy A. Moore, Jr.

#### Sample Details

Sample ID Field Sample ID Location Sampled By Date Sampled Date Completed Source Material Specification Sampling Method Contractor Dispersion Method

GW982-SS21 Oak Ridge, Tennessee Mike Partenio 2/8/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

FH18-W00342-S10

#### **Other Test Results**

| Description                             | Method      | Result         | Limits |
|-----------------------------------------|-------------|----------------|--------|
| Water Content (%)                       | ASTM D 2216 | 7.0            |        |
| Method                                  |             | В              |        |
| Date Tested                             |             | 2/15/2018      |        |
| Group Symbol                            | ASTM D 2487 | SC             |        |
| Group Name                              |             | Clayey sand    |        |
| Date Tested                             |             | 2/20/2018      |        |
| Approximate maximum grain size          | ASTM D 4318 |                |        |
| Material retained on 425µm (No. 40) (%) |             | 54.5           |        |
| Method of Removal                       |             |                |        |
| Grooving Tool Type                      |             | Metal          |        |
| Specimen preparation method             |             | Wet            |        |
| Drying Method                           |             | Air            |        |
| Special selection process               |             | Quartered      |        |
| Rolling Method for PL                   |             | Hand           |        |
| As Received Water Content (%)           |             | 7.0            |        |
| Liquid Limit Device Type                |             | Manual         |        |
| Liquid Limit                            |             | 28             |        |
| Plastic Limit                           |             | 19             |        |
| Plasticity Index                        |             | 9              |        |
| Liquid Limit Procedure                  |             | Multipoint (A) |        |
| Date Tested                             |             | 2/15/2018      |        |
| Method                                  | ASTM D 6913 | Method B       |        |
| Sample Obtained While                   |             | Air-Dried      |        |
| Group Name                              |             | Clayey sand    |        |
| Group Symbol                            |             | SC             |        |
| Composite Sieving Used                  |             | No             |        |



|                                                                                                                                                     | 5                                                                |                                                                                                                                                                            |     |                                            | Findle: (248) 486-510<br>Fax: (248) 486-505  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------|----------------------------------------------|
| Mater                                                                                                                                               | ial Tes                                                          | st Report                                                                                                                                                                  |     | Project No.:<br>ReportNo:                  | 1188070011-05E<br>MAT:FH18-W00342-S10        |
| Client:                                                                                                                                             | Strata-G, I                                                      | LC                                                                                                                                                                         | CC: | This report shall not the written constent | be reproduced (in part or whole) without of: |
| Project:                                                                                                                                            | EMDF Sit                                                         | e 7c Characterization                                                                                                                                                      |     |                                            | m- of man 1                                  |
|                                                                                                                                                     | Oak Ridge                                                        | e, Tennessee                                                                                                                                                               |     | AASHID                                     | I mother a 11 core of                        |
|                                                                                                                                                     |                                                                  |                                                                                                                                                                            |     | Reviewed By:                               | Timothy A. Moore, Jr.                        |
| Sample De                                                                                                                                           | etails                                                           |                                                                                                                                                                            |     |                                            |                                              |
| Sample ID<br>Field Sam<br>Location<br>Sampled E<br>Date Samp<br>Date Com<br>Source<br>Material<br>Specificat<br>Sampling<br>Contracto<br>Dispersion | ple ID<br>By<br>pled<br>pleted<br>ion<br>Method<br>r<br>n Method | FH18-W00342-S10<br>GW982-SS21<br>Oak Ridge, Tennessee<br>Mike Partenio<br>2/8/2018<br>Geotechnical Drilling Samp<br>Native Existing Material<br>USCS<br>Split Spoon<br>N/A | les |                                            |                                              |
| Other Tes                                                                                                                                           | t Results                                                        |                                                                                                                                                                            |     |                                            |                                              |
| Dispersion<br>Prior Testir                                                                                                                          | Method                                                           |                                                                                                                                                                            |     | Dispersant by h<br>Atterberg li            | nand<br>imits                                |
|                                                                                                                                                     |                                                                  |                                                                                                                                                                            |     |                                            |                                              |



| Materi                                 | ial Test                  | Report                                         |                |                             |                            | Project<br>ReportN                 | No.:<br>lo:                | 11880<br>ASM:FH   | 70011-05E<br>18-W00388 |
|----------------------------------------|---------------------------|------------------------------------------------|----------------|-----------------------------|----------------------------|------------------------------------|----------------------------|-------------------|------------------------|
| Client:                                | Strata-G, LLC             |                                                |                | CC:                         |                            | This report                        | shall not be repre         | oduced (in part o | r whole) without       |
| Project:                               | EMDF Site 70              | c Characterization                             | ı              |                             |                            |                                    | constent of.               | 1                 |                        |
|                                        | Oak Ridge, T              | ennessee                                       |                |                             |                            | AASH                               |                            | mothy a           | More                   |
|                                        |                           |                                                |                |                             |                            | Reviewe                            | а ву: ттто                 | ny A. Moore,      | Jr.                    |
| Material                               | Details                   |                                                |                |                             |                            |                                    |                            |                   |                        |
| Source<br>Descriptior<br>Specification | Geoto<br>Nativ<br>Dn USCS | echnical Drilling S<br>e Existing Materia<br>S | amples<br>I    | Sample<br>Locatio<br>Sampli | ed From<br>on<br>ng Method | Split Spo<br>Oak Ride<br>Split Spo | oon<br>ge, Tennesse<br>oon | е                 |                        |
| Sample [                               | Details                   | -                                              |                | Campi                       | ing include                | opiit op t                         |                            |                   |                        |
| Sample ID                              |                           | FH                                             | 18-W00388-S0 F | H18-W00388-S0 F             | H18-W00388-S0 F            | H18-W00388-S0 F                    | H18-W00388-S0 F            | H18-W00388-S0     |                        |
| Field Samp                             | le ID                     |                                                | GW986-SS2      | GW986-SS3                   | GW986-SS4                  | GW986-SS6                          | GW986-SS7                  | GW986-SS9         |                        |
| Date Samp                              | led                       |                                                | 2/15/2018      | 2/15/2018                   | 2/15/2018                  | 2/15/2018                          | 2/15/2018                  | 2/15/2018         |                        |
| Other Te                               | st Results                |                                                |                |                             |                            |                                    |                            |                   |                        |
| Descriptior                            | 1                         | Method                                         |                |                             | Resi                       | ults                               |                            |                   | Limits                 |
| Water Conte                            | nt (%)                    | ASTM D 2216                                    | 20.4           | 21.1                        | 14.6                       | 8.4                                | 8.7                        | 4.3               |                        |
| Method                                 |                           |                                                | В              | В                           | В                          | В                                  | В                          | В                 |                        |
| Approximate ma                         | aximum grain size         | ASTM D 4318                                    |                |                             |                            |                                    |                            |                   |                        |
|                                        | on 425µm (No. 40) (%)     |                                                |                |                             |                            |                                    |                            |                   |                        |
| Grooving To                            |                           |                                                | Metal          |                             |                            |                                    |                            |                   |                        |
| Specimen pr                            | enaration method          |                                                | Wet            |                             |                            |                                    |                            |                   |                        |
| Drving Metho                           | d                         |                                                | Air            |                             |                            |                                    |                            |                   |                        |
| Special selec                          | tion process              |                                                | Quartering     |                             |                            |                                    |                            |                   |                        |
| Rolling Meth                           | od for PL                 |                                                | Hand           |                             |                            |                                    |                            |                   |                        |
| As Received W                          | ater Content (%)          |                                                | 20.4           |                             |                            |                                    |                            |                   |                        |
| Liquid Limit [                         | Device Type               |                                                | Manual         |                             |                            |                                    |                            |                   |                        |
| Liquid Limit                           |                           |                                                | 37             |                             |                            |                                    |                            |                   |                        |
| Plastic Limit                          |                           |                                                | 18             |                             |                            |                                    |                            |                   |                        |
| Plasticity Ind                         | ex                        |                                                | 19             |                             |                            |                                    |                            |                   |                        |
| Liquid Limit F                         | rocedure                  |                                                | Multipoint (A) |                             |                            |                                    |                            |                   |                        |
| Method                                 | in ed \A/bile             | ASTM D 6913                                    |                |                             | Method B                   |                                    |                            |                   |                        |
| Croup Name                             |                           |                                                |                |                             | Clayey cand                |                                    |                            |                   |                        |
| Group Name                             | ol                        |                                                |                |                             | SC                         |                                    |                            |                   |                        |
| Composite S                            | ievina Used               |                                                |                |                             | No                         |                                    |                            |                   |                        |
| Dispersion M                           | ethod                     |                                                |                |                             | Dispersant by hand         |                                    |                            |                   |                        |
|                                        |                           |                                                |                |                             | Moisture                   |                                    |                            |                   |                        |

Comments



|                        |                              |                                                            |             | Project No.:                                  | 118                                   | 8070011-05B                           |
|------------------------|------------------------------|------------------------------------------------------------|-------------|-----------------------------------------------|---------------------------------------|---------------------------------------|
| Materi                 | al lest Re                   | eport                                                      |             | ReportNo:                                     | MAT:FH18                              | -W00388-S03                           |
| Client:                | Strata-G, LLC                | C                                                          | JC:         | This report shall not<br>the written constent | be reproduced (in par<br>of:          | t or whole) without                   |
| Project:               | EMDF Site 7c Cha             | racterization                                              |             |                                               | 1- 1                                  | m 10 1                                |
|                        | Oak Ridge, Tenne             | essee                                                      |             |                                               | I mothy (                             | I More /                              |
|                        |                              |                                                            |             | Reviewed By:                                  | Timothy A. Moo                        | re. Jr.                               |
| Sample Det             | tails                        |                                                            |             |                                               | <b>,</b>                              | -,-                                   |
| Sample ID              |                              | FH18-W00388-S03                                            |             |                                               |                                       |                                       |
| Field Samp             | le ID                        | GW986-SS4                                                  |             |                                               |                                       |                                       |
| Location<br>Sampled By | v                            | Oak Ridge, Tennessee<br>Mike Partenio                      |             |                                               |                                       |                                       |
| Date Sampl             | led                          | 2/15/2018                                                  |             |                                               |                                       |                                       |
| Material               |                              | Native Existing Material                                   | ipies       | Sample De                                     | scription:                            |                                       |
| Specification          | on<br>Aethod                 | USCS<br>Split Spoon                                        |             | Brown claye                                   | y sand (SC)                           |                                       |
| Contractor             | liethoù                      | N/A                                                        |             |                                               | <b>,</b> ( )                          |                                       |
|                        |                              |                                                            |             |                                               |                                       |                                       |
| Particle Siz           | e Distribution               |                                                            |             | Grading: A                                    | STM D 6913                            |                                       |
|                        |                              |                                                            |             | Drying by:<br>Date Tested<br>Tested By:       | Oven<br>I: 3/2/2018<br>David Cook     |                                       |
| % Pass                 | sing                         |                                                            |             |                                               |                                       |                                       |
| 100                    | Lamman                       |                                                            |             | Sieve Size                                    | % Passing                             | Limits                                |
| 90 - · · ·             |                              |                                                            |             | /₂in<br>3/8in                                 | 100.0<br>99.3                         |                                       |
| 80++++                 |                              | <b></b>                                                    | •••••       | No.4                                          | 92.2<br>81.5                          |                                       |
| 70                     |                              | $\mathbf{i}$                                               |             | No.10                                         | 79.8                                  |                                       |
| 60                     |                              | $\sim$                                                     |             | No.16<br>No.30                                | 72.0<br>62.7                          |                                       |
| 50                     |                              | $\sim$                                                     | <u> </u>    | No.40                                         | 59.0                                  |                                       |
| 40                     |                              |                                                            |             | No.100                                        | 55.4<br>47.9                          |                                       |
| 40                     |                              |                                                            |             | No.200                                        | 39.4                                  |                                       |
| 30                     |                              |                                                            |             |                                               |                                       |                                       |
| 20                     |                              |                                                            |             |                                               |                                       |                                       |
| 10                     | *******                      |                                                            |             |                                               |                                       |                                       |
| 0<br>E                 | E E E                        |                                                            | <u> </u>    |                                               |                                       |                                       |
| 12.5r                  | 9.5r<br>4.75r<br>2.36r       | 2.0r<br>1.18r<br>600<br>600<br>425<br>425<br>300           | 150         |                                               |                                       |                                       |
|                        |                              | Sieve                                                      |             |                                               |                                       |                                       |
| COBBLES                | GRAVEL                       | SAND                                                       | FINES (39.4 | <u>%)</u>                                     |                                       |                                       |
| (0.0%)                 | Coarse Fine<br>(0.0%) (7.8%) | Coarse (12.4%)         Medium (20.8%)         Fine (19.6%) | %) Silt C   | lay D85: 2.9667                               | <b>D60:</b> 0.4665<br><b>D15:</b> N/A | <b>D50:</b> 0.1821<br><b>D10:</b> N/A |



| Mate     | rial Test Report              |     | Project No.:         1188070011-05B           ReportNo:         MAT:FH18-W00388-S03     |
|----------|-------------------------------|-----|-----------------------------------------------------------------------------------------|
| Client:  | Strata-G, LLC                 | CC: | This report shall not be reproduced (in part or whole) without the written constent of: |
| Project: | EMDF Site 7c Characterization |     |                                                                                         |
|          | Oak Ridge, Tennessee          |     | AASHID Smithy a More /                                                                  |
|          |                               |     | Reviewed By: Timothy A. Moore, Jr.                                                      |

| Sample ID         | FH18-W00388-S03               |
|-------------------|-------------------------------|
| Field Sample ID   | GW986-SS4                     |
| Location          | Oak Ridge, Tennessee          |
| Sampled By        | Mike Partenio                 |
| Date Sampled      | 2/15/2018                     |
| Date Completed    |                               |
| Source            | Geotechnical Drilling Samples |
| Material          | Native Existing Material      |
| Specification     | USCS                          |
| Sampling Method   | Split Spoon                   |
| Contractor        | N/A                           |
| Dispersion Method |                               |

### **Other Test Results**

| Description            | Method      | Result             | Limits |
|------------------------|-------------|--------------------|--------|
| Water Content (%)      | ASTM D 2216 | 14.6               |        |
| Method                 |             | В                  |        |
| Date Tested            |             | 2/26/2018          |        |
| Method                 | ASTM D 6913 | Method B           |        |
| Sample Obtained While  |             | Air-Dried          |        |
| Group Name             |             | Clayey sand        |        |
| Group Symbol           |             | SC                 |        |
| Composite Sieving Used |             | No                 |        |
| Dispersion Method      |             | Dispersant by hand |        |
| Prior Testing          |             | Moisture           |        |



| Mater                              | rial Test                | Report                                                |               |                             |                            | Project<br>Report                 | No.:<br>No:                | 1188<br>ASM:FH     | 070011-05B<br>118-W00343 |
|------------------------------------|--------------------------|-------------------------------------------------------|---------------|-----------------------------|----------------------------|-----------------------------------|----------------------------|--------------------|--------------------------|
| Client:                            | Strata-G, LLO            | <u> </u>                                              |               | CC:                         |                            | This report                       | shall not be rep           | roduced (in part o | or whole) without        |
| Project:                           | EMDF Site 7              | c Characterization                                    |               |                             |                            | the written o                     | constent of:               | Λ                  |                          |
|                                    | Oak Ridge,               | Tennessee                                             |               |                             |                            | AASH                              |                            | Simothy a          | More                     |
|                                    |                          |                                                       |               |                             |                            | Reviewe                           | d By: Timo                 | othy A. Moore      | , Jr.                    |
| Material                           | Details                  |                                                       |               |                             |                            |                                   |                            |                    |                          |
| Source<br>Descriptio<br>Specificat | Gec<br>n Nati<br>ion USC | otechnical Drilling Sa<br>ive Existing Material<br>CS | Imples        | Sample<br>Locatic<br>Sampli | ed From<br>on<br>na Method | Split Spo<br>Oak Rid<br>Split Spo | oon<br>ge, Tennesse<br>oon | e                  |                          |
| Sample                             | Details                  |                                                       |               |                             | Ĵ                          |                                   |                            |                    |                          |
| Sample ID                          |                          | FH                                                    | 8-W00343-S0 F | H18-W00343-S0 F             | -<br>H18-W00343-S0 F       | H18-W00343-S0 F                   | H18-W00343-S0              | FH18-W00343-S0     |                          |
| Field Sam                          | ple ID                   |                                                       | GW988-SS2     | GW988-SS3                   | GW988-SS4                  | GW988-SS6                         | GW988-SS8                  | GW988-SS11         |                          |
| Date Sam                           | bled                     |                                                       | 2/7/2018      | 2/7/2018                    | 2/7/2018                   | 2/7/2018                          | 2/7/2018                   | 2/7/2018           |                          |
| Other Te                           | est Results              |                                                       |               |                             |                            |                                   |                            |                    |                          |
| Descriptio                         | n                        | Method                                                |               |                             | Resi                       | ults                              |                            |                    | Limits                   |
| Water Cont                         | ent (%)                  | ASTM D 2216                                           | 34.6          | 25.1                        | 33.6                       | 29.8                              | 26.2                       | 21.5               |                          |
| Method                             |                          |                                                       | В             | В                           | В                          | В                                 | В                          | В                  |                          |
| Group Sym                          | bol                      | ASTM D 2487                                           |               |                             | ML                         |                                   |                            |                    |                          |
| Group Nam                          | e                        |                                                       |               |                             | Sandy silt                 |                                   |                            |                    |                          |
| Approximate n                      | naximum grain size       | ASTM D 4318                                           |               |                             |                            |                                   |                            |                    |                          |
| Material retained                  | d on 425µm (No. 40) (%   | )                                                     |               |                             | 24.3                       |                                   |                            |                    |                          |
| Method of F                        | Removal                  |                                                       |               |                             |                            |                                   |                            |                    |                          |
| Grooving To                        | bol Type                 |                                                       |               |                             | Metal                      |                                   |                            |                    |                          |
| Specimen p                         | reparation metho         | d                                                     |               |                             | vvet                       |                                   |                            |                    |                          |
| Drying Metr                        | 100                      |                                                       |               |                             | Air                        |                                   |                            |                    |                          |
| Special sele                       | ection process           |                                                       |               |                             | Quartered                  |                                   |                            |                    |                          |
|                                    | Vatar Contant (%)        |                                                       |               |                             |                            |                                   |                            |                    |                          |
| As Received v                      |                          |                                                       |               |                             | SS.0<br>Monual             |                                   |                            |                    |                          |
| Liquid Limit                       | Device Type              |                                                       |               |                             | Ivialiuai<br>11            |                                   |                            |                    |                          |
| Plastic Limit                      | •                        |                                                       |               |                             | -+1                        |                                   |                            |                    |                          |
| Plasticity In                      | dov                      |                                                       |               |                             | 14                         |                                   |                            |                    |                          |
| Liquid Limit                       | Procedure                |                                                       |               |                             | Multipoint (A)             |                                   |                            |                    |                          |
| Method                             | Tiocedure                | ASTM D 6913                                           |               |                             | Method B                   |                                   |                            |                    |                          |
| Sample Obt                         | ained While              |                                                       |               |                             | Air-Dried                  |                                   |                            |                    |                          |
| Group Nam                          | e                        |                                                       |               |                             | Sandy silt                 |                                   |                            |                    |                          |
| Group Sym                          | bol                      |                                                       |               |                             | ML                         |                                   |                            |                    |                          |
| Composite                          | Sievina Used             |                                                       |               |                             | No                         |                                   |                            |                    |                          |
| Dispersion I                       | Vethod                   |                                                       |               |                             | Dispersant by hand         |                                   |                            |                    |                          |
| Prior Testin                       | a                        |                                                       |               |                             | Atterberg limits           |                                   |                            |                    |                          |



| Mater                                | ial Tes                | t Report                                                 |               |                            |                             | Project No.:<br>ReportNo:                     | 1188070011-05B<br>ASM:FH18-W00343       |
|--------------------------------------|------------------------|----------------------------------------------------------|---------------|----------------------------|-----------------------------|-----------------------------------------------|-----------------------------------------|
| Client:                              | Strata-G, Ll           | _C                                                       |               | CC:                        |                             | This report shall not be                      | e reproduced (in part or whole) without |
| Project:                             | EMDF Site              | 7c Characterization                                      |               |                            |                             |                                               | m- Ann A                                |
|                                      | Oak Ridge,             | Tennessee                                                |               |                            |                             | AASHID                                        | Simothy and tore of                     |
|                                      |                        |                                                          |               |                            |                             | Reviewed By:                                  | Гimothy A. Moore, Jr.                   |
| Material                             | Details                |                                                          |               |                            |                             |                                               |                                         |
| Source<br>Description<br>Specificati | Ge<br>n Na<br>ion US   | eotechnical Drilling Sa<br>itive Existing Materia<br>SCS | amples        | Sample<br>Locatie<br>Sampl | ed From<br>on<br>ing Method | Split Spoon<br>Oak Ridge, Tenn<br>Split Spoon | essee                                   |
| Sample                               | Details                |                                                          |               | ·                          | Ŭ                           |                                               |                                         |
| Sample ID                            |                        | FH                                                       | 8-W00343-SO F | H18-W00343-S0              | FH18-W00343-S0              |                                               |                                         |
| Field Samp                           | ple ID                 | (                                                        | W988-SS13     | GW988-SS16                 | GW988-SS18                  |                                               |                                         |
| Date Samp                            | oled                   |                                                          | 2/7/2018      | 2/7/2018                   | 2/7/2018                    |                                               |                                         |
| Other Te                             | est Results            | 5                                                        |               |                            |                             |                                               |                                         |
| Description                          | n                      | Method                                                   |               |                            | Res                         | ults                                          | Limits                                  |
| Water Conte                          | ent (%)                | ASTM D 2216                                              | 16.0          | 9.9                        | 9.9                         |                                               |                                         |
| Method                               |                        |                                                          | В             | B                          | В                           |                                               |                                         |
| Group Symb                           | lool                   | ASTM D 2487                                              |               | SC                         |                             |                                               |                                         |
| Group Name                           | e<br>eximum grain sizo |                                                          |               | Clayey sand                |                             |                                               |                                         |
| Approximate m                        | laximum grain size     | ASTM D 4318                                              |               | 49.6                       |                             |                                               |                                         |
| Matcharleaned                        |                        | ,0)                                                      |               | 40.0                       |                             |                                               |                                         |
| Grooving To                          |                        |                                                          |               | Metal                      |                             |                                               |                                         |
| Specimen n                           | renaration meth        | od                                                       |               | Wet                        |                             |                                               |                                         |
| Drving Meth                          | nd                     | ou                                                       |               | Air                        |                             |                                               |                                         |
| Snecial sele                         | ction process          |                                                          |               | Quartered                  |                             |                                               |                                         |
| Rolling Meth                         | nod for Pl             |                                                          |               | Hand                       |                             |                                               |                                         |
| As Received W                        | /ater Content (%)      |                                                          |               | 9.9                        |                             |                                               |                                         |
| Liquid Limit                         | Device Type            |                                                          |               | Manual                     |                             |                                               |                                         |
| Liquid Limit                         |                        |                                                          |               | 32                         |                             |                                               |                                         |
| Plastic Limit                        |                        |                                                          |               | 19                         |                             |                                               |                                         |
| Plasticity Inc                       | dex                    |                                                          |               | 13                         |                             |                                               |                                         |
| Liquid Limit                         | Procedure              |                                                          |               | Multipoint (A)             |                             |                                               |                                         |
| Method                               |                        | ASTM D 6913                                              |               | Method B                   |                             |                                               |                                         |
| Sample Obt                           | ained While            |                                                          |               | Air-Dried                  |                             |                                               |                                         |
| Group Name                           | e                      |                                                          |               | Clayey sand                |                             |                                               |                                         |
| Group Symb                           | loc                    |                                                          |               | SC                         |                             |                                               |                                         |
| Composite S                          | Sieving Used           |                                                          |               | No                         |                             |                                               |                                         |
| Dispersion N                         | Nethod                 |                                                          |               | Dispersant by hand         |                             |                                               |                                         |
| Prior Testing                        | 9                      |                                                          |               | Atterberg limits           |                             |                                               |                                         |



| Mater                                                                 | ial Test F                              | Report                                                     |                                                                                                                    |                               |       |           | Project No.:<br>ReportNo:                                     | 118<br>MAT:FH18                                                       | 8070011-05B<br>-W00343-S03 |
|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|-----------|---------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|
| Client:                                                               | Strata-G, LLC                           | •                                                          |                                                                                                                    | CC:                           |       |           | This report shall not to                                      | pe reproduced (in pa                                                  | rt or whole) without       |
| Project:                                                              | EMDF Site 7c Characterization           |                                                            |                                                                                                                    |                               |       |           |                                                               | л.                                                                    |                            |
|                                                                       | Oak Ridge, Te                           | ennessee                                                   |                                                                                                                    |                               |       |           | Reviewed By:                                                  | Timothy A. Moo                                                        | a Mare fr<br>re, Jr.       |
| Sample D                                                              | etails                                  |                                                            |                                                                                                                    |                               |       |           | Atterberg L                                                   | imit:                                                                 |                            |
| Sample ID<br>Field Sam<br>Location<br>Sampled I<br>Date Sam<br>Source | ple ID<br>3y<br>bled                    | FH18-W<br>GW988<br>Oak Ric<br>Mike Pa<br>2/7/201<br>Geoted | FH18-W00343-S03<br>GW988-SS4<br>Oak Ridge, Tennessee<br>Mike Partenio<br>2/7/2018<br>Geotechnical Drilling Samples |                               |       |           | Liquid Limit: 41<br>Plastic Limit: 27<br>Plasticity Index: 14 |                                                                       |                            |
| Material                                                              | •                                       | Native E                                                   | Existing Ma                                                                                                        | aterial                       | .0    |           | Sample Description:                                           |                                                                       |                            |
| SpecificationUSCSSampling MethodSplit SpoonContractorN/A              |                                         |                                                            |                                                                                                                    | Brown mottled sandy silt (ML) |       |           |                                                               |                                                                       |                            |
| Destiste O                                                            |                                         |                                                            |                                                                                                                    |                               |       |           | Grading: AS                                                   | STM D 6913                                                            |                            |
| % Pas<br>100<br>90<br>80                                              | ssing                                   | <u> </u>                                                   | /                                                                                                                  |                               |       |           | Sieve Size<br>3/8in<br>No.4<br>No.8<br>No.10                  | 2/16/2018<br>David Cook<br>% Passing<br>100.0<br>99.4<br>95.4<br>94.2 | Limits                     |
| 70 - · · ·<br>60 - · · ·<br>50 - · ·                                  | ••••••••••••••••••••••••••••••••••••••• | ····                                                       | ·····                                                                                                              |                               | >     | ·····<br> | No.16<br>No.30<br>No.40<br>No.50<br>No.100<br>No.200          | 88.4<br>79.8<br>75.7<br>71.8<br>64.5<br>57 4                          |                            |
| 40 + · · ·<br>30 - · · ·<br>20 - · · ·                                |                                         |                                                            |                                                                                                                    | <br>                          | ····· |           |                                                               |                                                                       |                            |
| ot                                                                    | _                                       |                                                            |                                                                                                                    |                               |       | ·         |                                                               |                                                                       |                            |
|                                                                       | 9,5mm<br>4.75mm                         | 2.36mm<br>2.0mm<br>1.18mm                                  | Sieve                                                                                                              | 300µm                         | 150µm | 75µm      |                                                               |                                                                       |                            |
| COBBLES                                                               | GRAVEL                                  |                                                            | SAND                                                                                                               |                               | FINES | (57.4%)   |                                                               | <b>D60:</b> 0.0067                                                    |                            |
| (0.0%)                                                                | Coarse Fine<br>(0.0%) (0.6%             | Coarse<br>) (5.2%)                                         | Medium<br>(18.5%)                                                                                                  | Fine<br>(18.3%)               | Silt  | Clay      | <b>D30:</b> N/A                                               | D15: N/A                                                              | D30. N/A<br>D10: N/A       |



| Mate     | rial Test Report              |     | Project No.:         1188070011-05B           ReportNo:         MAT:FH18-W00343-S03     |
|----------|-------------------------------|-----|-----------------------------------------------------------------------------------------|
| Client:  | Strata-G, LLC                 | CC: | This report shall not be reproduced (in part or whole) without the written constent of: |
| Project: | EMDF Site 7c Characterization |     | A man of any A                                                                          |
|          | Oak Ridge, Tennessee          |     | AASHIO multing a 110000 /                                                               |

**Reviewed By:** Timothy A. Moore, Jr.

#### Sample Details

Sample ID Field Sample ID Location Sampled By Date Sampled Date Completed Source Material Specification Sampling Method Contractor Dispersion Method

GW988-SS4 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

FH18-W00343-S03

#### **Other Test Results**

| Description                             | Method      | Result         | Limits |
|-----------------------------------------|-------------|----------------|--------|
| Water Content (%)                       | ASTM D 2216 | 33.6           |        |
| Method                                  |             | В              |        |
| Date Tested                             |             | 2/16/2018      |        |
| Group Symbol                            | ASTM D 2487 | ML             |        |
| Group Name                              |             | Sandy silt     |        |
| Date Tested                             |             | 2/20/2018      |        |
| Approximate maximum grain size          | ASTM D 4318 |                |        |
| Material retained on 425µm (No. 40) (%) |             | 24.3           |        |
| Method of Removal                       |             |                |        |
| Grooving Tool Type                      |             | Metal          |        |
| Specimen preparation method             |             | Wet            |        |
| Drying Method                           |             | Air            |        |
| Special selection process               |             | Quartered      |        |
| Rolling Method for PL                   |             | Hand           |        |
| As Received Water Content (%)           |             | 33.6           |        |
| Liquid Limit Device Type                |             | Manual         |        |
| Liquid Limit                            |             | 41             |        |
| Plastic Limit                           |             | 27             |        |
| Plasticity Index                        |             | 14             |        |
| Liquid Limit Procedure                  |             | Multipoint (A) |        |
| Date Tested                             |             | 2/16/2018      |        |
| Method                                  | ASTM D 6913 | Method B       |        |
| Sample Obtained While                   |             | Air-Dried      |        |
| Group Name                              |             | Sandy silt     |        |
| Group Symbol                            |             | ML             |        |
| Composite Sieving Used                  |             | No             |        |



|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Findle: (248) 486-5100<br>Fax: (248) 486-5050                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| est Report                                                                                                                                                                   | Project No.:<br>ReportNo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1188070011-05B<br>MAT:FH18-W00343-S03                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| G, LLC CC:                                                                                                                                                                   | This report shall not be<br>the written constent of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e reproduced (in part or whole) without                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Site 7c Characterization<br>dge, Tennessee                                                                                                                                   | Reviewed By: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wed By: Timothy A. Moore, Jr.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| FH18-W00343-S03<br>GW988-SS4<br>Oak Ridge, Tennessee<br>Mike Partenio<br>2/7/2018<br>Geotechnical Drilling Samples<br>Native Existing Material<br>USCS<br>Split Spoon<br>N/A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Metnoa                                                                                                                                                                       | Kes<br>Dispersant by ha<br>Atterberg lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd<br>iits                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                              | State       CC:         Site 7c Characterization       dge, Tennessee         June       Geventure         June       June         June       June | st Report       Project No.:<br>ReportNo:         j. LLC       CC:         Site 7c Characterization       Itis report shall not be<br>written constant of<br>COMPARIANCE         dge, Tennessee       FH18-W00343-S03         GW988-SS4       Gak Ridge, Tennessee         Mike Partenio<br>277/2018       Geotechnical Drilling Samples         Native Existing Material<br>USCS<br>Split Spoon<br>N/A       Kethod         Method       Res         Dispersant by ha<br>Atterberg lim |  |  |


| Mater                                                                 | rial Test R                  | leport                                                                                               |                         |            | Project No.:<br>ReportNo:                                                                                                                        | 118<br>MAT:FH18                                                                                                               | 8070011-05B<br>-W00343-S08            |  |
|-----------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------|-------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Client:                                                               | Strata-G, LLC                | -                                                                                                    | CC:                     |            | This report shall not b                                                                                                                          | e reproduced (in par                                                                                                          | t or whole) without                   |  |
| Project:                                                              | EMDF Site 7c C               | haracterization                                                                                      |                         |            |                                                                                                                                                  |                                                                                                                               |                                       |  |
|                                                                       | Oak Ridge, Ter               | nessee                                                                                               |                         |            | Reviewed By:                                                                                                                                     | Timothy A. Moor                                                                                                               | A Moore of<br>re, Jr.                 |  |
| Sample D                                                              | etails                       |                                                                                                      |                         |            | Atterberg Li                                                                                                                                     | mit:                                                                                                                          |                                       |  |
| Sample ID<br>Field Sam<br>Location<br>Sampled I<br>Date Sam<br>Source | )<br>iple ID<br>By<br>pled   | FH18-W00343-S0<br>GW988-SS16<br>Oak Ridge, Tenne<br>Mike Partenio<br>2/7/2018<br>Geotechnical Drilli | 8<br>ssee<br>ng Samples |            | L<br>Pl<br>Plast                                                                                                                                 | iquid Limit: 32<br>lastic Limit: 19<br>ticity Index: 13                                                                       | 2<br>)<br>}                           |  |
| Material                                                              | •                            | Native Existing Ma                                                                                   | iterial                 |            | Sample Des                                                                                                                                       | cription:                                                                                                                     |                                       |  |
| Specificat<br>Sampling<br>Contracto                                   | Method<br>or                 | Split Spoon<br>N/A                                                                                   |                         |            | Gray clayey s                                                                                                                                    | and (SC)                                                                                                                      |                                       |  |
|                                                                       |                              |                                                                                                      |                         |            | Grading: AS                                                                                                                                      | TM D 6913                                                                                                                     |                                       |  |
| % Pa<br>100<br>90<br>80<br>70<br>60<br>50<br>30<br>10<br>10           | ssing                        | 2.36mm<br>2.0mm<br>2.0mm<br>Biologim<br>Processor<br>Sience                                          | 150µm                   | Zõhm       | Drying by:<br>Date Tested:<br>Tested By:<br>Sieve Size<br>3/8in<br>No.4<br>No.8<br>No.10<br>No.16<br>No.30<br>No.40<br>No.50<br>No.100<br>No.200 | Oven<br>2/16/2018<br>David Cook<br>% Passing<br>100.0<br>96.7<br>86.6<br>84.4<br>72.1<br>57.1<br>51.4<br>46.2<br>37.3<br>29.8 | Limits                                |  |
| COBBLES                                                               | GRAVEL                       | SAND                                                                                                 | FIN                     | FS (29.8%) |                                                                                                                                                  |                                                                                                                               |                                       |  |
| (0.0%)                                                                | Coarse Fine<br>(0.0%) (3.3%) | Coarse Medium<br>(12.3%) (33.0%)                                                                     | Fine<br>(21.6%) Silt    | Clay       | <b>D85:</b> 2.0923<br><b>D30:</b> 0.0764                                                                                                         | D60: 0.6838<br>D15: N/A                                                                                                       | <b>D50:</b> 0.3870<br><b>D10:</b> N/A |  |



| Mate     | rial Test Report              |     | Project No.:         1188070011-05B           ReportNo:         MAT:FH18-W00343-S08     |
|----------|-------------------------------|-----|-----------------------------------------------------------------------------------------|
| Client:  | Strata-G, LLC                 | CC: | This report shall not be reproduced (in part or whole) without the written constent of: |
| Project: | EMDF Site 7c Characterization |     | A mont on a                                                                             |
|          | Oak Ridge, Tennessee          |     | AASHIO AMATHIN CODE                                                                     |

Reviewed By: Timothy A. Moore, Jr.

#### Sample Details

Sample ID Field Sample ID Location Sampled By Date Sampled Date Completed Source Material Specification Sampling Method Contractor Dispersion Method

GW988-SS16 Oak Ridge, Tennessee Mike Partenio 2/7/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

FH18-W00343-S08

#### **Other Test Results**

| Description                             | Method      | Result         | Limits |
|-----------------------------------------|-------------|----------------|--------|
| Water Content (%)                       | ASTM D 2216 | 9.9            |        |
| Method                                  |             | В              |        |
| Date Tested                             |             | 2/16/2018      |        |
| Group Symbol                            | ASTM D 2487 | SC             |        |
| Group Name                              |             | Clayey sand    |        |
| Date Tested                             |             | 2/20/2018      |        |
| Approximate maximum grain size          | ASTM D 4318 |                |        |
| Material retained on 425µm (No. 40) (%) |             | 48.6           |        |
| Method of Removal                       |             |                |        |
| Grooving Tool Type                      |             | Metal          |        |
| Specimen preparation method             |             | Wet            |        |
| Drying Method                           |             | Air            |        |
| Special selection process               |             | Quartered      |        |
| Rolling Method for PL                   |             | Hand           |        |
| As Received Water Content (%)           |             | 9.9            |        |
| Liquid Limit Device Type                |             | Manual         |        |
| Liquid Limit                            |             | 32             |        |
| Plastic Limit                           |             | 19             |        |
| Plasticity Index                        |             | 13             |        |
| Liquid Limit Procedure                  |             | Multipoint (A) |        |
| Date Tested                             |             | 2/16/2018      |        |
| Method                                  | ASTM D 6913 | Method B       |        |
| Sample Obtained While                   |             | Air-Dried      |        |
| Group Name                              |             | Clayey sand    |        |
| Group Symbol                            |             | SC             |        |
| Composite Sieving Used                  |             | No             |        |

## Comments

Form No: 18909, Report No: MAT:FH18-W00343-S08

E-35



|                                            |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Filone: (246) 486-5100<br>Fax: (248) 486-5050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| al Test                                    | t Report                                                                                                                                                                      | Project No.:<br>ReportNo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1188070011-05B<br>MAT:FH18-W00343-S08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Strata-G, LL                               | .c <b>cc</b> :                                                                                                                                                                | This report shall not the written constent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | be reproduced (in part or whole) without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EMDF Site                                  | 7c Characterization                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Oak Ridge,                                 | Tennessee                                                                                                                                                                     | Reviewed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Timothy A. Moore, Jr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ails                                       |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| e ID<br>ed<br>eted<br>n<br>ethod<br>Method | FH18-W00343-S08<br>GW988-SS16<br>Oak Ridge, Tennessee<br>Mike Partenio<br>2/7/2018<br>Geotechnical Drilling Samples<br>Native Existing Material<br>USCS<br>Split Spoon<br>N/A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Results                                    |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ethod                                      |                                                                                                                                                                               | Dispersant by h<br>Atterberg li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and<br>mits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                            | Al Tesi<br>Strata-G, LL<br>EMDF Site<br>Oak Ridge,<br>ails<br>a ID<br>ed<br>ated<br>n<br>athod<br>Aethod<br>Results<br>ethod                                                  | A Constraint of the second state of the second | Strata-G, LLC       CC:         EMDF Site 7c Characterization       Oak Ridge, Tennessee         Oak Ridge, Tennessee       Colored Strate Colored Stra |



| Client:       Strate-G, LLC       CC:         Project:       EMDF Site 7c Characterization<br>Oak Ridge, Tennessee       The report shall not be reproduced (in part or whole) without the written constant of:         Material Details       Reviewed By:       Timothy A. Moore, Jr.         Source       Geotechnical Drilling Samples<br>Specification       Sampled From<br>Location       Split Spoon<br>Osk Ridge, Tennessee         Sample Details       Samples to USCS       Samples to USCS       Samples to USCS         Sample ID       EHI8-W00402-50 EH18-W00402-50 E                                                                                                                                                                                                                                                                           | Materi                                               | al Test                                   | Report                                              |                                   |                                            |                              | Project<br>ReportN                 | No.:<br>lo:                               | Fax: (2<br>1188<br>ASM:FF  | :48) 486-5050<br>070011-05B<br>118-W00402 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------|------------------------------------|-------------------------------------------|----------------------------|-------------------------------------------|
| Project:       EMDF Site 7c Characterization<br>Oak Ridge, Tennessee       Image: Constant of the written constant of thewritten constant of the written constant of thewritten                                                | Client:                                              | Strata-G, LL                              | c                                                   |                                   | CC:                                        |                              | This report                        | shall not be repr                         | oduced (in part (          | or whole) without                         |
| Project: Endor Site 7 C characterization<br>Oak Ridge, Tennessee         Material Details         Source Geotechnical Drilling Samples<br>Description Native Existing Material<br>USCS       Sampled From<br>Location<br>Sample Details         Sample Details         Sample Details         Sample Details         Sample Details         Description Native Existing Material<br>USCS       Sample OP 118-W00402-50 FH18-W00402-50 F                                                                                                                                                                                                                                                                                                                                              | Project:                                             |                                           | 7e Charactorizatio                                  | n                                 |                                            |                              | the written o                      | constent of:                              |                            |                                           |
| Oak Ridge, Tennessee         Material Details         Source Geotechnical Drilling Samples Description Native Existing Material Location Oak Ridge, Tennessee         Sample Drotails         Sample Details         Sample D       OW992-SS1       GW992-SS2       GW992-SS3       GW992-SS3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Flojeci.                                             | EMDE Site /                               | C Characterizatio                                   | 11                                |                                            |                              |                                    | 1 ~.                                      | - 1-1                      | nn n                                      |
| Material Details         Source       Geotechnical Drilling Samples       Sampled From       Split Spoon         Description       Native Existing Material       Location       Oak Ridge, Tennessee         Specification       USCS       Sampling Method       Split Spoon         Sample Details       Stample Odd Split Spoon       Oak Ridge, Tennessee         Sample ID       FH18-W00402-S0 FH18-W0                                                                                                                                                                                                                                                                              |                                                      | Oak Ridge,                                | Tennessee                                           |                                   |                                            |                              | Reviewe                            | d By: Timo'                               | thy A. Moore               | , Jr.                                     |
| Source Geotechnical Drilling Samples Native Existing Material USCS Sampled From Location Sampling Method Split Spoon Oak Ridge, Tennessee Specification USCS Sample Details Sample D FHI8-W00402-50 FHI8- | Matorial [                                           | Dotaile                                   |                                                     |                                   |                                            |                              |                                    |                                           |                            |                                           |
| Sample Details         Sample ID       FHI8-W00402-S0 FHI8-W0H8-FHI8-FHI8-FHI8-W0H8-FHI8-FHI8-FHI8-FHI8-FHI8-FHI8-FHI8-FH                                                                                                                                                                                                                                                                                                                                                                                                            | Source<br>Description<br>Specificatio                | Gec<br>Gec<br>Nat<br>On US                | otechnical Drilling S<br>ive Existing Materia<br>CS | amples<br>al                      | Sample<br>Locatic<br>Sampli                | ed From<br>on<br>ng Method   | Split Spo<br>Oak Rido<br>Split Spo | oon<br>ge, Tennesse<br>oon                | e                          |                                           |
| Sample ID       FH18-W00402-s0 FH18-W0040-S0 FH18-FH18-FH18-FH18-FH18-FH18-FH18-FH18-                                                                                       | Sample D                                             | Details                                   |                                                     |                                   |                                            |                              |                                    |                                           |                            |                                           |
| Date Sampled       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018       2/16/2018 <td>Sample ID<br/>Field Sampl</td> <td>le ID</td> <td>FF</td> <td>118-W00402-S0 F<br/>GW992-SS1</td> <td>-H18-W00402-S0 F<br/>GW992-SS2<br/>2/46/2018</td> <td>H18-W00402-S0 F<br/>GW992-SS4</td> <td>FH18-W00402-S0 F<br/>GW992-SS5</td> <td>H18-W00402-S0 F<br/>GW992-SS7<br/>2/46/2010</td> <td>H18-W00402-S0<br/>GW992-SS8</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample ID<br>Field Sampl                             | le ID                                     | FF                                                  | 118-W00402-S0 F<br>GW992-SS1      | -H18-W00402-S0 F<br>GW992-SS2<br>2/46/2018 | H18-W00402-S0 F<br>GW992-SS4 | FH18-W00402-S0 F<br>GW992-SS5      | H18-W00402-S0 F<br>GW992-SS7<br>2/46/2010 | H18-W00402-S0<br>GW992-SS8 |                                           |
| Description     Method     Results       Water Content (%)     ASTM D 2216     29.3     23.9     37.1     13.4     21.3     16.2       Method     B     B     B     B     B     B     B     B       Approximate maximum grain size     ASTM D 4318     B     B     B     B     B     B       Method of Removal     Grooving Tool Type     Metal     Specimen preparation method     Wet       Drying Method     Air     Special selection process     Quartering       Rolling Method for PL     Hand     As Received Water Content (%)     29.3       Liquid Limit     38       Plastic Limit     20       Plasticity Index     18       Liquid Limit Procedure     Multipoint (A)       Dispersion device     ASTM D 422       Dispersion time (min)     1       Shape     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Other Ter                                            | ea<br>st Rosults                          |                                                     | 2/10/2018                         | 2/10/2018                                  | 2/10/2018                    | 2/10/2018                          | 2/10/2018                                 | 2/10/2018                  |                                           |
| Description     Method     Creating       Water Content (%)     ASTM D 2216     29.3     23.9     37.1     13.4     21.3     16.2       Method     B     B     B     B     B     B     B     B     B       Approximate maximum grain size     ASTM D 4318     ASTM D 4318     ASTM D 4318     ASTM D 4318       Method of Removal     Grooving Tool Type     Method     Air       Specimen preparation method     Wet     Drying Method     Air       Special selection process     Quartering     Rolling Method for PL     Hand       As Received Water Content (%)     29.3     Liquid Limit Device Type     Manual       Liquid Limit     38     Plastic Limit     20       Plastic Limit     20     Plastroin Cup and       Dispersion device     ASTM D 422     Dispersion Cup and       Material Procedure     Multipoint (A)     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                           | Mathad                                              |                                   |                                            | Pos                          | ulte                               |                                           |                            | Limite                                    |
| Approximate maximum grain size<br>Material retained on 425µm (No. 40) (%)       ASTM D 4318         Method of Removal<br>Grooving Tool Type       Metal<br>Specimen preparation method         Special selection process       Quartering<br>Quartering<br>Rolling Method for PL         As Received Water Content (%)       29.3         Liquid Limit       38         Plastic Limit       20         Plastic Limit       20         Plasticity Index       18         Liquid Limit Procedure       Multipoint (A)         Dispersion device       ASTM D 422         Dispersion fue (min)       1         Shape       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water Conter<br>Method                               | nt (%)                                    | ASTM D 2216                                         | 29.3<br>B                         | 23.9<br>B                                  | 37.1<br>B                    | 13.4<br>B                          | 21.3<br>B                                 | 16.2<br>B                  | Linits                                    |
| Method of Removal         Grooving Tool Type       Metal         Specimen preparation method       Wet         Drying Method       Air         Special selection process       Quartering         Rolling Method for PL       Hand         As Received Water Content (%)       29.3         Liquid Limit Device Type       Manual         Liquid Limit       38         Plastic Limit       20         Plastic Limit       20         Plasticity Index       18         Liquid Limit Procedure       Multipoint (A)         Dispersion device       ASTM D 422         Mixer       1         Shape       1         Hardness       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Approximate ma<br>Material retained o                | ıximum grain size<br>on 425µm (No. 40) (% | ASTM D 4318                                         |                                   |                                            |                              |                                    |                                           |                            |                                           |
| Drying Method     Air       Special selection process     Quartering       Rolling Method for PL     Hand       As Received Water Content (%)     29.3       Liquid Limit Device Type     Manual       Liquid Limit     38       Plastic Limit     20       Plasticity Index     18       Liquid Limit Procedure     Multipoint (A)       Dispersion device     ASTM D 422       Dispersion time (min)     1       Shape     Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method of Re<br>Grooving Too<br>Specimen pre         | moval<br>Type<br>eparation metho          | ıd                                                  | Metal<br>Wet                      |                                            |                              |                                    |                                           |                            |                                           |
| Liquid Limit Device Type Manual<br>Liquid Limit 38<br>Plastic Limit 20<br>Plasticity Index 18<br>Liquid Limit Procedure Multipoint (A)<br>Dispersion device ASTM D 422 Dispersion Cup and<br>Mixer<br>Dispersion time (min) 1<br>Shape<br>Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drying Metrio<br>Special select<br>Rolling Metho     | d<br>tion process<br>od for PL            |                                                     | All<br>Quartering<br>Hand<br>20.3 |                                            |                              |                                    |                                           |                            |                                           |
| Plastic Limit     20       Plasticity Index     18       Liquid Limit Procedure     Multipoint (A)       Dispersion device     ASTM D 422       Dispersion time (min)     1       Shape     Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Liquid Limit D<br>Liquid Limit                       | )evice Type                               |                                                     | Manual<br>38                      |                                            |                              |                                    |                                           |                            |                                           |
| Dispersion device     ASTM D 422     Dispersion Cup and<br>Mixer       Dispersion time (min)     1       Shape     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Plastic Limit<br>Plasticity Inde                     | ex<br>Procedure                           |                                                     | 20<br>18<br>Multipoint (A)        |                                            |                              |                                    |                                           |                            |                                           |
| I URIUUGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dispersion de<br>Dispersion tin<br>Shape<br>Hardness | evice<br>ne (min)                         | ASTM D 422                                          | <u> </u>                          | Dispersion Cup and<br>Mixer<br>1           |                              |                                    |                                           |                            |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                           |                                                     |                                   |                                            |                              |                                    |                                           |                            |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                           |                                                     |                                   |                                            |                              |                                    |                                           |                            |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                           |                                                     |                                   |                                            |                              |                                    |                                           |                            |                                           |



| Mate     | rial Test Report              |     | Project No.: 1188<br>ReportNo: ASM:F                                     | 8070011-05B<br>H18-W00402 |
|----------|-------------------------------|-----|--------------------------------------------------------------------------|---------------------------|
| Client:  | Strata-G, LLC                 | CC: | This report shall not be reproduced (in part<br>the written constent of: | or whole) without         |
| Project: | EMDF Site 7c Characterization |     |                                                                          |                           |
|          | Oak Ridge, Tennessee          |     | AASHIO<br>AASHIO                                                         | More h                    |
|          |                               |     | Reviewed By: Timothy A. Moor                                             | e, Jr.                    |

| Material Details                                                                                        |                                                                                         |                                 |                                            |                                           |                                                    |        |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------------------|--------|
| Source<br>Description<br>Specification                                                                  | Geotechnical Drilling Samp<br>Native Existing Material<br>Unified Soil Classification S | les<br>ystem                    | Sample<br>Locatio<br>Sampli                | ed From<br>on<br>ing Method               | Split Spoon<br>Oak Ridge, Tennessee<br>Split Spoon |        |
| Sample Details                                                                                          |                                                                                         |                                 |                                            |                                           |                                                    |        |
| Sample ID<br>Field Sample ID<br>Date Sampled                                                            | FH18-W0<br>GW99<br>2/10                                                                 | 00402-S0 F<br>92-SS10<br>6/2018 | H18-W00402-S0 I<br>GW992-SS12<br>2/16/2018 | FH18-W00402-S0<br>GW992-SS13<br>2/16/2018 |                                                    |        |
| Particle Size Dis                                                                                       | tribution                                                                               |                                 |                                            |                                           |                                                    |        |
| Method:                                                                                                 | Sieve Size                                                                              |                                 |                                            | % Pa                                      | assing                                             | Limits |
| ASTM D 422                                                                                              | 1½in (37.5mm)                                                                           |                                 |                                            |                                           |                                                    |        |
| Description:                                                                                            | 1in (25.0mm)                                                                            |                                 |                                            |                                           |                                                    |        |
| Analysis of Particle Size<br>Distribution in Soils. Sie<br>Particles >75µm, Hydror<br><b>Drying by:</b> | 2/2in (12.5mm)<br>ving for 3/8in (9.5mm)<br>meter No.4 (4.75mm)<br>No.10 (2.0mm)        | 100<br>99<br>86                 |                                            |                                           |                                                    |        |
| Oven                                                                                                    | No.40 (425µm)                                                                           | 54                              |                                            |                                           |                                                    |        |
| Washed:                                                                                                 | No.100<br>No.200 (75um)                                                                 | 41<br>37                        |                                            |                                           |                                                    |        |
| Sample Washed                                                                                           | 110.200 (7 opini)                                                                       | 01                              |                                            |                                           |                                                    |        |

## **Other Test Results**

| Description           | Method             |                       |      | Results | Limits |
|-----------------------|--------------------|-----------------------|------|---------|--------|
| Water Content (%)     | ASTM D 2216        | 15.5                  | 17.6 | 10.8    |        |
| Method                |                    | В                     | В    | В       |        |
| Dispersion device     | ASTM D 422 Dispers | sion Cup and<br>Mixer |      |         |        |
| Dispersion time (min) |                    | 1                     |      |         |        |
| Shape                 |                    |                       |      |         |        |
| Hardness              |                    |                       |      |         |        |



| Mater                                                                                                                     | ial Test Re                                                          | port                                                                                                                                                                                       |                                                  |                 | Project No.:<br>ReportNo:                                                                                                                                                                                                                                                                                                                        | 1188<br>MAT:FH18-                                                                                                                                                      | 8070011-05B<br>W00402-S02             |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Client:                                                                                                                   | Strata-G, LLC                                                        | -                                                                                                                                                                                          | CC:                                              | Ī               | This report shall not be                                                                                                                                                                                                                                                                                                                         | e reproduced (in par                                                                                                                                                   | t or whole) without                   |
| Project:                                                                                                                  | EMDF Site 7c Cha                                                     | racterization                                                                                                                                                                              |                                                  |                 |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                        |                                       |
|                                                                                                                           | Oak Ridge, Tenne                                                     | essee                                                                                                                                                                                      |                                                  |                 | Reviewed By: 1                                                                                                                                                                                                                                                                                                                                   | Sunsthy C                                                                                                                                                              | a More fr<br>e, Jr.                   |
| Sample D                                                                                                                  | etails                                                               |                                                                                                                                                                                            |                                                  |                 |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                        |                                       |
| Sample ID<br>Field Sam<br>Location<br>Sampled E<br>Date Samp<br>Source<br>Material<br>Specificat<br>Sampling<br>Contracto | ple ID<br>3y<br>oled<br>ion<br>Method<br>r                           | FH18-W00402-S02<br>GW992-SS2<br>Oak Ridge, Tennesser<br>Mike Partenio<br>2/16/2018<br>Geotechnical Drilling S<br>Native Existing Materia<br>Unified Soil Classificat<br>Split Spoon<br>N/A | e<br>Samples<br>al<br>tion System                |                 | Sample Des<br>Brown / orang                                                                                                                                                                                                                                                                                                                      | <b>cription:</b><br>e sandy lean cla                                                                                                                                   | ay (CL)                               |
| Particle Si                                                                                                               | ize Distribution                                                     |                                                                                                                                                                                            |                                                  |                 | Grading: AS                                                                                                                                                                                                                                                                                                                                      | TM D 422                                                                                                                                                               |                                       |
| % Pas<br>100<br>90<br>80<br>60<br>50<br>40<br>30<br>20<br>10<br>0                                                         | ssing<br>lit<br>lit<br>lit<br>lit<br>lit<br>lit<br>lit<br>lit        | No.100<br>No.200<br>Sieve                                                                                                                                                                  | 23.4 µm<br>15.5 µm<br>8.5 µm<br>5.1 µm<br>5.1 µm | 2.6 µm          | Drying by:           Date Tested:           Tested By:           Sieve Size           1½in           1in           ½in           3/8in           No.4           No.10           No.40           No.100           No.200           23.4 µm           15.5 µm           9.5 µm           7.0 µm           5.1 µm           2.6 µm           1.2 µm | Oven<br>2/28/2018<br>Sheila Bowers<br><b>% Passing</b><br>100<br>100<br>99<br>98<br>93<br>80<br>67<br>61<br>57<br>40.6<br>37.5<br>32.7<br>29.6<br>27.2<br>22.2<br>16.7 | Limits                                |
| COBBLES<br>(0.0%)                                                                                                         | GRAVEL           Coarse         Fine           (0.5%)         (6.5%) | SAND           Coarse         Medium         F           (13.0%)         (13.0%)         (1                                                                                                | Fine Silt<br>0.0%) (30.0%                        | Clay<br>(27.0%) | <b>D85:</b> 2.7894<br><b>D30:</b> 0.0073                                                                                                                                                                                                                                                                                                         | <b>D60:</b> 0.1261<br><b>D15:</b> N/A                                                                                                                                  | <b>D50:</b> 0.0456<br><b>D10:</b> N/A |



|                                                                                                                                                    | 📂 🐚 📕                                                             |                                                                                                                                                                                                             |                                               |                                                                                         |                                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| Mater                                                                                                                                              | rial Tes                                                          | st Report                                                                                                                                                                                                   | Project No.:<br>ReportNo:                     | MAT                                                                                     | 1188070011-05B<br>FH18-W00402-S02 |  |  |  |
| Client:                                                                                                                                            | Strata-G, L                                                       | LLC CC:                                                                                                                                                                                                     | This report shall not the written constent of | This report shall not be reproduced (in part or whole) without the written constant of: |                                   |  |  |  |
| Project:                                                                                                                                           | EMDF Site                                                         | e 7c Characterization                                                                                                                                                                                       |                                               |                                                                                         |                                   |  |  |  |
|                                                                                                                                                    | Oak Ridge                                                         | e, Tennessee                                                                                                                                                                                                |                                               | Tim                                                                                     | the a More of                     |  |  |  |
|                                                                                                                                                    |                                                                   |                                                                                                                                                                                                             | Reviewed By:                                  | Timothy                                                                                 | A. Moore, Jr.                     |  |  |  |
| Sample D                                                                                                                                           | etails                                                            |                                                                                                                                                                                                             |                                               |                                                                                         |                                   |  |  |  |
| Sample ID<br>Field Sam<br>Location<br>Sampled B<br>Date Sam<br>Date Com<br>Source<br>Material<br>Specificat<br>Sampling<br>Contracto<br>Dispersion | )<br>ple ID<br>pled<br>pleted<br>tion<br>Method<br>or<br>n Method | FH18-W00402-S02<br>GW992-SS2<br>Oak Ridge, Tennessee<br>Mike Partenio<br>2/16/2018<br>Geotechnical Drilling Samples<br>Native Existing Material<br>Unified Soil Classification System<br>Split Spoon<br>N/A |                                               |                                                                                         |                                   |  |  |  |
| Other Tes                                                                                                                                          | t Results                                                         | Mathad                                                                                                                                                                                                      | Bo                                            |                                                                                         | Limito                            |  |  |  |
| Water Con<br>Method<br>Date Teste                                                                                                                  | i <b>n</b><br>itent (%)<br>ed                                     | ASTM D 2216                                                                                                                                                                                                 | Res<br>2<br>                                  | sult<br>23.9<br>B<br>018                                                                |                                   |  |  |  |
| Dispersion<br>Dispersion<br>Shape<br>Hardness                                                                                                      | device<br>time (min)                                              | ASTM D 422                                                                                                                                                                                                  | Dispersion Cup and M                          | ixer<br>1                                                                               |                                   |  |  |  |



| Mater                                                                             | ial Test R                        | eport                                                                             |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | Project No.:<br>ReportNo:                                                                                                        | 118<br>MAT:FH18-                                                                                     | 8070011-05B<br>-W00402-S07               |  |
|-----------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Client:                                                                           | Strata-G, LLC                     | •                                                                                 |                                                                        | CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | This report shall not b                                                                                                          | e reproduced (in par                                                                                 | t or whole) without                      |  |
| Project:                                                                          | EMDF Site 7c C                    | haracterizatio                                                                    | n                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | the written constent or:                                                                                                         |                                                                                                      |                                          |  |
|                                                                                   | Oak Ridge, Ten                    | nessee                                                                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | Reviewed By:                                                                                                                     | Timothy A. Moor                                                                                      | a More of<br>re, Jr.                     |  |
| Sample D                                                                          | etails                            |                                                                                   |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                  |                                                                                                      |                                          |  |
| Sample ID<br>Field Sam<br>Location<br>Sampled I<br>Date Sam<br>Source<br>Material | ple ID<br>By<br>pled              | FH18-W0<br>GW992-S<br>Oak Ridg<br>Mike Part<br>2/16/2018<br>Geotechn<br>Native Ex | 0402-S0<br>S10<br>e, Tenne<br>enio<br>3<br>iical Drillii<br>iisting Ma | 7<br>ssee<br>ng Sample<br>iterial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | Sample Des                                                                                                                       | cription:                                                                                            |                                          |  |
| Specificat<br>Sampling<br>Contracto                                               | ion<br>Method<br>r                | Unified So<br>Split Spoo<br>N/A                                                   | oil Classi<br>on                                                       | fication Sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rstem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | Brown clayey                                                                                                                     | sand                                                                                                 |                                          |  |
| Particle S                                                                        | ize Distribution                  |                                                                                   |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | Grading: AS                                                                                                                      | TM D 422                                                                                             |                                          |  |
|                                                                                   |                                   |                                                                                   |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | Drying by:<br>Date Tested:<br>Tested By:                                                                                         | Oven<br>2/28/2018<br>Sheila Bowers                                                                   |                                          |  |
| 100<br>90<br>80<br>60<br>50<br>40<br>10<br>10<br>10<br>0<br>10                    | No.10                             | Ot on Ot of No.100                                                                |                                                                        | 113 June 113 | stant de la constant | 1.2 µm - 1.2 | Sieve Size<br>3/8in<br>No.4<br>No.10<br>No.40<br>No.200<br>29.1 μm<br>19.0 μm<br>11.3 μm<br>8.2 μm<br>5.8 μm<br>3.0 μm<br>1.2 μm | % Passing<br>100<br>99<br>86<br>54<br>41<br>37<br>24.8<br>21.5<br>18.1<br>15.6<br>13.9<br>9.8<br>8.1 | Limits                                   |  |
| COBBI ES                                                                          | GRAVFI                            |                                                                                   | SAND                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES                                                                                                              |                                                                                                                                  |                                                                                                      |                                          |  |
| (0.0%)                                                                            | Coarse (0.0%)         Fine (1.0%) | Coarse (13.0%)                                                                    | Medium<br>(32.0%)                                                      | Fine<br>(17.0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silt<br>(24.3%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clay<br>(12.7%)                                                                                                 | <b>D85:</b> 1.9055<br><b>D30:</b> 0.0436<br><b>Cu:</b> 183.41                                                                    | <ul><li>D60: 0.5682</li><li>D15: 0.0073</li><li>Cc: 1.08</li></ul>                                   | <b>D50:</b> 0.3085<br><b>D10:</b> 0.0031 |  |



|                                                                                                                                                 | Fax: (248) 48                                                      |                                                                                                                                                                                                              |                                                         |                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|--|--|
| Mater                                                                                                                                           | rial Tes                                                           | st Report                                                                                                                                                                                                    | Project No.:<br>ReportNo:                               | 1188070011-05B<br>MAT:FH18-W00402-S07 |  |  |
| Client:                                                                                                                                         | Strata-G, L                                                        | LC <b>CC</b> :                                                                                                                                                                                               | This report shall not be re<br>the written constent of: | eproduced (in part or whole) without  |  |  |
| Project:                                                                                                                                        | EMDF Site                                                          | e 7c Characterization                                                                                                                                                                                        |                                                         | 1                                     |  |  |
|                                                                                                                                                 | Oak Ridge                                                          | e, Tennessee                                                                                                                                                                                                 | AASHID                                                  | Simility a More of                    |  |  |
|                                                                                                                                                 |                                                                    |                                                                                                                                                                                                              | Reviewed By: Tin                                        | nothy A. Moore, Jr.                   |  |  |
| Sample D                                                                                                                                        | etails                                                             |                                                                                                                                                                                                              |                                                         |                                       |  |  |
| Sample ID<br>Field Sam<br>Location<br>Sampled<br>Date Sam<br>Date Com<br>Source<br>Material<br>Specificat<br>Sampling<br>Contracto<br>Dispersio | )<br>pple ID<br>pled<br>pleted<br>tion<br>Method<br>or<br>n Method | FH18-W00402-S07<br>GW992-SS10<br>Oak Ridge, Tennessee<br>Mike Partenio<br>2/16/2018<br>Geotechnical Drilling Samples<br>Native Existing Material<br>Unified Soil Classification System<br>Split Spoon<br>N/A |                                                         |                                       |  |  |
| Other Tes                                                                                                                                       | st Results                                                         |                                                                                                                                                                                                              |                                                         |                                       |  |  |
| Descriptio                                                                                                                                      | on                                                                 | Method                                                                                                                                                                                                       | Result                                                  | t Limits                              |  |  |
| Water Con<br>Method<br>Date Teste                                                                                                               | ed                                                                 | ASTM D 2216                                                                                                                                                                                                  | 15.5<br>E<br>3/1/2018                                   | ;<br>;<br>;                           |  |  |
| Dispersion<br>Dispersion<br>Shape                                                                                                               | device<br>time (min)                                               | ASTM D 422                                                                                                                                                                                                   | Dispersion Cup and Mixer                                |                                       |  |  |

# Comments

Hardness



| Mater                 | ial Te           | st Report                                          |                |                             |                            | Project<br>ReportN                 | No.:<br>lo:                | 11880<br>ASM:FH    | )70011-05E<br>18-W00403 |
|-----------------------|------------------|----------------------------------------------------|----------------|-----------------------------|----------------------------|------------------------------------|----------------------------|--------------------|-------------------------|
| Client:               | Strata-G,        | LLC                                                |                | CC:                         |                            | This report                        | shall not be rep           | roduced (in part c | r whole) without        |
| Project:              | EMDF S           | ite 7c Characterization                            | ı              |                             |                            |                                    |                            |                    |                         |
|                       | Oak Rido         | ge, Tennessee                                      |                |                             |                            | AASH                               |                            | mothy a            | More /                  |
|                       |                  |                                                    |                |                             |                            | IVENIEWE                           |                            |                    | , JI.                   |
| Material              | Details          |                                                    |                |                             |                            |                                    |                            |                    |                         |
| Source<br>Description | n                | Geotechnical Drilling S<br>Native Existing Materia | amples<br>I    | Sample<br>Locatio<br>Sampli | ed From<br>on<br>ng Method | Split Spo<br>Oak Ride<br>Split Spo | oon<br>ge, Tennesse<br>oon | e                  |                         |
| Sample                | Dotaile          | 0000                                               |                | Gamph                       | ing method                 | opintope                           |                            |                    |                         |
|                       | Details          | EL                                                 | 19 100402 50 5 | U18 W00402 S0 E             | U18 W00402 S0 E            | U18 W00402 S0 E                    | 119 100402 50              |                    |                         |
| Sample ID             |                  | FF                                                 | GW00403-30 F   | GW00403-S0 F                | GW00403-S0 F               | GW994-SS6                          | GW/994-SS8                 | GW994-SS10         |                         |
| Field Samp            |                  |                                                    | 2/16/2018      | 2/16/2018                   | 2/16/2018                  | 2/16/2018                          | 2/16/2018                  | 2/16/2018          |                         |
| Other Te              | est Resul        | ts                                                 | 2/10/2010      | 2/10/2010                   | 2/10/2010                  | 2/10/2010                          | 2/10/2010                  | 2/10/2010          |                         |
| Description           | n                | Method                                             |                |                             | Rosi                       | ılte                               |                            |                    | l imits                 |
| Water Conte           | ent (%)          | ASTM D 2216                                        | 22.8           | 23.6                        | 21.7                       | 39.2                               | 24.4                       | 16.6               | Liiiits                 |
| Method                | (,,,,            |                                                    | В              | В                           | В                          | В                                  | В                          | В                  |                         |
| Approximate m         | aximum grain si  | ze ASTM D 4318                                     |                |                             |                            |                                    |                            |                    |                         |
| Material retained     | on 425µm (No. 40 | 0) (%)                                             |                |                             |                            |                                    |                            |                    |                         |
| Crooving To           | emoval           |                                                    | Motal          |                             |                            |                                    |                            |                    |                         |
| Specimen p            | reparation me    | athod                                              | Wet            |                             |                            |                                    |                            |                    |                         |
| Drving Meth           | od               |                                                    | Δir            |                             |                            |                                    |                            |                    |                         |
| Special sele          | ction process    |                                                    | Quartering     |                             |                            |                                    |                            |                    |                         |
| Rolling Meth          | od for Pl        |                                                    | Hand           |                             |                            |                                    |                            |                    |                         |
| As Received W         | /ater Content (% | 5)                                                 | 22.8           |                             |                            |                                    |                            |                    |                         |
| Liguid Limit          | Device Type      |                                                    | Manual         |                             |                            |                                    |                            |                    |                         |
| Liquid Limit          | 51               |                                                    | 47             |                             |                            |                                    |                            |                    |                         |
| Plastic Limit         |                  |                                                    | 18             |                             |                            |                                    |                            |                    |                         |
| Plasticity Ind        | lex              |                                                    | 29             |                             |                            |                                    |                            |                    |                         |
| Liquid Limit          | Procedure        |                                                    | Multipoint (A) |                             |                            |                                    |                            |                    |                         |
| Method                |                  | ASTM D 6913                                        |                |                             | Method B                   |                                    |                            |                    |                         |
| Sample Obta           | ained While      |                                                    |                |                             | Air-Dried                  |                                    |                            |                    |                         |
| Group Name            | e                |                                                    |                |                             | Lean clay                  |                                    |                            |                    |                         |
| Group Symb            | lool             |                                                    |                |                             | CL                         |                                    |                            |                    |                         |
| Composite S           | Sieving Used     |                                                    |                |                             | No                         |                                    |                            |                    |                         |
| Dispersion N          | /lethod          |                                                    |                |                             | Dispersant by hand         |                                    |                            |                    |                         |
| Prior Testing         | 9                |                                                    |                |                             | Moisture                   |                                    |                            |                    |                         |

Comments



|                                                   |                      |                                                            |                                            |                                             |                                            |                                             |                                                    | Fax: (248) 486-5050               |
|---------------------------------------------------|----------------------|------------------------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------|
| Mater                                             | ial Te               | st Report                                                  |                                            |                                             |                                            | Project<br>Report                           | No.:<br>lo:                                        | 1188070011-05B<br>ASM:FH18-W00403 |
| Client:                                           | Strata-G             | , LLC                                                      |                                            | CC:                                         |                                            | This report s                               | shall not be reprod                                | luced (in part or whole) without  |
| Project:                                          | EMDF S               | Site 7c Characterizatio                                    | n                                          |                                             |                                            |                                             |                                                    |                                   |
|                                                   | Oak Ridge, Tennessee |                                                            |                                            |                                             |                                            | AASH                                        | in Ju                                              | methy a More of                   |
|                                                   |                      |                                                            |                                            |                                             |                                            | Reviewe                                     | d By: Timoth                                       | y A. Moore, Jr.                   |
| Material                                          | Details              |                                                            |                                            |                                             |                                            |                                             |                                                    |                                   |
| SourceGeotDescriptionNativSpecificationUSC        |                      | Geotechnical Drilling S<br>Native Existing Materia<br>USCS | amples<br>al                               | oles Sampled F<br>Location<br>Sampling      |                                            | Split Spc<br>Oak Ride<br>Split Spc          | Split Spoon<br>Oak Ridge, Tennessee<br>Split Spoon |                                   |
| Sample I                                          | Details              |                                                            |                                            |                                             |                                            |                                             |                                                    |                                   |
| Sample ID<br>Field Samp<br>Date Samp              | le ID<br>led         | Fł                                                         | 118-W00403-S0 F<br>GW994-SS12<br>2/16/2018 | -H18-W00403-S0 F<br>GW994-SS14<br>2/16/2018 | H18-W00403-S0 F<br>GW994-SS15<br>2/16/2018 | -H18-W00403-S1 F<br>GW994-SS17<br>2/16/2018 | H18-W00403-S1<br>GW994-SS18<br>2/16/2018           |                                   |
| Other Te                                          | st Resu              | lts                                                        |                                            |                                             |                                            |                                             |                                                    |                                   |
| Description                                       | 1                    | Method                                                     |                                            |                                             | Res                                        | ults                                        |                                                    | Limits                            |
| Water Conter<br>Method                            | nt (%)               | ASTM D 2216                                                | 18.7<br>B                                  | 13.6<br>B                                   | 13.3<br>B                                  | 15.9<br>B                                   | 14.6<br>B                                          |                                   |
| Method<br>Sample Obta<br>Group Name<br>Group Symb | ained While          | ASTM D 6913                                                |                                            | Method B<br>Air-Dried                       |                                            |                                             |                                                    |                                   |
| Composite S                                       | ieving Used          | 1                                                          |                                            | No<br>Dispersant by hand                    |                                            |                                             |                                                    |                                   |
| Drier Testing                                     | 100.00               |                                                            |                                            | Moisture                                    |                                            |                                             |                                                    |                                   |



| Mater                                                                 | laterial Test Report         |                                                                            |                                                          |       |         | Project No.:<br>ReportNo:                                                                                     | 118<br>MAT:FH18                                                                                    | 8070011-05B<br>-W00403-S03 |
|-----------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|-------|---------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------|
| Client:                                                               | Strata-G, LLC                |                                                                            | C                                                        | C:    |         | This report shall not the written constent of                                                                 | be reproduced (in pa                                                                               | rt or whole) without       |
| Project:                                                              | EMDF Site 7c C               | haracterization                                                            |                                                          |       |         |                                                                                                               | 0                                                                                                  |                            |
|                                                                       | Oak Ridge, Ten               | nessee                                                                     |                                                          |       |         | AASHIO<br>Reviewed By:                                                                                        | Timothy A. Moo                                                                                     | a More of<br>re, Jr.       |
| Sample D                                                              | etails                       |                                                                            |                                                          |       |         |                                                                                                               |                                                                                                    |                            |
| Sample ID<br>Field Sam<br>Location<br>Sampled B<br>Date Sam<br>Source | ple ID<br>3y<br>bled         | FH18-W00<br>GW994-SS<br>Oak Ridge<br>Mike Parte<br>2/16/2018<br>Geotechnic | 403-S03<br>34<br>, Tennessee<br>nio<br>cal Drilling Samp | oles  |         |                                                                                                               |                                                                                                    |                            |
| Material<br>Specificat                                                | ion                          | Native Exis                                                                | ting Material                                            |       |         | Sample Des                                                                                                    | scription:                                                                                         |                            |
| Sampling<br>Contracto                                                 | Method<br>r                  | Split Spoor<br>N/A                                                         | 1                                                        |       |         | Brown mottle                                                                                                  | d lean clay (CL)                                                                                   |                            |
| Particla S                                                            | izo Distribution             |                                                                            |                                                          |       |         | Grading: AS                                                                                                   | STM D 6913                                                                                         |                            |
|                                                                       |                              |                                                                            |                                                          |       |         | Drying by:<br>Date Tested:<br>Tested By:                                                                      | Oven<br>3/2/2018<br>David Cook                                                                     |                            |
| % Pas                                                                 | ssing                        |                                                                            |                                                          |       |         | Siovo Sizo                                                                                                    | % Passing                                                                                          | l imite                    |
| 100                                                                   | 9.5mm                        | 2.00mm<br>1.18mm<br>1.18mm<br>Sieve                                        | 600µm<br>425µm<br>300µm                                  | 150µm | 76µm    | Sieve Size<br>1⁄₂in<br>3/8in<br>No.4<br>No.8<br>No.10<br>No.16<br>No.30<br>No.40<br>No.50<br>No.100<br>No.200 | % Passing<br>100.0<br>99.7<br>99.4<br>98.6<br>98.4<br>97.7<br>97.1<br>96.9<br>96.4<br>94.6<br>90.0 | Limits                     |
| COBBLES                                                               | GRAVEL                       | 5                                                                          | SAND                                                     | FINES | (90.0%) |                                                                                                               |                                                                                                    |                            |
| (0.0%)                                                                | Coarse Fine<br>(0.0%) (0.6%) | Coarse M<br>(1.0%) (                                                       | edium Fine<br>1.5%) (6.9%)                               | Silt  | Clay    | <b>D85:</b> N/A<br><b>D30:</b> N/A                                                                            | D60: N/A<br>D15: N/A                                                                               | D50: N/A<br>D10: N/A       |



|                        |                               |     | - ( - /                                                                                 |
|------------------------|-------------------------------|-----|-----------------------------------------------------------------------------------------|
| Mate                   | rial Test Report              |     | Project No.:         1188070011-05B           ReportNo:         MAT:FH18-W00403-S03     |
| Client:                | Strata-G, LLC                 | CC: | This report shall not be reproduced (in part or whole) without the written constent of: |
| Project:               | EMDF Site 7c Characterization |     |                                                                                         |
|                        | Oak Ridge, Tennessee          |     | AASHID Simethy a More of                                                                |
|                        |                               |     | Reviewed By: Timothy A. Moore, Jr.                                                      |
| Sample D               | Details                       |     |                                                                                         |
| Sample II<br>Field Sam | D FH18-W00403-S03             | 3   |                                                                                         |

| ••••••••          |
|-------------------|
| Field Sample ID   |
| Location          |
| Sampled By        |
| Date Sampled      |
| Date Completed    |
| Source            |
| Material          |
| Specification     |
| Sampling Method   |
| Contractor        |
| Dispersion Method |

Oak Ridge, Tennessee Mike Partenio 2/16/2018 Geotechnical Drilling Samples Native Existing Material USCS Split Spoon N/A

#### **Other Test Results**

| Description            | Method      | Result             | Limits |
|------------------------|-------------|--------------------|--------|
| Water Content (%)      | ASTM D 2216 | 21.7               |        |
| Method                 |             | В                  |        |
| Date Tested            |             | 3/1/2018           |        |
| Method                 | ASTM D 6913 | Method B           |        |
| Sample Obtained While  |             | Air-Dried          |        |
| Group Name             |             | Lean clay          |        |
| Group Symbol           |             | CL                 |        |
| Composite Sieving Used |             | No                 |        |
| Dispersion Method      |             | Dispersant by hand |        |
| Prior Testing          |             | Moisture           |        |



| Mater                                                                    | ial Test R                   | eport                                                                                                  |                         |            | Project No.:<br>ReportNo:                                                                                   | 118<br>MAT:FH18-                                                                                          | 8070011-05B<br>W00403-S08             |
|--------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|
| Client:                                                                  | Strata-G, LLC                | -                                                                                                      | CC:                     |            | This report shall not be                                                                                    | e reproduced (in par                                                                                      | t or whole) without                   |
| Project:                                                                 | EMDF Site 7c Ch              | naracterization                                                                                        |                         |            |                                                                                                             |                                                                                                           |                                       |
|                                                                          | Oak Ridge, Teni              | nessee                                                                                                 |                         |            | Reviewed By: 1                                                                                              | Timothy A. Moor                                                                                           | a Mare A                              |
| Sample De                                                                | etails                       |                                                                                                        |                         |            |                                                                                                             |                                                                                                           |                                       |
| Sample ID<br>Field Sam<br>Location<br>Sampled E<br>Date Sam<br>Source    | ple ID<br>3y<br>bled         | FH18-W00403-S0<br>GW994-SS14<br>Oak Ridge, Tenne<br>Mike Partenio<br>2/16/2018<br>Geotechnical Drillin | 8<br>ssee<br>ng Samples |            |                                                                                                             |                                                                                                           |                                       |
| Material<br>Specificat                                                   | ion                          | Native Existing Ma                                                                                     | terial                  |            | Sample Des                                                                                                  | cription:                                                                                                 |                                       |
| Sampling<br>Contractor                                                   | Method<br>r                  | Split Spoon<br>N/A                                                                                     |                         |            | Brown clayey                                                                                                | sand                                                                                                      |                                       |
| Particla Si                                                              | izo Distribution             |                                                                                                        |                         |            | Grading: AS                                                                                                 | TM D 6913                                                                                                 |                                       |
|                                                                          |                              |                                                                                                        |                         |            | Drying by:<br>Date Tested:<br>Tested By:                                                                    | Oven<br>3/2/2018<br>David Cook                                                                            |                                       |
| % Pas                                                                    | ssing                        |                                                                                                        |                         |            |                                                                                                             |                                                                                                           |                                       |
| 100 - 4<br>90<br>80<br>60<br>50<br>30<br>10<br>10<br>0<br>10<br>10<br>10 | 9.5mm                        | Sieve                                                                                                  | 300µm+                  | Z6um       | Sieve Size<br>½in<br>3/8in<br>No.4<br>No.8<br>No.10<br>No.16<br>No.30<br>No.40<br>No.50<br>No.100<br>No.200 | <b>% Passing</b><br>100.0<br>97.3<br>90.8<br>77.6<br>75.4<br>64.6<br>54.2<br>50.2<br>46.4<br>39.7<br>33.9 | Limits                                |
|                                                                          | GRAVE                        | SAND                                                                                                   | FIN                     | FS (33.9%) |                                                                                                             |                                                                                                           |                                       |
| (0.0%)                                                                   | Coarse Fine<br>(0.0%) (9.2%) | Coarse (15.4%) (25.2%)                                                                                 | Fine<br>(16.3%) Silt    | t Clay     | D85: 3.4931<br>D30: N/A                                                                                     | <b>D60:</b> 0.8749<br><b>D15:</b> N/A                                                                     | <b>D50:</b> 0.4173<br><b>D10:</b> N/A |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                             | Fax: (248) 486-5050                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|
| aterial Test Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oort                                                                                                   | Project No.:<br>ReportNo:                   | 1188070011-05B<br>MAT:FH18-W00403-S08            |
| nt: Strata-G, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CC:                                                                                                    | This report shall no<br>the written consten | t be reproduced (in part or whole) without t of: |
| ject: EMDF Site 7c Char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cterization                                                                                            |                                             | 1                                                |
| Oak Ridge, Tenne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iee                                                                                                    | AASHID                                      | Similty a Moore of                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        | Reviewed By:                                | Timothy A. Moore, Jr.                            |
| nple Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                             |                                                  |
| mple IDFH18Ald Sample IDGW99cationOak Fmpled ByMikeite Sampled2/16/2ite CompletedOak FourceGeoteaterialNativepecificationUSCSimpling MethodSplit SontractorN/Aspersion Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V00403-S08<br>-SS14<br>Ige, Tennessee<br>artenio<br>18<br>hnical Drilling Samples<br>Existing Material |                                             |                                                  |
| Ald Sample ID     GW99       cation     Oak F       mpled By     Mike       inte Sampled     2/16/2       interial     Completed       interial     Native       interial     Native< | -SS14<br>Jge, Tennessee<br>artenio<br>18<br>hnical Drilling Samples<br>Existing Material               |                                             |                                                  |

#### **Other Test Results**

| Description            | Method      | Result             | Limits |
|------------------------|-------------|--------------------|--------|
| Water Content (%)      | ASTM D 2216 | 13.6               |        |
| Method                 |             | В                  |        |
| Date Tested            |             | 3/1/2018           |        |
| Method                 | ASTM D 6913 | Method B           |        |
| Sample Obtained While  |             | Air-Dried          |        |
| Group Name             |             |                    |        |
| Group Symbol           |             |                    |        |
| Composite Sieving Used |             | No                 |        |
| Dispersion Method      |             | Dispersant by hand |        |
| Prior Testing          |             | Moisture           |        |



| Materia                                  | al Test I                                | Report                                 |                                          |                                           | Project N<br>ReportNe                      |                                                                                        |                                           | No.: 1188070011-0<br>No: ASM:FH18-W004              |                   |  |
|------------------------------------------|------------------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|-------------------|--|
| Client:                                  | Strata-G, LLC                            | <b>-</b>                               |                                          | CC:                                       |                                            | This report shall not be reproduced (in part or whole) without the written constant of |                                           |                                                     | or whole) without |  |
| Project:                                 | EMDF Site 7c                             | Characterizatior                       | า                                        |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
|                                          | Oak Ridge, Te                            | ennessee                               |                                          |                                           |                                            | Reviewe                                                                                | d By: Timot                               | inthe a                                             | , Jr.             |  |
| Material D                               | )etails                                  |                                        |                                          |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| Source<br>Description<br>Specification   | Geote<br>Native<br>NSCS                  | chnical Drilling S<br>Existing Materia | amples<br>I                              | Sample<br>Locatio<br>Sampli               | ed From<br>on<br>ng Method                 | Split Spo<br>Oak Rido<br>Split Spo                                                     | oon<br>ge, Tennesse<br>oon                | e                                                   |                   |  |
| Sample D                                 | etails                                   |                                        |                                          |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| Sample ID<br>Field Sample<br>Date Sample | e ID<br>ed                               | FH                                     | 18-W00404-S0 F<br>GW998-SS1<br>2/14/2018 | H18-W00404-S0 F<br>GW998-SS2<br>2/14/2018 | ัH18-W00404-S0 F<br>GW998-SS3<br>2/14/2018 | H18-W00404-S0 F<br>GW998-SS4<br>2/14/2018                                              | H18-W00404-S0 F<br>GW998-SS5<br>2/14/2018 | H18-W00404-S0<br>GW998-SS <sup>7</sup><br>2/14/2018 |                   |  |
| <b>Other Tes</b>                         | t Results                                |                                        |                                          |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| Description<br>Water Content<br>Method   | t (%)                                    | Method<br>ASTM D 2216                  | 18.9<br>B                                | 22.0<br>B                                 | <b>Res</b> ı<br>27.4<br>B                  | <b>JIts</b><br>18.6<br>B                                                               | 26.0<br>B                                 | 23.8<br>B                                           | Limits            |  |
| Approximate max<br>Material retained or  | timum grain size<br>n 425µm (No. 40) (%) | ASTM D 4318                            |                                          |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| Grooving Tool                            | Type<br>paration method                  |                                        | Metal<br>Wet                             |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| Drying Method<br>Special selecti         | d<br>ion process<br>d for Pl             |                                        | Air<br>Quartering<br>Hand                |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| As Received Wat                          | er Content (%)                           |                                        | 27.4                                     |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| Liquid Limit De<br>Liquid Limit          | evice Type                               |                                        | Manual<br>38                             |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| Plastic Limit                            |                                          |                                        | 22                                       |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| Liquid Limit Pr                          | x<br>ocedure                             |                                        | Multipoint (A)                           |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |
| Method<br>Sample Obtair<br>Group Name    | ned While                                | ASTM D 6913                            |                                          |                                           |                                            | Method B<br>Air-Dried                                                                  |                                           |                                                     |                   |  |
| Group Symbol<br>Composite Sie            | l<br>eving Used                          |                                        |                                          |                                           |                                            | No                                                                                     |                                           |                                                     |                   |  |
|                                          | ethod                                    |                                        |                                          |                                           |                                            |                                                                                        |                                           |                                                     |                   |  |



|            |          |                          |             |                 |                                                         | Fax: (248) 486-5050                 |
|------------|----------|--------------------------|-------------|-----------------|---------------------------------------------------------|-------------------------------------|
| Mater      | rial Te  | est Report               |             |                 | Project No.:<br>ReportNo:                               | 1188070011-05B<br>ASM:FH18-W00404   |
| Client:    | Strata-G | , LLC                    |             | CC:             | This report shall not be re<br>the written constent of: | produced (in part or whole) without |
| Project:   | EMDF     | Site 7c Characterization |             |                 |                                                         | 1                                   |
|            | Oak Rid  | lge, Tennessee           |             |                 |                                                         | Simility a More of                  |
|            |          |                          |             |                 | Reviewed By: Tim                                        | othy A. Moore, Jr.                  |
| Meterial   | Detelle  |                          |             |                 |                                                         |                                     |
| wateria    | Details  |                          |             |                 |                                                         |                                     |
| Source     |          | Geotechnical Drilling Sa | mples       | Sampled From    | Split Spoon                                             |                                     |
| Descriptio | on       | Native Existing Material |             | Location        | Oak Ridge, Tennes                                       | see                                 |
| Specificat | ion      | USCS                     |             | Sampling Method | Split Spoon                                             |                                     |
| Sample     | Details  |                          |             |                 |                                                         |                                     |
| Sample ID  | )        | FH18                     | 3-W00404-S0 |                 |                                                         |                                     |
| Field Sam  | ple ID   | (                        | 3W998-SS9   |                 |                                                         |                                     |
| Date Sam   | pled     |                          | 2/14/2018   |                 |                                                         |                                     |
| Other Te   | est Resi | ılts                     |             |                 |                                                         |                                     |
| Descriptio | n        | Method                   |             | Resu            | ults                                                    | Limits                              |
| Water Cont | ent (%)  | ASTM D 2216              | 15.4        |                 |                                                         |                                     |
| Method     |          |                          | В           |                 |                                                         |                                     |



| Mater                                                                   | ial Test R                        | eport                                                                      |                                                 |                        |                                        |          | Project No.:<br>ReportNo:                | 118<br>MAT:FH18                           | 8070011-05B<br>-W00404-S04            |
|-------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|------------------------|----------------------------------------|----------|------------------------------------------|-------------------------------------------|---------------------------------------|
| Client:                                                                 | Strata-G, LLC                     |                                                                            |                                                 | CC:                    |                                        |          | This report shall not b                  | e reproduced (in par                      | t or whole) without                   |
| Project:                                                                | EMDF Site 7c Ch                   | naracterization                                                            | l                                               |                        |                                        |          |                                          |                                           |                                       |
|                                                                         | Oak Ridge, Teni                   | nessee                                                                     |                                                 |                        |                                        |          | Reviewed By:                             | Similary C                                | a More fr<br>re, Jr.                  |
| Sample De                                                               | etails                            |                                                                            |                                                 |                        |                                        |          |                                          |                                           |                                       |
| Sample ID<br>Field Samp<br>Location<br>Sampled E<br>Date Samp<br>Source | ole ID<br>Sy<br>bled              | FH18-W00<br>GW998-SS<br>Oak Ridge<br>Mike Parte<br>2/14/2018<br>Geotechnic | 404-S04<br>54<br>, Tennes<br>nio<br>cal Drillir | t<br>ssee<br>ng Sample | :S                                     |          |                                          |                                           |                                       |
| Specificati                                                             | on                                | USCS                                                                       | sting ivia                                      | terial                 |                                        |          | Sample Des                               | cription:                                 |                                       |
| Sampling<br>Contractor                                                  | Method                            | Split Spoor<br>N/A                                                         | า                                               |                        |                                        |          | Brown clayey                             | sand                                      |                                       |
| Dorticlo Si                                                             | Distribution                      |                                                                            |                                                 |                        |                                        |          | Grading: AS                              | TM D 6913                                 |                                       |
| % Pas                                                                   | sing                              |                                                                            |                                                 |                        |                                        |          | Drying by:<br>Date Tested:<br>Tested By: | Oven<br>3/2/2018<br>David Cook            |                                       |
| 100<br>90                                                               | $\overline{)}$                    | ·····                                                                      |                                                 |                        |                                        |          | Sieve Size<br>½in<br>3/8in<br>No.4       | <b>% Passing</b><br>100.0<br>99.9<br>95.7 | Limits                                |
| 80+++                                                                   | ********                          | /                                                                          | ********                                        |                        |                                        |          | No.8                                     | 84.9<br>82 9                              |                                       |
| 70 - · · ·<br>60 - · ·                                                  |                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                    |                                                 |                        | •••••••••••••••••••••••••••••••••••••• | ****     | No.16<br>No.30                           | 73.3<br>63.2                              |                                       |
| 50+                                                                     |                                   | ••••••                                                                     |                                                 |                        |                                        |          | No.50                                    | 56.5<br>53.6                              |                                       |
| 40 - • •                                                                |                                   |                                                                            |                                                 |                        | -                                      | <b>u</b> | No.100<br>No.200                         | 44.3<br>37.3                              |                                       |
| 30 - · ·                                                                |                                   |                                                                            |                                                 |                        | • • • • • • • • • •                    |          |                                          |                                           |                                       |
| 20 + · ·                                                                |                                   |                                                                            |                                                 |                        | irmini.                                |          |                                          |                                           |                                       |
| 10                                                                      |                                   | ••••••                                                                     |                                                 |                        |                                        | *****    |                                          |                                           |                                       |
| 0 - E                                                                   | EEI                               | EE E                                                                       | EE                                              | E                      | E                                      | E        |                                          |                                           |                                       |
| 12.5 <u>1</u>                                                           | 9.5m<br>4.75m                     | Siev                                                                       | 600µ<br>425µ                                    | 300                    | 150                                    | 75µ      |                                          |                                           |                                       |
| COBBLES                                                                 | GRAVEI                            |                                                                            |                                                 |                        | FINES                                  | (37.3%)  | л II                                     |                                           |                                       |
| (0.0%)                                                                  | Coarse (0.0%)         Fine (4.3%) | Coarse M<br>(12.8%) (2                                                     | edium<br>24.4%)                                 | Fine<br>(21.2%)        | Silt                                   | Clay     | <b>D85:</b> 2.3753<br><b>D30:</b> N/A    | <b>D60:</b> 0.4744<br><b>D15:</b> N/A     | <b>D50:</b> 0.2294<br><b>D10:</b> N/A |



|                                                                       |                                        |                                                                                    |                           |                                       |                                                   | 1 ux: (2+0) +00 0000                         |
|-----------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------|---------------------------|---------------------------------------|---------------------------------------------------|----------------------------------------------|
| Mate                                                                  | rial Test                              | t Report                                                                           | Project No.:<br>ReportNo: | 1188070011-05B<br>MAT:FH18-W00404-S04 |                                                   |                                              |
| Client:                                                               | Strata-G, LL                           | С                                                                                  | CC:                       |                                       | This report shall not b<br>the written constent o | be reproduced (in part or whole) without of: |
| Project:                                                              | EMDF Site                              | 7c Characterization                                                                |                           |                                       |                                                   | and man A                                    |
|                                                                       | Oak Ridge, Tennessee                   |                                                                                    |                           |                                       | AASHIO                                            | Simothy a More of                            |
|                                                                       |                                        |                                                                                    |                           |                                       | Reviewed By:                                      | Timothy A. Moore, Jr.                        |
| Sample D                                                              | Details                                |                                                                                    |                           |                                       |                                                   |                                              |
| Sample II<br>Field Sam<br>Location<br>Sampled<br>Date Sam<br>Date Com | D<br>nple ID<br>By<br>npled<br>npleted | FH18-W00404-S04<br>GW998-SS4<br>Oak Ridge, Tennessee<br>Mike Partenio<br>2/14/2018 |                           |                                       |                                                   |                                              |
| Source                                                                | -                                      | Geotechnical Drilling Sample                                                       | S                         |                                       |                                                   |                                              |

Dispersion Method Other Test Results

Specification Sampling Method Native Existing Material

USCS Split Spoon

N/A

Material

Contractor

| Description            | Method      | Result             | Limits |
|------------------------|-------------|--------------------|--------|
| Water Content (%)      | ASTM D 2216 | 18.6               |        |
| Method                 |             | В                  |        |
| Date Tested            |             | 3/13/2018          |        |
| Method                 | ASTM D 6913 | Method B           |        |
| Sample Obtained While  |             | Air-Dried          |        |
| Group Name             |             |                    |        |
| Group Symbol           |             |                    |        |
| Composite Sieving Used |             | No                 |        |
| Dispersion Method      |             | Dispersant by hand |        |
| Prior Testing          |             | Moisture           |        |

Appendix E.2 – Bulk Soil Sample Testing

This Page Intentionally Left Blank.

| ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |                             |                                                                                                                                                                | 28001 Cabot Drive, Suite 250<br>Novi, MI 48377<br>Phone: (248) 486-5100<br>Fax: (248) 486-5050 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Procto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or Report                                                                                                                                                   |                             | Project No.:<br>ReportNo:                                                                                                                                      | 1188070011-05B<br>PTR:FH18-W00468-S01                                                          |
| Client:<br>Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Strata-G, LLC CC<br>EMDF Site 7c Characterization<br>Oak Ridge, Tennessee                                                                                   | :                           | This report shall not be<br>the written constent of                                                                                                            | e reproduced (in part or whole) without                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                             | Reviewed By: F                                                                                                                                                 | Peng Lor                                                                                       |
| Sample D<br>Sample ID:<br>Date Sample<br>Sampling Me<br>Contractor:<br>Source:<br>Material:<br>Specification<br>Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | etails<br>FH18-W00468-S01<br>d: 2/21/2018<br>ethod: In-Place<br>N/A<br>Geotechnical Drilling Samples<br>Native Existing Material<br>n: N/A<br>Boring Spoils | Field Sample<br>Sampled By: | <b>ID:</b> GW979<br>Mike Partenio                                                                                                                              |                                                                                                |
| Tested By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sheila Bowers                                                                                                                                               | Date Tested:                | 3/16/2018                                                                                                                                                      |                                                                                                |
| 115.<br>114.<br>(Luc) (Ip()(Luc)<br>(Luc) (Ip()(Luc)<br>(Luc) (Ip()(Luc)<br>(Luc) (Ip()(Luc)<br>(Luc) (Ip()(Luc)<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Luc))<br>(Ip()(Ip()))<br>(Ip()(Luc))<br>(Ip()( | 0% Air Voids                                                                                                                                                | 0. 20.0 21.0                | A:<br>Maximum Dry Unit V<br>(Ibf/ft <sup>3</sup> ):<br>Optimum Water Cor<br>Method:<br>Preparation Method:<br>Specific Gravity (Fines):<br>Visual Description: | STM D 1557<br>Veight 114.8<br>Itent (%): 13.5<br>B<br>Moist<br>2.70<br>Redish/Brown Clay       |

| ct                                                                                                                                                |                                                                                                                                                                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28001 Cabot Drive, Suite 250<br>Novi, MI 48377<br>Phone: (248) 486-5100<br>Fax: (248) 486-5050    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Proctor                                                                                                                                           | Report                                                                                                                                                          |                                             | Project No.:<br>ReportNo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1188070011-05B<br>PTR:FH18-W00468-S02                                                             |
| Client: Stra<br>Project: EM<br>Oa                                                                                                                 | ata-G, LLC <b>CC:</b><br>IDF Site 7c Characterization<br>k Ridge, Tennessee                                                                                     |                                             | This report shall not the written constent of the written constant of the writ | be reproduced (in part or whole) without<br>of:<br>Pengda<br>Peng Lor                             |
| Sample Deta<br>Sample ID:<br>Date Sampled:<br>Sampling Method<br>Contractor:<br>Source:<br>Material:<br>Specification:<br>Location:<br>Tested By: | ils<br>FH18-W00468-S02<br>2/23/2018<br>d: In-Place<br>N/A<br>Geotechnical Drilling Samples<br>Native Existing Material<br>N/A<br>Boring Spoils<br>Sheila Bowers | Field Sample<br>Sampled By:<br>Date Tested: | ID: GW981<br>Mike Partenio<br>3/16/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |
| Dry Unit Wei                                                                                                                                      | ght - Water Content Relationship<br>0% Air Voids                                                                                                                | 3.0 19.0                                    | Test Results<br>Maximum Dry Unit<br>Optimum Water Co<br>Method:<br>Preparation Method:<br>Specific Gravity (Fines<br>Visual Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASTM D 1557<br>Weight (Ibf/ft³): 120.7<br>ontent (%): 13.9<br>B<br>Moist<br>): 2.70<br>Brown Clay |



| Mater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ial Test R                     | eport                                                                                                     |                  |                                       |                                               | Project No.:<br>ReportNo:                                                                                                                                                                                                        | 118<br>MAT:FH18                                                                                                                         | 8070011-05B<br>-W00468-S03            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Strata-G, LLC                  | -                                                                                                         | CC               | :                                     |                                               | This report shall not b                                                                                                                                                                                                          | e reproduced (in par                                                                                                                    | t or whole) without                   |
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EMDF Site 7c Ch                | aracterization                                                                                            |                  |                                       |                                               | 15                                                                                                                                                                                                                               |                                                                                                                                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Oak Ridge, Tenn                | essee                                                                                                     |                  |                                       |                                               |                                                                                                                                                                                                                                  | Fengolo                                                                                                                                 | e                                     |
| Sample D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | etails                         |                                                                                                           |                  |                                       |                                               | Reviewed By: H                                                                                                                                                                                                                   | Peng Lor                                                                                                                                |                                       |
| Sample ID<br>Field Sam<br>Location<br>Sampled I<br>Date Sam<br>Date Com<br>Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ple ID<br>3y<br>bled<br>pleted | FH18-W00468-S0<br>GW983<br>Boring Spoils<br>Mike Partenio<br>2/21/2018<br>3/13/2018<br>Geotechnical Drill | )3<br>ing Sample | 95                                    |                                               | Sample Des                                                                                                                                                                                                                       | cription:                                                                                                                               |                                       |
| Material<br>Specificat<br>Sampling<br>Contracto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion<br>Method<br>r             | Native Existing M<br>N/A<br>In-Place<br>N/A                                                               | aterial          |                                       |                                               | Brown Sandy                                                                                                                                                                                                                      | Clay                                                                                                                                    |                                       |
| Particle S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ize Distribution               |                                                                                                           |                  |                                       |                                               | Grading: AS                                                                                                                                                                                                                      | TM D 422                                                                                                                                |                                       |
| % Pas<br>100<br>90<br><br>80<br><br>60<br><br>50<br><br>40<br><br>10<br><br>10<br><br>60<br><br>10<br><br>10<br><br>10<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br><br>100<br> | ssing                          | No.10<br>Mo.100<br>Sieve                                                                                  | 16.7 Jun         | 11.3 µm<br>8.1 µm<br>5.8 µm<br>2.9 µm | 1.2 jm } :/ : : : : : : : : : : : : : : : : : | Date Tested:         Tested By:         Sieve Size         ½in         3/8in         No.4         No.10         No.40         No.100         No.200         28.0 µm         18.7 µm         5.8 µm         2.9 µm         1.2 µm | 3/22/2018<br>David Cook<br>% Passing<br>100<br>99<br>96<br>87<br>74<br>67<br>59<br>41.8<br>33.4<br>27.4<br>23.8<br>21.4<br>16.8<br>13.2 | Limits                                |
| COBBLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GRAVEL                         | SAND                                                                                                      |                  | FINE                                  | ES                                            |                                                                                                                                                                                                                                  | <b>Doo</b> 0.0040                                                                                                                       |                                       |
| (0.0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coarse Fine<br>(0.0%) (4.0%)   | Coarse (9.0%) (13.0%)                                                                                     | Fine<br>(15.0%)  | Silt<br>(38.9%)                       | Clay<br>(20.1%)                               | <b>D85:</b> 1.5760<br><b>D30:</b> 0.0141                                                                                                                                                                                         | D60: 0.0818<br>D15: 0.0019                                                                                                              | <b>D50:</b> 0.0448<br><b>D10:</b> N/A |



| Mate     | rial Test Report              | Project No.:<br>ReportNo: | 1188070011-05B<br>MAT:FH18-W00468-S03             |                                       |
|----------|-------------------------------|---------------------------|---------------------------------------------------|---------------------------------------|
| Client:  | Strata-G, LLC                 | CC:                       | This report shall not be the written constent of: | reproduced (in part or whole) without |
| Project: | EMDF Site 7c Characterization |                           |                                                   | 7)                                    |
|          | Oak Ridge, Tennessee          |                           | AASHID                                            | Tengola                               |
|          |                               |                           | Reviewed By: P                                    | eng Lor                               |

## Sample Details

| Sample ID         | FH18-W00468-S03               |
|-------------------|-------------------------------|
| Field Sample ID   | GW983                         |
| Location          | Boring Spoils                 |
| Sampled By        | Mike Partenio                 |
| Date Sampled      | 2/21/2018                     |
| Date Completed    | 3/13/2018                     |
| Source            | Geotechnical Drilling Samples |
| Material          | Native Existing Material      |
| Specification     | N/A                           |
| Sampling Method   | In-Place                      |
| Contractor        | N/A                           |
| Dispersion Method |                               |

#### **Other Test Results**

| Description                                    | Method      | Result                        | Limits |
|------------------------------------------------|-------------|-------------------------------|--------|
| Maximum Dry Unit Weight (lbf/ft <sup>3</sup> ) | ASTM D 1557 | 120.2                         |        |
| Corrected Maximum Dry Unit Weight (lbf/ft³)    |             | 120.2                         |        |
| Optimum Water Content (%)                      |             | 11.3                          |        |
| Corrected Optimum Water Content (%)            |             | 11.3                          |        |
| Method                                         |             | В                             |        |
| Preparation Method                             |             | Moist                         |        |
| Visual Description                             |             | Brown Sandy Clay              |        |
| Specific Gravity (Fines)                       |             | 2.70                          |        |
| Date lested                                    |             | 3/20/2018                     |        |
| Dispersion device                              | ASTM D 422  | Soil Dispersion Cup and Mixer |        |
| Dispersion time (min)                          |             | 1                             |        |
| Shape                                          |             |                               |        |
| Hardness                                       |             |                               |        |
| Maximum Dry Unit Weight (lbf/ft <sup>3</sup> ) | ASTM D 698  | 112.2                         |        |
| Corrected Maximum Dry Unit Weight (lbf/ft3)    |             | 112.2                         |        |
| Optimum Water Content (%)                      |             | 11.7                          |        |
| Corrected Optimum Water Content (%)            |             | 11.7                          |        |
| Method                                         |             | В                             |        |
| Preparation Method                             |             | Moist                         |        |
| Visual Description                             |             | Brown Sandy Clay              |        |
| Retained Sieve 3/8" (9.5mm) (%)                |             | 0                             |        |
| Specific Gravity (Fines)                       |             | 2.70                          |        |
| Date Tested                                    |             | 3/20/2018                     |        |

| ct                                                                                                                                                |                                                                                                                                                                 |                                             | 2                                                                                                                                                                  | 28001 Cabot Drive, Suite 250<br>Novi, MI 48377<br>Phone: (248) 486-5100<br>Fax: (248) 486-5050 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Proctor                                                                                                                                           | Report                                                                                                                                                          |                                             | Project No.:<br>ReportNo:                                                                                                                                          | 1188070011-05B<br>PTR:FH18-W00468-S03                                                          |
| Client: Stra<br>Project: EM<br>Oa                                                                                                                 | ata-G, LLC CC:<br>IDF Site 7c Characterization<br>k Ridge, Tennessee                                                                                            |                                             | This report shall not be<br>the written constent of:                                                                                                               | reproduced (in part or whole) without                                                          |
| Sample Deta<br>Sample ID:<br>Date Sampled:<br>Sampling Method<br>Contractor:<br>Source:<br>Material:<br>Specification:<br>Location:<br>Tested By: | ils<br>FH18-W00468-S03<br>2/21/2018<br>d: In-Place<br>N/A<br>Geotechnical Drilling Samples<br>Native Existing Material<br>N/A<br>Boring Spoils<br>Sheila Bowers | Field Sample<br>Sampled By:<br>Date Tested: | a <b>ID:</b> GW983<br>Mike Partenio<br>3/20/2018                                                                                                                   |                                                                                                |
| Dry Unit Wei                                                                                                                                      | ght - Water Content Relationship<br>0% Air Voids                                                                                                                | 6.5 18.0                                    | Test Results<br>AS<br>Maximum Dry Unit W<br>(Ibf/ft³):<br>Optimum Water Cont<br>Method:<br>Preparation Method:<br>Specific Gravity (Fines):<br>Visual Description: | STM D 1557<br>/eight 120.2<br>tent (%): 11.3<br>B<br>Moist<br>2.70<br>Brown Sandy Clay         |

| cti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28001 Cabot Drive, Suite 250<br>Novi, MI 48377<br>Phone: (248) 486-5100<br>Fax: (248) 486-5050                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proctor Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project No.:         1188070011-05B           ReportNo:         PTR:FH18-W00468-S03                                                                                                                                                                                                                                                                                                                                         |
| Client:       Strata-G, LLC       CC:         Project:       EMDF Site 7c Characterization       Oak Ridge, Tennessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | This report shall not be reproduced (in part or whole) without the written constent of:                                                                                                                                                                                                                                                                                                                                     |
| Sample DetailsSample ID:FH18-W00468-S03Date Sampled:2/21/2018Sampling Method:In-PlaceContractor:N/ASource:Geotechnical Drilling SamplesMaterial:Native Existing MaterialSpecification:N/ALocation:Boring SpoilsTested By:Sheila Bowers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Field Sample ID:       GW983         Sampled By:       Mike Partenio         Date Tested:       3/20/2018                                                                                                                                                                                                                                                                                                                   |
| Dry Unit Weight - Water Content Relationship<br>0% Air Voids<br>113.0<br>112.0<br>112.0<br>110.0<br>110.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0 | Test Results         ASTM D 698         Maximum Dry Unit Weight<br>(Ibf/ft³):       112.2         Optimum Water Content (%): 11.7         Method:       B         Preparation Method:       Moist         Specific Gravity (Fines):       2.70         Retained Sieve 3/8" (9.5mm) (%):       0         Passing Sieve 3/8" (9.5mm) (%):       100         Visual Description:       Brown Sandy Clay         8.0       19.5 |



| Mater                                                                   | ial Te                                  | st R           | epor                                                      | t                                           |                                        |                |         |            | Project No.:<br>ReportNo:                                                                                                          | 118<br>MAT:FH18                                                    | 8070011-05B<br>-W00468-S04         |
|-------------------------------------------------------------------------|-----------------------------------------|----------------|-----------------------------------------------------------|---------------------------------------------|----------------------------------------|----------------|---------|------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|
| Client:                                                                 | Strata-G,                               | LLC            |                                                           |                                             |                                        | CC:            |         |            | This report shall not b                                                                                                            | e reproduced (in pa                                                | rt or whole) without               |
| Project:                                                                | EMDF Si                                 | te 7c Ch       | aracteriza                                                | ition                                       |                                        |                |         |            |                                                                                                                                    | 15                                                                 |                                    |
|                                                                         | Oak Ridg                                | je, Tenn       | essee                                                     |                                             |                                        |                |         |            | AASHID                                                                                                                             | Tengoli                                                            | e                                  |
|                                                                         |                                         |                |                                                           |                                             |                                        |                |         |            | Reviewed By:                                                                                                                       | Peng Lor                                                           |                                    |
| Sample D                                                                | etails                                  |                |                                                           |                                             |                                        |                |         |            |                                                                                                                                    |                                                                    |                                    |
| Sample ID<br>Field Sam<br>Location<br>Sampled I<br>Date Sam<br>Date Com | ple ID<br>3y<br>pled<br>pleted          |                | FH18-\<br>GW989<br>Boring<br>Mike P<br>2/27/20<br>3/13/20 | W00468-S<br>Spoils<br>artenio<br>)18<br>)18 | )4                                     |                |         |            |                                                                                                                                    |                                                                    |                                    |
| Source<br>Material                                                      |                                         |                | Geoteo                                                    | hnical Dril<br>Existing M                   | ling Sar<br>aterial                    | mples          |         |            | Sample Des                                                                                                                         | cription:                                                          |                                    |
| Specificat<br>Sampling<br>Contracto                                     | ion<br>Method<br>r                      |                | N/A<br>In-Plac<br>N/A                                     | e                                           |                                        |                |         |            | Brown Clay w                                                                                                                       | /ith Sand                                                          |                                    |
| Particle S                                                              | ize Distrib                             | ution          |                                                           |                                             |                                        |                |         |            | Grading: AS                                                                                                                        | TM D 6913                                                          |                                    |
|                                                                         |                                         |                |                                                           |                                             |                                        |                |         |            | Drying by:<br>Date Tested:<br>Tested By:                                                                                           | Oven<br>3/15/2018<br>Sheila Bowers                                 |                                    |
| % Pas                                                                   | ssing                                   |                |                                                           |                                             |                                        |                |         |            |                                                                                                                                    |                                                                    |                                    |
| 100 - · · · · · · · · · · · · · · · · · ·                               |                                         |                |                                                           | ······                                      | ······································ |                |         | <br>       | Sieve Size<br><sup>3</sup> ⁄ <sub>4</sub> in<br><sup>1</sup> ⁄ <sub>2</sub> in<br>3/8in<br>No.4<br>No.8<br>No.10<br>No.16<br>No.30 | % Passing<br>100.0<br>99.5<br>98.6<br>95.4<br>94.7<br>91.2<br>86.9 | Limits                             |
| 50 - · · · · · · · · · · · · · · · · · ·                                | · • • • • • • • • • • • • • • • • • • • |                |                                                           |                                             | •••••••                                | ·····          |         |            | No.40<br>No.50<br>No.100                                                                                                           | 85.0<br>83.3<br>80.2                                               |                                    |
| 30 + ·<br>20 + ·                                                        |                                         |                |                                                           | ·····                                       | ••••••                                 |                |         | 411<br>411 | No.200                                                                                                                             | 75.7                                                               |                                    |
| 10                                                                      |                                         |                |                                                           |                                             |                                        |                |         |            |                                                                                                                                    |                                                                    |                                    |
| oL                                                                      |                                         | -              | E E                                                       | 5                                           |                                        |                | ÷       | -          |                                                                                                                                    |                                                                    |                                    |
|                                                                         | 19.0mn<br>12.5mn<br>9.5mn               | 4.75mn         | 2.36mn<br>2.0mn                                           | Sieve                                       | 425µn                                  | 300µn<br>150µn | 75tm    |            |                                                                                                                                    |                                                                    |                                    |
| COBBI ES                                                                | GRAV                                    | EL             |                                                           | SAND                                        |                                        | F              | INES (7 | 5.7%)      | ٦ II                                                                                                                               |                                                                    |                                    |
| (0.0%)                                                                  | Coarse<br>(0.0%)                        | Fine<br>(1.4%) | Coarse<br>(3.9%)                                          | Medium<br>(9.7%)                            | Fin<br>(9.3                            | e s<br>%)      | Silt    | Clay       | <b>D85:</b> 0.4250<br><b>D30:</b> N/A                                                                                              | D60: N/A<br>D15: N/A                                               | <b>D50:</b> N/A<br><b>D10:</b> N/A |



| Mate     | rial Test Report              | Project No.:<br>ReportNo: | 1188070011-05B<br>MAT:FH18-W00468-S04             |                                       |
|----------|-------------------------------|---------------------------|---------------------------------------------------|---------------------------------------|
| Client:  | Strata-G, LLC                 | CC:                       | This report shall not be the written constent of: | reproduced (in part or whole) without |
| Project: | EMDF Site 7c Characterization |                           |                                                   | 7) /                                  |
|          | Oak Ridge, Tennessee          |                           | AASHID                                            | Tengola                               |
|          |                               |                           | Reviewed By: Pe                                   | eng Lor                               |

## Sample Details

| Sample ID         | FH18-W00468-S04               |
|-------------------|-------------------------------|
| Field Sample ID   | GW989                         |
| Location          | Boring Spoils                 |
| Sampled By        | Mike Partenio                 |
| Date Sampled      | 2/27/2018                     |
| Date Completed    | 3/13/2018                     |
| Source            | Geotechnical Drilling Samples |
| Material          | Native Existing Material      |
| Specification     | N/A                           |
| Sampling Method   | In-Place                      |
| Contractor        | N/A                           |
| Dispersion Method |                               |

#### **Other Test Results**

| Description                                    | Method      | Result               | Limits |
|------------------------------------------------|-------------|----------------------|--------|
| Maximum Dry Unit Weight (lbf/ft <sup>3</sup> ) | ASTM D 1557 | 107.8                |        |
| Corrected Maximum Dry Unit Weight (lbf/ft³)    |             | 107.8                |        |
| Optimum Water Content (%)                      |             | 12.5                 |        |
| Corrected Optimum Water Content (%)            |             | 12.5                 |        |
| Method                                         |             | В                    |        |
| Preparation Method                             |             | Moist                |        |
| Visual Description                             |             | Brown Clay with Sand |        |
| Specific Gravity (Fines)                       |             | 2.70                 |        |
| Method                                         | ASTM D 6913 | Method B             |        |
| Sample Obtained While                          |             | Oven-Dried           |        |
| Group Name                                     |             |                      |        |
| Group Symbol                                   |             |                      |        |
| Composite Sieving Used                         |             | No                   |        |
| Dispersion Method                              |             | Dispersant by hand   |        |
| Prior Testing                                  |             | Moisture             |        |

| cl                                                                                                                                      |                                                                                                                                                                                |                             |                                                                                                                                                                                | 28001 Cabot Drive, Suite 250<br>Novi, MI 48377<br>Phone: (248) 486-5100<br>Fax: (248) 486-5050         |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Procto                                                                                                                                  | or Report                                                                                                                                                                      |                             | Project No.:<br>ReportNo:                                                                                                                                                      | 1188070011-05B<br>PTR:FH18-W00468-S04                                                                  |
| Client:<br>Project:                                                                                                                     | Strata-G, LLC<br>EMDF Site 7c Characterization<br>Oak Ridge, Tennessee                                                                                                         | CC:                         | This report shall not be<br>the written constent of:                                                                                                                           | e reproduced (in part or whole) without                                                                |
| Sample D<br>Sample ID:<br>Date Sample<br>Sampling Me<br>Contractor:<br>Source:<br>Material:<br>Specification<br>Location:<br>Tosted By: | Details<br>FH18-W00468-S04<br>ed: 2/27/2018<br>ethod: In-Place<br>N/A<br>Geotechnical Drilling Samples<br>Native Existing Material<br>n: N/A<br>Boring Spoils<br>Sheila Bowers | Field Sample<br>Sampled By: | <b>9 ID:</b> GW989<br>Mike Partenio                                                                                                                                            |                                                                                                        |
| Dry Unit V<br>108<br>107<br>(Lun Arian<br>108<br>107<br>(Lun Arian<br>104<br>104<br>103                                                 | Weight - Water Content Relations                                                                                                                                               | hip                         | Test Results<br>As<br>Maximum Dry Unit<br>Weight (lbf/ft³):<br>Optimum Water Con<br>(%):<br>Method:<br>Preparation Method:<br>Specific Gravity (Fines):<br>Visual Description: | STM D 1557<br><b>107.8</b><br><b>tent</b><br><b>12.5</b><br>B<br>Moist<br>2.70<br>Brown Clay with Sand |
| 102                                                                                                                                     | 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 1<br>Water Content (%)                                                                                                                    | 8.0 19.5 21.0               |                                                                                                                                                                                |                                                                                                        |



| Material Test Report                                                                                                                  |                                                      |                                                                                                         |                                                                            | Project No.:         1188070011-0           ReportNo:         MAT:FH18-W00468-0 |       |         |                                                                                                                                                                      |                                                                                                                                                 |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Client:                                                                                                                               | Strata-G, LLC                                        |                                                                                                         |                                                                            | CC:                                                                             |       |         | This report shall not b                                                                                                                                              | e reproduced (in pa                                                                                                                             | rt or whole) without               |
| Project:                                                                                                                              | EMDF Site 7c                                         | Characteriza                                                                                            | tion                                                                       |                                                                                 |       |         |                                                                                                                                                                      | 12                                                                                                                                              | 4                                  |
|                                                                                                                                       | Oak Ridge, T                                         | ennessee                                                                                                |                                                                            |                                                                                 |       |         |                                                                                                                                                                      | Lengolo<br>Peng Lor                                                                                                                             | e                                  |
| Sample D                                                                                                                              | etails                                               |                                                                                                         |                                                                            |                                                                                 |       |         |                                                                                                                                                                      |                                                                                                                                                 |                                    |
| Sample ID<br>Field Sam<br>Location<br>Sampled E<br>Date Samp<br>Date Com<br>Source<br>Material<br>Specificat<br>Sampling<br>Contracto | ple ID<br>3y<br>bled<br>pleted<br>ion<br>Method<br>r | FH18-V<br>GW999<br>Boring<br>Mike Pa<br>2/20/20<br>3/13/20<br>Geotec<br>Native<br>N/A<br>In-Plac<br>N/A | V00468-S0<br>Spoils<br>artenio<br>18<br>18<br>hnical Drilli<br>Existing Ma | ng Sample<br>aterial                                                            | 25    |         | Sample Des<br>Brown Sandy                                                                                                                                            | <b>cription:</b><br>Clay                                                                                                                        |                                    |
| Particle S                                                                                                                            | ize Distributior                                     | 1                                                                                                       |                                                                            |                                                                                 |       |         | Grading: AS                                                                                                                                                          | TM D 6913                                                                                                                                       |                                    |
| % Pas<br>100<br>90<br><br>60<br><br>50<br><br>10<br><br>10<br><br><br>10<br><br><br><br><br><br>                                      | ssing                                                | 2.36mm<br>2.0mm<br>1.18mm                                                                               | Line Sieve                                                                 | 300µm                                                                           | 150tm |         | Drying by:<br>Date Tested:<br>Tested By:<br><sup>1</sup> / <sub>2</sub> in<br>3/8in<br>No.4<br>No.4<br>No.10<br>No.16<br>No.30<br>No.40<br>No.50<br>No.100<br>No.200 | Oven<br>3/15/2018<br>Sheila Bowers<br><b>% Passing</b><br>100.0<br>99.5<br>96.5<br>88.6<br>87.2<br>80.7<br>74.7<br>72.3<br>69.8<br>64.9<br>61.1 | Limits                             |
|                                                                                                                                       | CRAVE!                                               |                                                                                                         | SAND                                                                       |                                                                                 | FINES | (61 1%) | -∥                                                                                                                                                                   |                                                                                                                                                 |                                    |
| (0.0%)                                                                                                                                | Coarse Fine<br>(0.0%) (3.5%                          | e Coarse<br>6) (9.3%)                                                                                   | Medium<br>(14.9%)                                                          | Fine<br>(11.2%)                                                                 | Silt  | Clay    | <b>D85:</b> 1.6729<br><b>D30:</b> N/A                                                                                                                                | D60: N/A<br>D15: N/A                                                                                                                            | <b>D50:</b> N/A<br><b>D10:</b> N/A |



| Material Test Report |                               |     | Project No.:<br>ReportNo:                         | 1188070011-05B<br>MAT:FH18-W00468-S06 |
|----------------------|-------------------------------|-----|---------------------------------------------------|---------------------------------------|
| Client:              | Strata-G, LLC                 | CC: | This report shall not be the written constent of: | reproduced (in part or whole) without |
| Project:             | EMDF Site 7c Characterization |     |                                                   | 7) /                                  |
|                      | Oak Ridge, Tennessee          |     | AASHID                                            | Tengola                               |
|                      |                               |     | Reviewed By: Pe                                   | eng Lor                               |

## Sample Details

| Sample ID         | FH18-W00468-S06               |
|-------------------|-------------------------------|
| Field Sample ID   | GW999                         |
| Location          | Boring Spoils                 |
| Sampled By        | Mike Partenio                 |
| Date Sampled      | 2/20/2018                     |
| Date Completed    | 3/13/2018                     |
| Source            | Geotechnical Drilling Samples |
| Material          | Native Existing Material      |
| Specification     | N/A                           |
| Sampling Method   | In-Place                      |
| Contractor        | N/A                           |
| Dispersion Method |                               |

#### **Other Test Results**

| Description                                    | Method      | Result             | Limits |
|------------------------------------------------|-------------|--------------------|--------|
| Maximum Dry Unit Weight (lbf/ft <sup>3</sup> ) | ASTM D 1557 | 110.6              |        |
| Corrected Maximum Dry Unit Weight (lbf/ft³)    |             | 110.6              |        |
| Optimum Water Content (%)                      |             | 12.1               |        |
| Corrected Optimum Water Content (%)            |             | 12.1               |        |
| Method                                         |             | В                  |        |
| Preparation Method                             |             | Moist              |        |
| Visual Description                             |             | Brown Sandy Clay   |        |
| Specific Gravity (Fines)                       |             | 2.70               |        |
| Method                                         | ASTM D 6913 | Method B           |        |
| Sample Obtained While                          |             | Oven-Dried         |        |
| Group Name                                     |             |                    |        |
| Group Symbol                                   |             |                    |        |
| Composite Sieving Used                         |             | No                 |        |
| Dispersion Method                              |             | Dispersant by hand |        |
| Prior Testing                                  |             | Moisture           |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             | Novi, MI 48377<br>Phone: (248) 486-5100<br>Fax: (248) 486-5050                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Proctor Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project No.:<br>ReportNo:                                                                                                                                   | 1188070011-05B<br>PTR:FH18-W00468-S06                                                   |
| Client: Strata-G, LLC CC:<br>Project: EMDF Site 7c Characterization<br>Oak Ridge, Tennessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | This report shall not be<br>the written constent of:                                                                                                        | e reproduced (in part or whole) without                                                 |
| Sample DetailsSample ID:FH18-W00468-S06Field Sample IDDate Sampled:2/20/2018Sampled By:Sampling Method:In-PlaceSampled By:Contractor:N/AGeotechnical Drilling SamplesMaterial:Native Existing MaterialSpecification:N/ALocation:Boring SpoilsTested By:Sheila BowersDate Tested:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>D:</b> GW999<br>Mike Partenio                                                                                                                            |                                                                                         |
| Dry Unit Weight - Water Content Relationship<br>0% Air Voids<br>111.0<br>110.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0<br>109.0 | est Results<br>As<br>laximum Dry Unit W<br>bf/ft³):<br>uptimum Water Con<br>lethod:<br>reparation Method:<br>pecific Gravity (Fines):<br>isual Description: | STM D 1557<br>Veight 110.6<br>Itent (%): 12.1<br>B<br>Moist<br>2.70<br>Brown Sandy Clay |

Appendix E.3 – Shelby Tube Sample Testing

This Page Intentionally Left Blank.

# **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

## LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377 
 Report Date:
 April 17, 2018

 Job No.:
 183923

 Report No.:
 430211

 No. of Pages:
 2

**Report On:** Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW993 – ST-1, 3.0'-5.0' – Sample Date: 2/22/18 Depth of Test Specimen: 3.5' - 3.8'

On March 5, 2018, one Shelby tube sample was submitted for laboratory determination of permeability. Testing was performed as specified by the client and in accordance with ASTM D 5084, "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter".

Results are presented in the following table.

| Test Parameter                | Results                |
|-------------------------------|------------------------|
| Average Permeability, cm/sec: | 5.5 x 10 <sup>-7</sup> |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430211 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-69

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.
# FALLING HEAD PERMEABILITY TEST

ASTM D 5084, Measurement of Hydraulic Conductivity

## UNDISTURBED

| Client:                                      | CTI and Associates, Inc.                       |
|----------------------------------------------|------------------------------------------------|
| Project:                                     | EMDF Characterization - Project No. 1188070011 |
| BMI Work Order Number:                       | 183923                                         |
| Sample Identification:                       | GW993 - ST-1, 3.0'-5.0'                        |
| Depth, ft:                                   | 3.5'-3.8'                                      |
| Visual Description:                          | brown clay and silt, little gravel             |
| 5. J. C. |                                                |
| SPECIMEN DATA:                               |                                                |

| Dimension, inches             |       |
|-------------------------------|-------|
| Height:                       | 2.559 |
| Diameter:                     | 2.82  |
| Mass, lbs:                    | 1.149 |
| Moisture Content,%            |       |
| Initial:                      | 26.5  |
| Final:                        | 26.2  |
| Wet Unit Weight, pcf          |       |
| Initial:                      | 124.2 |
| Final:                        | 123.9 |
| Initial Dry Unit Weight, pcf: | 98.2  |
| Back Pressure Saturation, psi |       |
| Back Pressure, Exit:          | 60    |
| Back Pressure, Enter:         | 63    |
| Lateral Pressure:             | 67    |
|                               |       |

Permeability (k), cm/sec:

5.5 x 10<sup>-7</sup>





CONSOLIDATION TEST TIME CURVES (STEP 2 OF 20) STRESS : 0.25 (t/ft^2)



CONSOLIDATION TEST TIME CURVES (STEP 3 OF 20) STRESS :  $0.5 (t/ft^2)$ 0.004 0.005 DISPLACEMENT (in) (AB) 0.006 0.007  $\bigcirc \square \square$ 0.008 0.009 E 10<sup>3</sup> 10<sup>2</sup> 10<sup>-1</sup> 10<sup>0</sup> 10<sup>1</sup> 10<sup>4</sup> TIME (min) 0.004 0.005 DISPLACEMENT (in) 0.006 0.007 1111111 Α e 0.008 = 0.009 <sup>E</sup> 30. 40. 20. 10. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No : 183923 Test No : GW987-ST-3 Depth : 2.8'-3.0' Test Date : 3-15-18 Description : red/brown silty clay and sand (visual description)







CONSOLIDATION TEST TIME CURVES (STEP 7 OF 20) STRESS : 2 (t/ft^2)





CONSOLIDATION TEST TIME CURVES (STEP 9 OF 20) STRESS : 0.5 (t/ft^2) 0.044 A o harrinata anna ann 0.045 DISPLACEMENT (in) 0.046 0.047 0.048 0.049 E 10<sup>2</sup>  $10^{3}$ 10° 10<sup>1</sup> 104 10<sup>-1</sup> TIME (min) 0.044 1111111 )0000000000 0.045 DISPLACEMENT (in) 0.046 6 0.047 0.048 0.049 20. 30. 40. 50. 10. 0. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No : 183923 Test Date : 3-15-18 Test No : GW987-ST-3 Depth : 2.8'-3.0' Description : red/brown silty clay and sand (visual description)

CONSOLIDATION TEST TIME CURVES (STEP\_10\_OF\_20) STRESS : 1 (t/ft^2) 0.045 <sub>F</sub> 0.046₽ DISPLACEMENT (in) 0.047 0.048 0.049 0.050 E 10<sup>2</sup> 10<sup>3</sup> 10° 10<sup>1</sup> 10<sup>4</sup> 10-1 TIME (min) 0.045 F 0.046 DISPLACEMENT (in) 0.047 0.048 0.049 E 0.050 20. 30. 40. 10. 50. 0 SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No: 183923 Test No : GW987-ST-3 Depth : 2.8'-3.0' Test Date : 3-15-18 Description : red/brown silty clay and sand (visual description)



CONSOLIDATION TEST TIME CURVES (STEP 12 OF 20) STRESS :  $4 (t/ft^2)$ 0.055<sub>Q</sub> 0.056 DISPLACEMENT (in) æ 1000 0.057 Ю 0000 0.058 0.059 0.060 E 10° 10<sup>1</sup> 10<sup>2</sup>  $10^{3}$  $10^{4}$ 10-1 TIME (min) 0.055<sub>0</sub> 0.056 DISPLACEMENT (in) 0.057 Ø 0.058 900111111 0.059 0.060 E 30. 40. 10. 20. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No: 183923 Test Date : 3-15-18 Test No : GW987-ST-3 Depth : 2.8'-3.0' Description : red/brown silty clay and sand (visual description)







CONSOLIDATION TEST TIME CURVES (STEP 16 OF 20) STRESS : 16 (t/ft^2) 0.145 <sub>F</sub> P 0.146 DISPLACEMENT (in) Ю фф (debt 0.147 0.148 0.149 0.150 <sup>E</sup> 10° 10<sup>2</sup>  $10^{3}$  $10^{1}$ 10<sup>4</sup> 10 TIME (min) 0.145 0.146 DISPLACEMENT (in) 0.147 0.148 0.149 \_\_\_\_\_ 0.150 10. 20. 30. 40. 50. 0 SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No : 183923 Test No : GW987-ST-3 Depth : 2.8'-3.0' Test Date : 3-15-18 Description : red/brown silty clay and sand (visual description)



CONSOLIDATION TEST



CONSOLIDATION TEST



CONSOLIDATION TEST

CONSOLIDATION TEST TIME CURVES (STEP 20 OF 20) STRESS : 1  $(t/ft^2)$ 0.118 G 0.120 DISPLACEMENT (in) 0.122 0.124 0.126 0.128 <sup>E</sup> 10<sup>0</sup> 10<sup>2</sup>  $10^{3}$ 10<sup>1</sup> 10<sup>-1</sup> 10<sup>4</sup> TIME (min) 0.118 0.120 DISPLACEMENT (in) 0.122 0.124 0.126 0.128 <sup>t</sup> 20. 30. 40. 50. 10. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW987-ST-3 Sample No : GW987-ST-3 Project No: 183923 Test No : GW987-ST-3 Depth : 2.8'-3.0' Test Date : 3-15-18 Description : red/brown silty clay and sand (visual description)

## CONSOLIDATION TEST DATA

| Project :   | $	ext{EMDF}$ Characterization | Location : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-------------------------------|----------------------------------|---------------------|
| Boring No.: | GW987-ST-3                    | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW987-ST-3                    | Test Date : 3-15-18              | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3                    | Sample Type: Undisturb           |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

|     | APPLIED  | FINAL        | VOID  | STRAIN | FITT        | ING  | COEFFIC   | IENT OF CONSOL | IDATION   |
|-----|----------|--------------|-------|--------|-------------|------|-----------|----------------|-----------|
|     | PRESSURE | DISPLACEMENT | RATIO | AT END | T50 TIME (1 | min) |           | (in^2/s)       |           |
|     | (t/ft^2) | (in)         |       | (%)    | SQ.RT.      | LOG  | SQ.RT.    | LOG            | AVE       |
| 1)  | 0.06     | 0.001        | 0.689 | 0.05   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 2)  | 0.25     | 0.001        | 0.688 | 0.10   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 3)  | 0.50     | 0.007        | 0.678 | 0.70   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 4)  | 1.00     | 0.016        | 0.663 | 1.60   | 4.1         | 0.0  | 2.05E-004 | 0.00E+000      | 2.05E-004 |
| 5)  | 2.00     | 0.031        | 0.638 | 3.05   | 1.0         | 0.0  | 7.94E-004 | 0.00E+000      | 7.94E-004 |
| 6)  | 4.00     | 0.056        | 0.598 | 5.45   | 0.9         | 0.0  | 8.76E-004 | 0.00E+000      | 8.76E-004 |
| 7)  | 2.00     | 0.052        | 0.604 | 5.11   | 0.0         | 0.6  | 0.00E+000 | 1.35E-003      | 1.35E-003 |
| 8)  | 1.00     | 0.048        | 0.611 | 4.70   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 9)  | 0.50     | 0.044        | 0.616 | 4.36   | 23.5        | 0.0  | 3.31E-005 | 0.00E+000      | 3.31E-005 |
| 10) | 1.00     | 0.047        | 0.613 | 4.56   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 11) | 2.00     | 0.050        | 0.607 | 4.90   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 12) | 4.00     | 0.058        | 0.595 | 5.65   | 4.6         | 0.0  | 1.67E-004 | 0.00E+000      | 1.67E-004 |
| 13) | 8.00     | 0.089        | 0.543 | 8.71   | 0.8         | 0.0  | 9.37E-004 | 0.00E+000      | 9.37E-004 |
| 14) | 16.00    | 0.119        | 0.492 | 11.70  | 0.9         | 0.0  | 7.96E-004 | 0.00E+000      | 7.96E-004 |
| 15) | 32.00    | 0.152        | 0.439 | 14.86  | 0.8         | 0.0  | 8.06E-004 | 0.00E+000      | 8.06E-004 |
| 16) | 16.00    | 0.146        | 0.448 | 14.31  | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 17) | 8.00     | 0.139        | 0.460 | 13.60  | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 18) | 4.00     | 0.132        | 0.472 | 12.90  | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 19) | 2.00     | 0.126        | 0.482 | 12.31  | 21.4        | 0.0  | 3.05E-005 | 0.00E+000      | 3.05E-005 |
| 20) | 1.00     | 0.118        | 0.494 | 11.60  | 39.4        | 0.0  | 1.68E-005 | 0.00E+000      | 1.68E-005 |

## CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring Nc.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample Nc.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth       | : 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

| Specific Gravity : 2.69   | Liquid Limit : 0     | Initial Height : 1.02 (in)  |
|---------------------------|----------------------|-----------------------------|
| Initial Void Ratio : 0.69 | Plastic Limit : 0    | Sample Diameter : 2.50 (in) |
| Final Void Ratio : 0.49   | Plasticity Index : 0 |                             |

|                              | BEFORE CONSOLIDATION |                 | AFTER CONSO     | LIDATION  |
|------------------------------|----------------------|-----------------|-----------------|-----------|
|                              | TRIMMINGS            | SPECIMEN + RING | SPECIMEN + RING | TRIMMINGS |
| CONTAINER NO.                |                      | RING            | RING            |           |
| WT CONTAINER + WET SOIL (gm) | 158.23               | 158.23          | 154.28          | 154.28    |
| WT CONTAINER + DRY SOIL (gm) | 130.55               | 130.55          | 130.55          | 130.55    |
| WT CONTAINER (gm)            | 0.00                 | 0.00            | 0.00            | 0.00      |
| WT DRY SOIL (gm)             | 130.55               | 130.55          | 130.55          | 130.55    |
| WATER CONTENT (%)            | 21.20                | 21.20           | 18.18           | 18.18     |
| VOID RATIO                   |                      | 0.69            | 0.49            |           |
| DEGREE OF SATURATION (%)     |                      | 82.63           | 98.95           |           |
| DRY DENSITY (lb/ft^3)        |                      | 99.33           | 112.37          |           |
|                              |                      |                 |                 |           |

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefor values may not represent actual values for the specimen.

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring Nc.: | GW987-ST-3            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample Nc.: | GW987-ST-3            | Test Date   | : 3-15-18               | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3            | Sample Type | : Undisturb             |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 1 of 20 Stress increment from 0.00 (t/ft<sup>2</sup>) to 0.06 (t/ft<sup>2</sup>) Start Date : Start Time :

|    | ELAPSED TIME | SQRT. OF   |    | CHANGE IN   | VOID  | STRAIN |
|----|--------------|------------|----|-------------|-------|--------|
|    | (min)        | TIME (min) | a. | HEIGHT (in) | RATIO | (%)    |
| 1) | 0.15         | 0.39       |    | 0.0000      | 0.690 | 0.00   |
| 2) | 0.90         | 0.95       |    | 0.0000      | 0.690 | 0.00   |
| 3) | 2.88         | 1.70       |    | 0.0005      | 0.689 | 0.05   |
| 4) | 3.92         | 1.98       |    | 0.0000      | 0.690 | 0.00   |
| 5) | 5.90         | 2.43       |    | 0.0005      | 0.689 | 0.05   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring Nc.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth :      | 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 2 of 20 Stress increment from 0.06 (t/ft<sup>2</sup>) to 0.25 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0010      | 0.688 | 0.10   |
| 2)  | 0.15         | 0.39       | 0.0005      | 0.689 | 0.05   |
| 3)  | 0.40         | 0.63       | 0.0010      | 0.688 | 0.10   |
| 4)  | 0.90         | 0.95       | 0.0005      | 0.689 | 0.05   |
| 5)  | 1.88         | 1.37       | 0.0010      | 0.688 | 0.10   |
| 6)  | 2.88         | 1.70       | 0.0010      | 0.688 | 0.10   |
| 7)  | 3.88         | 1.97       | 0.0005      | 0.689 | 0.05   |
| 8)  | 4.88         | 2.21       | 0.0010      | 0.688 | 0.10   |
| 9)  | 5.88         | 2.43       | 0.0010      | 0.688 | 0.10   |
| 10) | 6.88         | 2.62       | 0.0010      | 0.688 | 0.10   |
| 11) | 7.88         | 2.81       | 0.0010      | 0.688 | 0.10   |
| 12) | 8.90         | 2.98       | 0.0010      | 0.688 | 0.10   |
| 13) | 9.90         | 3.15       | 0.0010      | 0.688 | 0.10   |
| 14) | 14.88        | 3.86       | 0.0010      | 0.688 | 0.10   |
| 15) | 29.90        | 5.47       | 0.0010      | 0.688 | 0.10   |
| 16) | 59.90        | 7.74       | 0.0010      | 0.688 | 0.10   |
| 17) | 89.88        | 9.48       | 0.0010      | 0.688 | 0.10   |
| 18) | 119.88       | 10.95      | 0.0010      | 0.688 | 0.10   |
| 19) | 149.90       | 12.24      | 0.0010      | 0.688 | 0.10   |
| 20) | 179.88       | 13.41      | 0.0010      | 0.688 | 0.10   |
| 21) | 209.88       | 14.49      | 0.0010      | 0.688 | 0.10   |
| 22) | 239.90       | 15.49      | 0.0010      | 0.688 | 0.10   |
| 23) | 299.88       | 17.32      | 0.0010      | 0.688 | 0.10   |
| 24) | 359.90       | 18.97      | 0.0010      | 0.688 | 0.10   |
| 25) | 419.88       | 20.49      | 0.0010      | 0.688 | 0.10   |
| 26) | 479.88       | 21.91      | 0.0010      | 0.688 | 0.10   |
| 27) | 539.90       | 23.24      | 0.0010      | 0.688 | 0.10   |
| 28) | 599.88       | 24.49      | 0.0010      | 0.688 | 0.10   |
| 29) | 659.90       | 25.69      | 0.0010      | 0.688 | 0.10   |
| 30) | 719.88       | 26.83      | 0.0015      | 0.687 | 0.15   |
| 31) | 779.88       | 27.93      | 0.0010      | 0.688 | 0.10   |
| 32) | 839.88       | 28.98      | 0.0010      | 0.688 | 0.10   |
| 33) | 899.88       | 30.00      | 0.0010      | 0.688 | 0.10   |
| 34) | 959.88       | 30.98      | 0.0010      | 0.688 | 0.10   |
| 35) | 1019.88      | 31.94      | 0.0010      | 0.688 | 0.10   |

## CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|---------------------------------|----------------------------------|---------------------|
| Boring No.: GW987-ST-3          | Tested by : BMI: blc             | Checked by : KAF    |
| Sample Nc.: GW987-ST-3          | Test Date : 3-15-18              | Depth : 2.8'-3.0'   |
| Test No. : GW987-ST-3           | Sample Type: Undisturb           |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 2 of 20 Stress increment from 0.06 (t/ft<sup>2</sup>) to 0.25 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0020      | 0.687 | 0.20   |
| 37) | 1139.88      | 33.76      | 0.0010      | 0.688 | 0.10   |
| 38) | 1199.90      | 34.64      | 0.0010      | 0.688 | 0.10   |
| 39) | 1259.90      | 35.50      | 0.0010      | 0.688 | 0.10   |
| 40) | 1319.88      | 36.33      | 0.0010      | 0.688 | 0.10   |
| 41) | 1379.88      | 37.15      | 0.0015      | 0.687 | 0.15   |
| 42) | 1400.37      | 37.42      | 0.0010      | 0.688 | 0.10   |
|     |              |            |             |       |        |

## CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location     | : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-----------------------|--------------|-------------------------|---------------------|
| Boring No.: | GW987-ST-3            | Tested by    | : BMI: blc              | Checked by : KAF    |
| Sample No.: | GW987-ST-3            | Test Date    | : 3-15-18               | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3            | Sample Type: | : Undisturb             |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0046      | 0.682 | 0.45   |
| 2)  | 0.15         | 0.39       | 0.0051      | 0.682 | 0.50   |
| 3)  | 0.42         | 0.65       | 0.0051      | 0.682 | 0.50   |
| 4)  | 0.90         | 0.95       | 0.0056      | 0.681 | 0.55   |
| 5)  | 1.90         | 1.38       | 0.0056      | 0.681 | 0.55   |
| 6)  | 2.92         | 1.71       | 0.0056      | 0.681 | 0.55   |
| 7)  | 3.90         | 1.97       | 0.0061      | 0.680 | 0.60   |
| 8)  | 4.92         | 2.22       | 0.0056      | 0.681 | 0.55   |
| 9)  | 5.92         | 2.43       | 0.0056      | 0.681 | 0.55   |
| 10) | 6.90         | 2.63       | 0.0061      | 0.680 | 0.60   |
| 11) | 7.92         | 2.81       | 0.0056      | 0.681 | 0.55   |
| 12) | 8.90         | 2.98       | 0.0056      | 0.681 | 0.55   |
| 13) | 9.92         | 3.15       | 0.0056      | 0.681 | 0.55   |
| 14) | 14.92        | 3.86       | 0.0056      | 0.681 | 0.55   |
| 15) | 29.93        | 5.47       | 0.0061      | 0.680 | 0.60   |
| 16) | 59.95        | 7.74       | 0.0066      | 0.679 | 0.65   |
| 17) | 89.90        | 9.48       | 0.0061      | 0.680 | 0.60   |
| 18) | 119.90       | 10.95      | 0.0066      | 0.679 | 0.65   |
| 19) | 149.92       | 12.24      | 0.0071      | 0.678 | 0.70   |
| 20) | 179.90       | 13.41      | 0.0077      | 0.677 | 0.75   |
| 21) | 209.90       | 14.49      | 0.0071      | 0.678 | 0.70   |
| 22) | 239.90       | 15.49      | 0.0077      | 0.677 | 0.75   |
| 23) | 299.92       | 17.32      | 0.0077      | 0.677 | 0.75   |
| 24) | 359.90       | 18.97      | 0.0077      | 0.677 | 0.75   |
| 25) | 419.92       | 20.49      | 0.0077      | 0.677 | 0.75   |
| 26) | 479.92       | 21.91      | 0.0077      | 0.677 | 0.75   |
| 27) | 539.90       | 23.24      | 0.0077      | 0.677 | 0.75   |
| 28) | 599.92       | 24.49      | 0.0077      | 0.677 | 0.75   |
| 29) | 659.92       | 25.69      | 0.0082      | 0.676 | 0.80   |
| 30) | 719.90       | 26.83      | 0.0077      | 0.677 | 0.75   |
| 31) | 779.92       | 27.93      | 0.0077      | 0.677 | 0.75   |
| 32) | 839.90       | 28.98      | 0.0077      | 0.677 | 0.75   |
| 33) | 899.95       | 30.00      | 0.0082      | 0.676 | .0.80  |
| 34) | 959.90       | 30.98      | 0.0077      | 0.677 | 0.75   |
| 35) | 1019.90      | 31.94      | 0.0077      | 0.677 | 0.75   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring Nc.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample Nc.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth       | : 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0071      | 0.678 | 0.70   |
| 37) | 1139.92      | 33.76      | 0.0077      | 0.677 | 0.75   |
| 38) | 1199.90      | 34.64      | 0.0082      | 0.676 | 0.80   |
| 39) | 1259.92      | 35.50      | 0.0077      | 0.677 | 0.75   |
| 40) | 1293.48      | 35.96      | 0.0071      | 0.678 | 0.70   |

#### CONSOLIDATION TEST DATA

| Project :     | EMDF Characterization | Location    | : GW987-ST-3 | , 2.0'-4.0' | Project No. | : 183923    |
|---------------|-----------------------|-------------|--------------|-------------|-------------|-------------|
| Boring Nc.:   | GW987-ST-3            | Tested by   | : BMI: blc   |             | Checked by  | : KAF       |
| Sample Nc.: ( | GW987-ST-3            | Test Date   | : 3-15-18    |             | Depth       | : 2.8′-3.0′ |
| Test No. : (  | GW987-ST-3            | Sample Type | : Undisturb  |             |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 4 of 20 Stress increment from 0.50 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0138      | 0.667 | 1.35   |
| 2)  | 0.15         | 0.39       | 0.0138      | 0.667 | 1.35   |
| 3)  | 0.40         | 0.63       | 0.0143      | 0.666 | 1.40   |
| 4)  | 0.90         | 0.95       | 0.0143      | 0.666 | 1.40   |
| 5)  | 1.90         | 1.38       | 0.0148      | 0.665 | 1.45   |
| 6)  | 2.90         | 1.70       | 0.0148      | 0.665 | 1.45   |
| 7)  | 3.90         | 1.97       | 0.0148      | 0.665 | 1.45   |
| 8)  | 4.92         | 2.22       | 0.0153      | 0.665 | 1.50   |
| 9)  | 5.92         | 2.43       | 0.0153      | 0.665 | 1.50   |
| 10) | 6.92         | 2.63       | 0.0153      | 0.665 | 1.50   |
| 11) | 7.93         | 2.82       | 0.0153      | 0.665 | 1.50   |
| 12) | 8.90         | 2.98       | 0.0153      | 0.665 | 1.50   |
| 13) | 9.90         | 3.15       | 0.0158      | 0.664 | 1.55   |
| 14) | 14.90        | 3.86       | 0.0158      | 0.664 | 1.55   |
| 15) | 29.90        | 5.47       | 0.0158      | 0.664 | 1.55   |
| 16) | 59.90        | 7.74       | 0.0163      | 0.663 | 1.60   |
| 17) | 89.92        | 9.48       | 0.0163      | 0.663 | 1.60   |
| 18) | 119.92       | 10.95      | 0.0163      | 0.663 | 1.60   |
| 19) | 149.92       | 12.24      | 0.0163      | 0.663 | 1.60   |
| 20) | 179.92       | 13.41      | 0.0163      | 0.663 | 1.60   |
| 21) | 209.90       | 14.49      | 0.0163      | 0.663 | 1.60   |
| 22) | 239.92       | 15.49      | 0.0163      | 0.663 | 1.60   |
| 23) | 299.90       | 17.32      | 0.0163      | 0.663 | 1.60   |
| 24) | 359.92       | 18.97      | 0.0163      | 0.663 | 1.60   |
| 25) | 419.90       | 20.49      | 0.0168      | 0.662 | 1.65   |
| 26) | 479.90       | 21.91      | 0.0168      | 0.662 | 1.65   |
| 27) | 539.90       | 23.24      | 0.0168      | 0.662 | 1.65   |
| 28) | 599.90       | 24.49      | 0.0163      | 0.663 | 1.60   |
| 29) | 659.92       | 25.69      | 0.0168      | 0.662 | 1.65   |
| 30) | 719.90       | 26.83      | 0.0168      | 0.662 | 1.65   |
| 31) | 779.93       | 27.93      | 0.0168      | 0.662 | 1.65   |
| 32) | 839.92       | 28.98      | 0.0163      | 0.663 | 1.60   |
| 33) | 899.93       | 30.00      | 0.0168      | 0.662 | 1.65   |
| 34) | 959.88       | 30.98      | 0.0168      | 0.662 | 1.65   |
| 35) | 1019.90      | 31.94      | 0.0168      | 0.662 | 1.65   |

#### CONSOLIDATION TEST DATA

| Project : E   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No. | : 183923    |
|---------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring Nc.: G | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample Nc.: G | GW987-ST-3            | Test Date :  | 3-15-18               | Depth       | : 2.8′-3.0′ |
| Test No. : G  | W987-ST-3             | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 4 of 20 Stress increment from 0.50 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0168      | 0.662 | 1.65   |
| 37) | 1139.90      | 33.76      | 0.0168      | 0.662 | 1.65   |
| 38) | 1199.90      | 34.64      | 0.0168      | 0.662 | 1.65   |
| 39) | 1259.90      | 35.50      | 0.0163      | 0.663 | 1.60   |
| 40) | 1313.87      | 36.25      | 0.0163      | 0.663 | 1.60   |

## CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring Nc.: | GW987-ST-3            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample Nc.: | GW987-ST-3            | Test Date   | : 3-15-18               | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3            | Sample Type | : Undisturb             |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 5 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0275      | 0.644 | 2.70   |
| 2)  | 0.15         | 0.39       | 0.0281      | 0.644 | 2.75   |
| 3)  | 0.40         | 0.63       | 0.0286      | 0.643 | 2.80   |
| 4)  | 0.92         | 0.96       | 0.0291      | 0.642 | 2.85   |
| 5)  | 1.93         | 1.39       | 0.0296      | 0.641 | 2.90   |
| 6)  | 2.90         | 1.70       | 0.0296      | 0.641 | 2.90   |
| 7)  | 3.92         | 1.98       | 0.0296      | 0.641 | 2.90   |
| 8)  | 4.90         | 2.21       | 0.0296      | 0.641 | 2.90   |
| 9)  | 5.90         | 2.43       | 0.0301      | 0.640 | 2.95   |
| 10) | 6.90         | 2.63       | 0.0301      | 0.640 | 2.95   |
| 11) | 7.92         | 2.81       | 0.0306      | 0.639 | 3.00   |
| 12) | 8.92         | 2.99       | 0.0301      | 0.640 | 2.95   |
| 13) | 9.93         | 3.15       | 0.0301      | 0.640 | 2.95   |
| 14) | 14.90        | 3.86       | 0.0301      | 0.640 | 2.95   |
| 15) | 29.92        | 5.47       | 0.0301      | 0.640 | 2.95   |
| 16) | 59.92        | 7.74       | 0.0306      | 0.639 | 3.00   |
| 17) | 89.90        | 9.48       | 0.0306      | 0.639 | 3.00   |
| 18) | 119.92       | 10.95      | 0.0306      | 0.639 | 3.00   |
| 19) | 149.90       | 12.24      | 0.0311      | 0.638 | 3.05   |
| 20) | 179.92       | 13.41      | 0.0306      | 0.639 | 3.00   |
| 21) | 209.90       | 14.49      | 0.0311      | 0.638 | 3.05   |
| 22) | 239.90       | 15.49      | 0.0311      | 0.638 | 3.05   |
| 23) | 299.90       | 17.32      | 0.0311      | 0.638 | 3.05   |
| 24) | 359.92       | 18.97      | 0.0311      | 0.638 | 3.05   |
| 25) | 419.90       | 20.49      | 0.0311      | 0.638 | 3.05   |
| 26) | 479.90       | 21.91      | 0.0311      | 0.638 | 3.05   |
| 27) | 539.92       | 23.24      | 0.0311      | 0.638 | 3.05   |
| 28) | 599.90       | 24.49      | 0.0311      | 0.638 | 3.05   |
| 29) | 659.88       | 25.69      | 0.0311      | 0.638 | 3.05   |
| 30) | 719.90       | 26.83      | 0.0311      | 0.638 | 3.05   |
| 31) | 779.90       | 27.93      | 0.0311      | 0.638 | 3.05   |
| 32) | 839.90       | 28.98      | 0.0311      | 0.638 | 3.05   |
| 33) | 899.90       | 30.00      | 0.0311      | 0.638 | 3.05   |
| 34) | 959.92       | 30.98      | 0.0311      | 0.638 | 3.05   |
| 35) | 1019.90      | 31.94      | 0.0316      | 0.638 | 3.10   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-----------------------|--------------|-------------------------|---------------------|
| Boring No.: | GW987-ST-3            | Tested by :  | BMI: blc                | Checked by : KAF    |
| Sample Nc.: | GW987-ST-3            | Test Date :  | : 3-15-18               | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb               |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 5 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0311      | 0.638 | 3.05   |
| 37) | 1139.90      | 33.76      | 0.0316      | 0.638 | 3.10   |
| 38) | 1199.90      | 34.64      | 0.0311      | 0.638 | 3.05   |
| 39) | 1259.90      | 35.50      | 0.0311      | 0.638 | 3.05   |
| 40) | 1319.92      | 36.33      | 0.0316      | 0.638 | 3.10   |
| 41) | 1379.90      | 37.15      | 0.0316      | 0.638 | 3.10   |
| 42) | 1439.90      | 37.95      | 0.0316      | 0.638 | 3.10   |
| 43) | 1499.88      | 38.73      | 0.0316      | 0.638 | 3.10   |
| 44) | 1559.88      | 39.50      | 0.0311      | 0.638 | 3.05   |
| 45) | 1619.90      | 40.25      | 0.0311      | 0.638 | 3.05   |
| 46) | 1628.88      | 40.36      | 0.0311      | 0.638 | 3.05   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW987-ST-3, 2.0'-4 | .0' Project No.: 183923 |
|-------------|-----------------------|-------------------------------|-------------------------|
| Boring No.: | GW987-ST-3            | Tested by : BMI: blc          | Checked by : KAF        |
| Sample No.: | GW987-ST-3            | Test Date : 3-15-18           | Depth : 2.8'-3.0'       |
| Test No. :  | GW987-ST-3            | Sample Type: Undisturb        |                         |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 6 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0495      | 0,608 | 4.85   |
| 2)  | 0.13         | 0.37       | 0.0505      | 0.606 | 4.95   |
| 3)  | 0.37         | 0.61       | 0.0510      | 0.605 | 5.00   |
| 4)  | 0.87         | 0.93       | 0.0520      | 0.604 | 5.10   |
| 5)  | 1.87         | 1.37       | 0.0525      | 0.603 | 5.15   |
| 6)  | 2.87         | 1.69       | 0.0530      | 0.602 | 5.20   |
| 7)  | 3.87         | 1.97       | 0.0530      | 0.602 | 5.20   |
| 8)  | 4.87         | 2.21       | 0.0530      | 0.602 | 5.20   |
| 9)  | 5.87         | 2.42       | 0.0536      | 0.601 | 5.25   |
| 10) | 6.88         | 2.62       | 0.0541      | 0.600 | 5.30   |
| 11) | 7.88         | 2.81       | 0.0536      | 0.601 | 5.25   |
| 12) | 8.88         | 2.98       | 0.0536      | 0.601 | 5.25   |
| 13) | 9.87         | 3.14       | 0.0536      | 0.601 | 5.25   |
| 14) | 14.87        | 3.86       | 0.0541      | 0.600 | 5.30   |
| 15) | 29.87        | 5.47       | 0.0541      | 0.600 | 5.30   |
| 16) | 59.90        | 7.74       | 0.0551      | 0.599 | 5.40   |
| 17) | 89.88        | 9.48       | 0.0541      | 0.600 | 5.30   |
| 18) | 119.87       | 10.95      | 0.0551      | 0.599 | 5.40   |
| 19) | 149.87       | 12.24      | 0.0546      | 0.600 | 5.35   |
| 20) | 179.87       | 13.41      | 0.0551      | 0.599 | 5.40   |
| 21) | 209.92       | 14.49      | 0.0546      | 0.600 | 5.35   |
| 22) | 239.87       | 15.49      | 0.0551      | 0.599 | 5.40   |
| 23) | 299.88       | 17.32      | 0.0551      | 0.599 | 5.40   |
| 24) | 359.87       | 18.97      | 0.0551      | 0.599 | 5.40   |
| 25) | 419.87       | 20.49      | 0.0556      | 0.598 | 5.45   |
| 26) | 479.87       | 21.91      | 0.0556      | 0.598 | 5.45   |
| 27) | 539.87       | 23.24      | 0.0556      | 0.598 | 5.45   |
| 28) | 599.87       | 24.49      | 0.0556      | 0.598 | 5.45   |
| 29) | 659.87       | 25.69      | 0.0556      | 0.598 | 5.45   |
| 30) | 719.88       | 26.83      | 0.0556      | 0.598 | 5.45   |
| 31) | 779.87       | 27.93      | 0.0556      | 0.598 | 5.45   |
| 32) | 839.87       | 28.98      | 0.0561      | 0.597 | 5.50   |
| 33) | 899.87       | 30.00      | 0.0556      | 0.598 | 5.45   |
| 34) | 959.87       | 30.98      | 0.0561      | 0.597 | 5.50   |
| 35) | 1019.88      | 31.94      | 0.0556      | 0.598 | 5.45   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring No.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth :      | 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 6 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.85      | 32.86      | 0.0561      | 0.597 | 5.50   |
| 37) | 1139.88      | 33.76      | 0.0556      | 0.598 | 5.45   |
| 38) | 1199.87      | 34.64      | 0.0556      | 0.598 | 5.45   |
| 39) | 1259.85      | 35.49      | 0.0561      | 0.597 | 5.50   |
| 40) | 1319.85      | 36.33      | 0.0561      | 0.597 | 5.50   |
| 41) | 1325.73      | 36.41      | 0.0556      | 0.598 | 5.45   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring No.: | GW987-ST-3            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample No.: | GW987-ST-3            | Test Date   | : 3-15-18               | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3            | Sample Type | : Undisturb             |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 7 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0536      | 0.601 | 5.25   |
| 2)  | 0.15         | 0.39       | 0.0530      | 0.602 | 5.20   |
| 3)  | 0.40         | 0.63       | 0.0530      | 0.602 | 5.20   |
| 4)  | 0.90         | 0.95       | 0.0525      | 0.603 | 5.15   |
| 5)  | 1.88         | 1.37       | 0.0525      | 0.603 | 5.15   |
| 6)  | 2.88         | 1.70       | 0.0525      | 0.603 | 5.15   |
| 7)  | 3.90         | 1.97       | 0.0525      | 0.603 | 5.15   |
| 8)  | 4.88         | 2.21       | 0.0530      | 0.602 | 5.20   |
| 9)  | 5.88         | 2.43       | 0.0525      | 0.603 | 5.15   |
| 10) | 6.88         | 2.62       | 0.0525      | 0.603 | 5.15   |
| 11) | 7.88         | 2.81       | 0.0525      | 0.603 | 5.15   |
| 12) | 8.88         | 2.98       | 0.0525      | 0.603 | 5.15   |
| 13) | 9.88         | 3.14       | 0.0525      | 0.603 | 5.15   |
| 14) | 14.90        | 3.86       | 0.0525      | 0.603 | 5.15   |
| 15) | 29.88        | 5.47       | 0.0530      | 0.602 | 5.20   |
| 16) | 59.90        | 7.74       | 0.0525      | 0.603 | 5.15   |
| 17) | 89.90        | 9.48       | 0.0530      | 0.602 | 5.20   |
| 18) | 119.88       | 10.95      | 0.0525      | 0.603 | 5.15   |
| 19) | 149.92       | 12.24      | 0.0530      | 0.602 | 5.20   |
| 20) | 179.90       | 13.41      | 0.0520      | 0.604 | 5.10   |
| 21) | 209.88       | 14.49      | 0.0530      | 0.602 | 5.20   |
| 22) | 239.88       | 15.49      | 0.0520      | 0.604 | 5.10   |
| 23) | 299.88       | 17.32      | 0.0525      | 0.603 | 5.15   |
| 24) | 359.88       | 18.97      | 0.0520      | 0.604 | 5.10   |
| 25) | 419.88       | 20.49      | 0.0520      | 0.604 | 5.10   |
| 26) | 479.93       | 21.91      | 0.0520      | 0.604 | 5.10   |
| 27) | 539.88       | 23.24      | 0.0520      | 0.604 | 5.10   |
| 28) | 599.88       | 24.49      | 0.0520      | 0.604 | 5.10   |
| 29) | 659.88       | 25.69      | 0.0520      | 0.604 | 5.10   |
| 30) | 719.90       | 26.83      | 0.0525      | 0.603 | 5.15   |
| 31) | 779.93       | 27.93      | 0.0525      | 0.603 | 5.15   |
| 32) | 839.87       | 28.98      | 0.0520      | 0.604 | 5.10   |
| 33) | 899.88       | 30.00      | 0.0520      | 0.604 | 5.10   |
| 34) | 959.88       | 30.98      | 0.0525      | 0.603 | 5.15   |
| 35) | 1019.88      | 31.94      | 0.0520      | 0.604 | 5.10   |

Page : 14
#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW987-ST-   | -3, 2.0'-4.0' | Project No.: | 183923    |
|-------------|-----------------------|------------------------|---------------|--------------|-----------|
| Boring No.: | GW987-ST-3            | Tested by : BMI: blc   |               | Checked by : | KAF       |
| Sample No.: | GW987-ST-3            | Test Date : 3-15-18    |               | Depth :      | 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: Undisturk | <b>)</b>      |              |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 7 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME<br>(min) | SQRT. OF<br>TIME (min) | CHANGE IN<br>HEIGHT (in) | VOID<br>RATIO | STRAIN<br>(%) |
|-----|-----------------------|------------------------|--------------------------|---------------|---------------|
| 36) | 1079.88               | 32.86                  | 0.0520                   | 0.604         | 5.10          |
| 37) | 1139.88               | 33.76                  | 0.0520                   | 0.604         | 5.10          |
| 38) | 1199.87               | 34.64                  | 0.0520                   | 0.604         | 5.10          |
| 39) | 1259.90               | 35.50                  | 0.0520                   | 0.604         | 5.10          |
| 40) | 1319.90               | 36.33                  | 0.0520                   | 0.604         | 5.10          |
| 41) | 1379.88               | 37.15                  | 0.0525                   | 0.603         | 5.15          |
| 42) | 1429.40               | 37.81                  | 0.0520                   | 0.604         | 5.10          |
|     |                       |                        |                          |               |               |

#### CONSOLIDATION TEST DATA

| Project :   | $	ext{EMDF}$ Characterization | Location    | : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-------------------------------|-------------|-------------------------|---------------------|
| Boring Nc.: | GW987-ST-3                    | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample No.: | GW987-ST-3                    | Test Date   | : 3-15-18               | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3                    | Sample Type | : Undisturb             |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 8 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0500      | 0,607 | 4.90   |
| 2)  | 0.15         | 0.39       | 0.0495      | 0.608 | 4.85   |
| 3)  | 0.38         | 0.62       | 0.0495      | 0.608 | 4.85   |
| 4)  | 0.92         | 0.96       | 0.0495      | 0.608 | 4.85   |
| 5)  | 1.88         | 1.37       | 0.0490      | 0.609 | 4.80   |
| 6)  | 2.88         | 1.70       | 0.0495      | 0.608 | 4.85   |
| 7)  | 3.88         | 1.97       | 0.0490      | 0.609 | 4.80   |
| 8)  | 4.88         | 2.21       | 0.0490      | 0.609 | 4.80   |
| 9)  | 5.88         | 2.43       | 0.0490      | 0.609 | 4.80   |
| 10) | 6.88         | 2.62       | 0.0490      | 0.609 | 4.80   |
| 11) | 7.90         | 2.81       | 0.0490      | 0.609 | 4.80   |
| 12) | 8.88         | 2.98       | 0.0490      | 0.609 | 4.80   |
| 13) | 9.90         | 3.15       | 0.0490      | 0.609 | 4.80   |
| 14) | 14.88        | 3.86       | 0.0495      | 0.608 | 4.85   |
| 15) | 29.92        | 5.47       | 0.0485      | 0.610 | 4.75   |
| 16) | 59.90        | 7.74       | 0.0490      | 0.609 | 4.80   |
| 17) | 89.90        | 9.48       | 0.0485      | 0.610 | 4.75   |
| 18) | 119.90       | 10.95      | 0.0490      | 0.609 | 4.80   |
| 19) | 149.90       | 12.24      | 0.0485      | 0.610 | 4.75   |
| 20) | 179.90       | 13.41      | 0.0490      | 0.609 | 4.80   |
| 21) | 209.88       | 14.49      | 0.0485      | 0.610 | 4.75   |
| 22) | 239.90       | 15.49      | 0.0490      | 0.609 | 4.80   |
| 23) | 299.88       | 17.32      | 0.0490      | 0.609 | 4.80   |
| 24) | 359.88       | 18.97      | 0.0490      | 0.609 | 4.80   |
| 25) | 419.88       | 20.49      | 0.0485      | 0.610 | 4.75   |
| 26) | 479.90       | 21.91      | 0.0490      | 0.609 | 4.80   |
| 27) | 539.88       | 23.24      | 0.0490      | 0.609 | 4.80   |
| 28) | 599.90       | 24.49      | 0.0485      | 0.610 | 4.75   |
| 29) | 659.90       | 25.69      | 0.0485      | 0.610 | 4.75   |
| 30) | 719.90       | 26.83      | 0.0485      | 0.610 | 4.75   |
| 31) | 779.90       | 27.93      | 0.0490      | 0.609 | 4.80   |
| 32) | 839.90       | 28.98      | 0.0485      | 0.610 | 4.75   |
| 33) | 899.88       | 30.00      | 0.0490      | 0.609 | 4.80   |
| 34) | 959.88       | 30.98      | 0.0490      | 0.609 | 4.80   |
| 35) | 1019.88      | 31.94      | 0.0485      | 0.610 | 4.75   |

```
Page : 16
```

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW987-ST-3, 2.0'-4.0' | Project No. | : 183923    |
|-------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring Nc.: | GW987-ST-3            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample Nc.: | GW987-ST-3            | Test Date   | : 3-15-18               | Depth       | : 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type | : Undisturb             |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 8 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0490      | 0.609 | 4.80   |
| 37) | 1139.90      | 33.76      | 0.0485      | 0.610 | 4.75   |
| 38) | 1199.88      | 34.64      | 0.0485      | 0.610 | 4.75   |
| 39) | 1259.88      | 35.49      | 0.0485      | 0.610 | 4.75   |
| 40) | 1319.88      | 36.33      | 0.0485      | 0.610 | 4.75   |
| 41) | 1379.88      | 37.15      | 0.0485      | 0.610 | 4.75   |
| 42) | 1439.88      | 37.95      | 0.0479      | 0.611 | 4.70   |
| 43) | 1441.43      | 37.97      | 0.0479      | 0.611 | 4.70   |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|---------------------------------|----------------------------------|---------------------|
| Boring No.: GW987-ST-3          | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: GW987-ST-3          | Test Date : 3-15-18              | Depth : 2.8'-3.0'   |
| Test No. : GW987-ST-3           | Sample Type: Undisturb           |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0464      | 0.613 | 4.55   |
| 2)  | 0.15         | 0.39       | 0.0459      | 0.614 | 4.50   |
| 3)  | 0.40         | 0.63       | 0.0459      | 0.614 | 4.50   |
| 4)  | 0.90         | 0.95       | 0.0464      | 0.613 | 4.55   |
| 5)  | 1.92         | 1.38       | 0.0459      | 0.614 | 4.50   |
| 6)  | 2.92         | 1.71       | 0.0459      | 0.614 | 4.50   |
| 7)  | 3.90         | 1.97       | 0.0454      | 0.615 | 4.45   |
| 8)  | 4.92         | 2.22       | 0.0454      | 0.615 | 4.45   |
| 9)  | 5.92         | 2.43       | 0.0454      | 0.615 | 4.45   |
| 10) | 6.90         | 2.63       | 0.0454      | 0.615 | 4.45   |
| 11) | 7.90         | 2.81       | 0.0454      | 0.615 | 4.45   |
| 12) | 8.90         | 2.98       | 0.0459      | 0.614 | 4.50   |
| 13) | 9.90         | 3.15       | 0.0454      | 0.615 | 4.45   |
| 14) | 14.93        | 3.86       | 0.0459      | 0.614 | 4.50   |
| 15) | 29.92        | 5.47       | 0.0449      | 0.616 | 4.40   |
| 16) | 59.90        | 7.74       | 0.0449      | 0.616 | 4.40   |
| 17) | 89.90        | 9.48       | 0.0449      | 0.616 | 4.40   |
| 18) | 119.92       | 10.95      | 0.0444      | 0.616 | 4.35   |
| 19) | 149.92       | 12.24      | 0.0449      | 0.616 | 4.40   |
| 20) | 179.88       | 13.41      | 0.0449      | 0.616 | 4.40   |
| 21) | 209.90       | 14.49      | 0.0449      | 0.616 | 4.40   |
| 22) | 239.90       | 15.49      | 0.0444      | 0.616 | 4.35   |
| 23) | 299.90       | 17.32      | 0.0449      | 0.616 | 4.40   |
| 24) | 359.90       | 18.97      | 0.0444      | 0.616 | 4.35   |
| 25) | 419.88       | 20.49      | 0.0444      | 0.616 | 4.35   |
| 26) | 479.88       | 21.91      | 0.0444      | 0.616 | 4.35   |
| 27) | 539.92       | 23.24      | 0.0444      | 0.616 | 4.35   |
| 28) | 599.90       | 24.49      | 0.0444      | 0.616 | 4.35   |
| 29) | 659.90       | 25.69      | 0.0444      | 0.616 | 4.35   |
| 30) | 719.90       | 26.83      | 0.0444      | 0.616 | 4.35   |
| 31) | 779.93       | 27.93      | 0.0444      | 0.616 | 4.35   |
| 32) | 839.92       | 28.98      | 0.0444      | 0.616 | 4.35   |
| 33) | 899.92       | 30.00      | 0.0444      | 0.616 | 4.35   |
| 34) | 959.90       | 30.98      | 0.0444      | 0.616 | 4.35   |
| 35) | 1019.88      | 31.94      | 0.0444      | 0.616 | 4.35   |
|     |              |            |             |       |        |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring No.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth :      | 2.8′-3.0′ |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0444      | 0.616 | 4.35   |
| 37) | 1139.90      | 33.76      | 0.0444      | 0.616 | 4.35   |
| 38) | 1199.90      | 34.64      | 0.0444      | 0.616 | 4.35   |
| 39) | 1259.92      | 35.50      | 0.0444      | 0.616 | 4.35   |
| 40) | 1319.90      | 36.33      | 0.0444      | 0.616 | 4.35   |
| 41) | 1379.92      | 37.15      | 0.0444      | 0.616 | 4.35   |
| 42) | 1439.90      | 37.95      | 0.0444      | 0.616 | 4.35   |
| 43) | 1479.32      | 38.46      | 0.0444      | 0.616 | 4.35   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring Nc.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth :      | 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0459      | 0.614 | 4.50   |
| 2)  | 0.15         | 0.39       | 0.0459      | 0.614 | 4.50   |
| 3)  | 0.40         | 0.63       | 0.0459      | 0.614 | 4.50   |
| 4)  | 0.90         | 0.95       | 0.0459      | 0.614 | 4.50   |
| 5)  | 1.93         | 1.39       | 0.0459      | 0.614 | 4.50   |
| 6)  | 2.88         | 1.70       | 0.0459      | 0.614 | 4.50   |
| 7)  | 3.90         | 1.97       | 0.0459      | 0.614 | 4.50   |
| 8)  | 4.90         | 2.21       | 0.0459      | 0.614 | 4.50   |
| 9)  | 5.88         | 2.43       | 0.0459      | 0.614 | 4.50   |
| 10) | 6.92         | 2.63       | 0.0459      | 0.614 | 4.50   |
| 11) | 7.90         | 2.81       | 0.0459      | 0.614 | 4.50   |
| 12) | 8.90         | 2.98       | 0.0459      | 0.614 | 4.50   |
| 13) | 9.90         | 3.15       | 0.0464      | 0.613 | 4.55   |
| 14) | 14.88        | 3.86       | 0.0459      | 0.614 | 4.50   |
| 15) | 29.88        | 5.47       | 0.0464      | 0.613 | 4.55   |
| 16) | 59.90        | 7.74       | 0.0459      | 0.614 | 4.50   |
| 17) | 89.90        | 9.48       | 0.0469      | 0.612 | 4.60   |
| 18) | 119.90       | 10.95      | 0.0464      | 0.613 | 4.55   |
| 19) | 149.88       | 12.24      | 0.0469      | 0.612 | 4.60   |
| 20) | 179.88       | 13.41      | 0.0459      | 0.614 | 4.50   |
| 21) | 209.90       | 14.49      | 0.0469      | 0.612 | 4.60   |
| 22) | 239.90       | 15.49      | 0.0464      | 0.613 | 4.55   |
| 23) | 299.90       | 17.32      | 0.0464      | 0.613 | 4.55   |
| 24) | 359.93       | 18.97      | 0.0464      | 0.613 | 4.55   |
| 25) | 419.90       | 20.49      | 0.0464      | 0.613 | 4.55   |
| 26) | 479.88       | 21.91      | 0.0459      | 0.614 | 4.50   |
| 27) | 539.90       | 23.24      | 0.0464      | 0.613 | 4.55   |
| 28) | 599.90       | 24.49      | 0.0464      | 0.613 | 4.55   |
| 29) | 659.90       | 25.69      | 0.0464      | 0.613 | 4.55   |
| 30) | 719.88       | 26.83      | 0.0464      | 0.613 | 4.55   |
| 31) | 779.90       | 27.93      | 0.0464      | 0.613 | 4.55   |
| 32) | 839.90       | 28.98      | 0.0464      | 0.613 | 4.55   |
| 33) | 899.88       | 30.00      | 0.0464      | 0.613 | 4.55   |
| 34) | 959.90       | 30.98      | 0.0464      | 0.613 | 4.55   |
| 35) | 1019.90      | 31.94      | 0.0464      | 0.613 | 4.55   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW987-ST-3, 2.0'-4.0' | Project No. | : 183923    |
|-------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring No.: | GW987-ST-3            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW987-ST-3            | Test Date   | : 3-15-18               | Depth       | : 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type | : Undisturb             |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0464      | 0.613 | 4.55   |
| 37) | 1139.88      | 33.76      | 0.0464      | 0.613 | 4.55   |
| 38) | 1199.88      | 34.64      | 0.0464      | 0.613 | 4.55   |
| 39) | 1259.90      | 35.50      | 0.0464      | 0.613 | 4.55   |
| 40) | 1319.88      | 36.33      | 0.0464      | 0.613 | 4.55   |
| 41) | 1322.27      | 36.36      | 0.0464      | 0.613 | 4.55   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring Nc.: | GW987-ST-3            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample No.: | GW987-ST-3            | Test Date   | : 3-15-18               | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3            | Sample Type | : Undisturb             |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0490      | 0.609 | 4.80   |
| 2)  | 0.15         | 0.39       | 0.0490      | 0.609 | 4.80   |
| 3)  | 0.38         | 0.62       | 0.0495      | 0.608 | 4.85   |
| 4)  | 0.88         | 0.94       | 0.0495      | 0.608 | 4.85   |
| 5)  | 1.90         | 1.38       | 0.0495      | 0.608 | 4.85   |
| 6)  | 2.88         | 1.70       | 0.0495      | 0.608 | 4.85   |
| 7)  | 3.90         | 1.97       | 0.0495      | 0.608 | 4.85   |
| 8)  | 4.90         | 2.21       | 0.0495      | 0.608 | 4.85   |
| 9)  | 5.90         | 2.43       | 0.0495      | 0.608 | 4.85   |
| 10) | 6.88         | 2.62       | 0.0495      | 0.608 | 4.85   |
| 11) | 7.88         | 2.81       | 0.0495      | 0.608 | 4.85   |
| 12) | 8.88         | 2.98       | 0.0500      | 0.607 | 4.90   |
| 13) | 9.88         | 3.14       | 0.0500      | 0.607 | 4.90   |
| 14) | 14.88        | 3.86       | 0.0495      | 0.608 | 4.85   |
| 15) | 29.88        | 5.47       | 0.0500      | 0.607 | 4.90   |
| 16) | 59.90        | 7.74       | 0.0500      | 0.607 | 4.90   |
| 17) | 89.90        | 9.48       | 0.0500      | 0.607 | 4.90   |
| 18) | 119.88       | 10.95      | 0.0500      | 0.607 | 4.90   |
| 19) | 149.88       | 12.24      | 0.0500      | 0.607 | 4.90   |
| 20) | 179.90       | 13.41      | 0.0500      | 0.607 | 4.90   |
| 21) | 209.88       | 14.49      | 0.0500      | 0.607 | 4.90   |
| 22) | 239.88       | 15.49      | 0.0500      | 0.607 | 4.90   |
| 23) | 299.88       | 17.32      | 0.0500      | 0.607 | 4.90   |
| 24) | 359.90       | 18.97      | 0.0500      | 0.607 | 4.90   |
| 25) | 419.88       | 20.49      | 0.0500      | 0.607 | 4.90   |
| 26) | 479.90       | 21.91      | 0.0500      | 0.607 | 4.90   |
| 27) | 539.88       | 23.24      | 0.0500      | 0.607 | 4.90   |
| 28) | 599.88       | 24.49      | 0.0500      | 0.607 | 4.90   |
| 29) | 659.88       | 25.69      | 0.0500      | 0.607 | 4.90   |
| 30) | 719.88       | 26.83      | 0.0505      | 0.606 | 4.95   |
| 31) | 779.90       | 27.93      | 0.0500      | 0.607 | 4.90   |
| 32) | 839.88       | 28.98      | 0.0500      | 0.607 | 4.90   |
| 33) | 899.88       | 30.00      | 0.0500      | 0.607 | 4.90   |
| 34) | 959.90       | 30.98      | 0.0500      | 0.607 | 4.90   |
| 35) | 1019.88      | 31.94      | 0.0505      | 0.606 | 4.95   |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW987-ST-3, 2.0'-4 | .0' Project No.: 183923 |
|---------------------------------|-------------------------------|-------------------------|
| Boring No.: GW987-ST-3          | Tested by : BMI: blc          | Checked by : KAF        |
| Sample No.: GW987-ST-3          | Test Date : 3-15-18           | Depth : 2.8'-3.0'       |
| Test No. : GW987-ST-3           | Sample Type: Undisturb        |                         |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0505      | 0.606 | 4.95   |
| 37) | 1139.88      | 33.76      | 0.0505      | 0.606 | 4.95   |
| 38) | 1199.88      | 34.64      | 0.0500      | 0.607 | 4.90   |
| 39) | 1259.88      | 35.49      | 0.0500      | 0.607 | 4.90   |
| 40) | 1319.88      | 36.33      | 0.0500      | 0.607 | 4.90   |
| 41) | 1379.88      | 37.15      | 0.0505      | 0.606 | 4.95   |
| 42) | 1439.88      | 37.95      | 0.0505      | 0.606 | 4.95   |
| 43) | 1499.88      | 38.73      | 0.0505      | 0.606 | 4.95   |
| 44) | 1507.35      | 38.82      | 0.0500      | 0.607 | 4.90   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring No.: | GW987-ST-3            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW987-ST-3            | Test Date : 3-15-18              | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3            | Sample Type: Undisturb           |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0551      | 0.599 | 5.40   |
| 2)  | 0.15         | 0.39       | 0.0556      | 0.598 | 5.45   |
| 3)  | 0.40         | 0.63       | 0.0556      | 0.598 | 5.45   |
| 4)  | 0.93         | 0.97       | 0.0556      | 0.598 | 5.45   |
| 5)  | 1.92         | 1.38       | 0.0561      | 0.597 | 5.50   |
| 6)  | 2.90         | 1.70       | 0.0561      | 0.597 | 5.50   |
| 7)  | 3.92         | 1.98       | 0.0561      | 0.597 | 5.50   |
| 8)  | 4.92         | 2.22       | 0.0566      | 0.596 | 5.55   |
| 9)  | 5.92         | 2.43       | 0.0561      | 0.597 | 5.50   |
| 10) | 6.92         | 2.63       | 0.0566      | 0.596 | 5.55   |
| 11) | 7.92         | 2.81       | 0.0566      | 0.596 | 5.55   |
| 12) | 8.92         | 2.99       | 0.0566      | 0.596 | 5.55   |
| 13) | 9.92         | 3.15       | 0.0566      | 0.596 | 5.55   |
| 14) | 14.92        | 3.86       | 0.0566      | 0.596 | 5.55   |
| 15) | 29.92        | 5.47       | 0.0571      | 0.595 | 5.60   |
| 16) | 59.92        | 7.74       | 0.0571      | 0.595 | 5.60   |
| 17) | 89.93        | 9.48       | 0.0571      | 0.595 | 5.60   |
| 18) | 119.92       | 10.95      | 0.0576      | 0.595 | 5.65   |
| 19) | 149.92       | 12.24      | 0.0571      | 0.595 | 5.60   |
| 20) | 179.93       | 13.41      | 0.0576      | 0.595 | 5.65   |
| 21) | 209.93       | 14.49      | 0.0571      | 0.595 | 5.60   |
| 22) | 239.95       | 15.49      | 0.0576      | 0.595 | 5.65   |
| 23) | 299.92       | 17.32      | 0.0576      | 0.595 | 5.65   |
| 24) | 359.92       | 18.97      | 0.0576      | 0.595 | 5.65   |
| 25) | 419.92       | 20.49      | 0.0576      | 0.595 | 5.65   |
| 26) | 479.92       | 21.91      | 0.0581      | 0.594 | 5.70   |
| 27) | 539.92       | 23.24      | 0.0581      | 0.594 | 5.70   |
| 28) | 599.90       | 24.49      | 0.0581      | 0.594 | 5.70   |
| 29) | 659.93       | 25.69      | 0.0576      | 0.595 | 5.65   |
| 30) | 719.92       | 26.83      | 0.0576      | 0.595 | 5.65   |
| 31) | 779.93       | 27.93      | 0.0581      | 0.594 | 5.70   |
| 32) | 839.92       | 28.98      | 0.0581      | 0.594 | 5.70   |
| 33) | 899.92       | 30.00      | 0.0581      | 0.594 | 5.70   |
| 34) | 959.92       | 30.98      | 0.0581      | 0.594 | 5.70   |
| 35) | 1019.93      | 31.94      | 0.0581      | 0.594 | 5.70   |

#### CONSOLIDATION TEST DATA

| Project :   | $	ext{EMDF}$ Characterization | Location    | : GW987-ST-3, 2.0'-4.0 | 0' Project | No.: | 183923    |
|-------------|-------------------------------|-------------|------------------------|------------|------|-----------|
| Boring Nc.: | GW987-ST-3                    | Tested by   | : BMI: blc             | Checked    | by : | KAF       |
| Sample No.: | GW987-ST-3                    | Test Date   | : 3-15-18              | Depth      | :    | 2.8'-3.0' |
| Test No. :  | GW987-ST-3                    | Sample Type | : Undisturb            |            |      |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.93      | 32.86      | 0.0581      | 0.594 | 5.70   |
| 37) | 1139.90      | 33.76      | 0.0581      | 0.594 | 5.70   |
| 38) | 1199.90      | 34.64      | 0.0581      | 0.594 | 5.70   |
| 39) | 1259.93      | 35.50      | 0.0581      | 0.594 | 5.70   |
| 40) | 1319.90      | 36.33      | 0.0581      | 0.594 | 5.70   |
| 41) | 1379.93      | 37.15      | 0.0581      | 0.594 | 5.70   |
| 42) | 1439.90      | 37.95      | 0.0581      | 0.594 | 5.70   |
| 43) | 1499.92      | 38.73      | 0.0576      | 0.595 | 5.65   |
| 44) | 1504.80      | 38.79      | 0.0576      | 0.595 | 5.65   |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location     | : GW987-ST-3, 2.0'-4.0' | Project No.: | 183923    |
|---------------------------------|--------------|-------------------------|--------------|-----------|
| Boring No.: GW987-ST-3          | Tested by    | : BMI: blc              | Checked by : | KAF       |
| Sample No.: GW987-ST-3          | Test Date :  | : 3-15-18               | Depth :      | 2.8'-3.0' |
| Test No. : GW987-ST-3           | Sample Type: | : Undisturb             |              |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 13 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 8.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0785      | 0.560 | 7.70   |
| 2)  | 0.15         | 0.39       | 0.0806      | 0.556 | 7.90   |
| 3)  | 0.40         | 0.63       | 0.0821      | 0.554 | 8.05   |
| 4)  | 0.90         | 0.95       | 0.0831      | 0.552 | 8.15   |
| 5)  | 1.88         | 1.37       | 0.0852      | 0.549 | 8.35   |
| 6)  | 2.90         | 1.70       | 0.0852      | 0.549 | 8.35   |
| 7)  | 3.90         | 1.97       | 0.0852      | 0.549 | 8.35   |
| 8)  | 4.90         | 2.21       | 0.0857      | 0.548 | 8.40   |
| 9)  | 5.90         | 2.43       | 0.0862      | 0.547 | 8.45   |
| 10) | 6.93         | 2.63       | 0.0862      | 0.547 | 8.45   |
| 11) | 7.88         | 2.81       | 0.0862      | 0.547 | 8.45   |
| 12) | 8.93         | 2.99       | 0.0862      | 0.547 | 8.45   |
| 13) | 9.92         | 3.15       | 0.0862      | 0.547 | 8.45   |
| 14) | 14.88        | 3.86       | 0.0872      | 0.546 | 8.55   |
| 15) | 29.88        | 5.47       | 0.0877      | 0.545 | 8.60   |
| 16) | 59.93        | 7.74       | 0.0872      | 0.546 | 8.55   |
| 17) | 89.90        | 9.48       | 0.0877      | 0.545 | 8.60   |
| 18) | 119.88       | 10.95      | 0.0877      | 0.545 | 8.60   |
| 19) | 149.90       | 12.24      | 0.0882      | 0.544 | 8.65   |
| 20) | 179.90       | 13.41      | 0.0877      | 0.545 | 8.60   |
| 21) | 209.90       | 14.49      | 0.0882      | 0.544 | 8.65   |
| 22) | 239.90       | 15.49      | 0.0877      | 0.545 | 8.60   |
| 23) | 299.92       | 17.32      | 0.0877      | 0.545 | 8.60   |
| 24) | 359.88       | 18.97      | 0.0877      | 0.545 | 8.60   |
| 25) | 419.90       | 20.49      | 0.0882      | 0.544 | 8.65   |
| 26) | 479.88       | 21.91      | 0.0882      | 0.544 | 8.65   |
| 27) | 539.88       | 23.24      | 0.0882      | 0.544 | 8.65   |
| 28) | 599.95       | 24.49      | 0.0882      | 0.544 | 8.65   |
| 29) | 659.90       | 25.69      | 0.0882      | 0.544 | 8.65   |
| 30) | 719.88       | 26.83      | 0.0882      | 0.544 | 8.65   |
| 31) | 779.90       | 27.93      | 0.0882      | 0.544 | 8.65   |
| 32) | 839.90       | 28.98      | 0.0882      | 0.544 | 8.65   |
| 33) | 899.90       | 30.00      | 0.0882      | 0.544 | 8.65   |
| 34) | 959.88       | 30.98      | 0.0882      | 0.544 | 8.65   |
| 35) | 1019.92      | 31.94      | 0.0882      | 0.544 | 8.65   |

#### CONSOLIDATION TEST DATA

| Project : EMDF C   | haracterization | Location :   | GW987-ST-3, | 2.0'-4.0' | Project No. | : | 183923    |
|--------------------|-----------------|--------------|-------------|-----------|-------------|---|-----------|
| Boring No.: GW987- | ST-3            | Tested by :  | BMI: blc    |           | Checked by  | : | KAF       |
| Sample No.: GW987- | ST-3            | Test Date :  | 3-15-18     |           | Depth       | : | 2.8′-3.0′ |
| Test No. : GW987-  | ST-3            | Sample Type: | Undisturb   |           |             |   |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 13 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 8.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0882      | 0.544 | 8.65   |
| 37) | 1139.90      | 33.76      | 0.0882      | 0.544 | 8.65   |
| 38) | 1199.88      | 34.64      | 0.0882      | 0.544 | 8.65   |
| 39) | 1259.88      | 35.49      | 0.0882      | 0.544 | 8.65   |
| 40) | 1319.90      | 36.33      | 0.0882      | 0.544 | 8.65   |
| 11) | 1379.90      | 37.15      | 0.0887      | 0.543 | 8.70   |
| 12) | 1387.95      | 37.26      | 0.0887      | 0.543 | 8.70   |
|     |              |            |             |       |        |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring No.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample Nc.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth       | : 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 14 of 20

Stress increment from 8.00 (t/ft^2) to 16.00 (t/ft^2)  $\,$ 

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1061      | 0.514 | 10.40  |
| 2)  | 0.15         | 0.39       | 0.1076      | 0.512 | 10.55  |
| 3)  | 0.38         | 0.62       | 0.1091      | 0.509 | 10.70  |
| 4)  | 0.90         | 0.95       | 0.1117      | 0.505 | 10.95  |
| 5)  | 1.92         | 1.38       | 0.1142      | 0.501 | 11.20  |
| 6)  | 2.90         | 1.70       | 0.1153      | 0.499 | 11.30  |
| 7)  | 3.90         | 1.97       | 0.1158      | 0.498 | 11.35  |
| 8)  | 4.92         | 2.22       | 0.1158      | 0.498 | 11.35  |
| 9)  | 5.88         | 2.43       | 0.1163      | 0.497 | 11.40  |
| 10) | 6.88         | 2.62       | 0.1168      | 0.496 | 11.45  |
| 11) | 7.90         | 2.81       | 0.1168      | 0.496 | 11.45  |
| 12) | 8.93         | 2.99       | 0.1168      | 0.496 | 11.45  |
| 13) | 9.90         | 3.15       | 0.1173      | 0.496 | 11.50  |
| 14) | 14.88        | 3.86       | 0.1173      | 0.496 | 11.50  |
| 15) | 29.90        | 5.47       | 0.1183      | 0.494 | 11.60  |
| 16) | 59.90        | 7.74       | 0.1188      | 0.493 | 11.65  |
| 17) | 89.88        | 9.48       | 0.1188      | 0.493 | 11.65  |
| 18) | 119.88       | 10.95      | 0.1188      | 0.493 | 11.65  |
| 19) | 149.88       | 12.24      | 0.1188      | 0.493 | 11.65  |
| 20) | 179.88       | 13.41      | 0.1188      | 0.493 | 11.65  |
| 21) | 209.90       | 14.49      | 0.1188      | 0.493 | 11.65  |
| 22) | 239.90       | 15.49      | 0.1193      | 0.492 | 11.70  |
| 23) | 299.90       | 17.32      | 0.1193      | 0.492 | 11.70  |
| 24) | 359.88       | 18.97      | 0.1193      | 0.492 | 11.70  |
| 25) | 419.90       | 20.49      | 0.1193      | 0.492 | 11.70  |
| 26) | 479.88       | 21.91      | 0.1193      | 0.492 | 11.70  |
| 27) | 539.88       | 23.24      | 0.1193      | 0.492 | 11.70  |
| 28) | 599.90       | 24.49      | 0.1193      | 0.492 | 11.70  |
| 29) | 659.90       | 25.69      | 0.1193      | 0.492 | 11.70  |
| 30) | 719.90       | 26.83      | 0.1193      | 0.492 | 11.70  |
| 31) | 779.90       | 27.93      | 0.1199      | 0.491 | 11.75  |
| 32) | 839.88       | 28.98      | 0.1193      | 0.492 | 11.70  |
| 33) | 899.88       | 30.00      | 0.1199      | 0.491 | 11.75  |
| 34) | 959.90       | 30.98      | 0.1199      | 0.491 | 11.75  |
| 35) | 1019.90      | 31.94      | 0.1199      | 0.491 | 11.75  |

E-119

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring Nc.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth       | : 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 14 of 20 Stress increment from 8.00 (t/ft<sup>2</sup>) to 16.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.1199      | 0.491 | 11.75  |
| 37) | 1139.90      | 33.76      | 0.1199      | 0.491 | 11.75  |
| 38) | 1199.90      | 34.64      | 0.1199      | 0.491 | 11.75  |
| 39) | 1259.88      | 35.49      | 0.1199      | 0.491 | 11.75  |
| 40) | 1319.90      | 36.33      | 0.1199      | 0.491 | 11.75  |
| 41) | 1379.88      | 37.15      | 0.1199      | 0.491 | 11.75  |
| 42) | 1439.90      | 37.95      | 0.1199      | 0.491 | 11.75  |
| 43) | 1456.88      | 38.17      | 0.1193      | 0.492 | 11.70  |

#### CONSOLIDATION TEST DATA

Project: EMDF CharacterizationLocation: GW987-ST-3, 2.0'-4.0'Project No.: 183923Boring No.: GW987-ST-3Tested by: BMI: blcChecked by: KAFSample No.: GW987-ST-3Test Date: 3-15-18Depth: 2.8'-3,0'Test No.: GW987-ST-3Sample Type: UndisturbChecked by: Checked by

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 15 of 20 Stress increment from 16.00 (t/ft<sup>2</sup>) to 32.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
| 1)  | 0.00         | 0.00       | 0.1346      | 0.467 | 13.20  |
| 2)  | 0.15         | 0.39       | 0.1367      | 0.464 | 13.40  |
| 3)  | 0.38         | 0.62       | 0.1397      | 0.458 | 13.70  |
| 4)  | 0.90         | 0.95       | 0.1423      | 0.454 | 13.95  |
| 5)  | 1.90         | 1.38       | 0.1448      | 0.450 | 14.20  |
| 6)  | 2.90         | 1.70       | 0.1464      | 0.447 | 14.35  |
| 7)  | 3.90         | 1.97       | 0.1469      | 0.447 | 14.40  |
| 8)  | 4.90         | 2.21       | 0.1474      | 0.446 | 14.45  |
| 9)  | 5.92         | 2.43       | 0.1479      | 0.445 | 14.50  |
| 10) | 6.90         | 2.63       | 0.1479      | 0.445 | 14.50  |
| 11) | 7.92         | 2.81       | 0.1484      | 0.444 | 14.55  |
| 12) | 8.92         | 2.99       | 0.1484      | 0.444 | 14.55  |
| 13) | 9.93         | 3.15       | 0.1484      | 0.444 | 14.55  |
| 14) | 14.90        | 3.86       | 0.1494      | 0.442 | 14.65  |
| 15) | 29.90        | 5.47       | 0.1499      | 0.442 | 14.70  |
| 16) | 59.92        | 7.74       | 0.1499      | 0.442 | 14.70  |
| 17) | 89.92        | 9.48       | 0.1505      | 0.441 | 14.75  |
| 18) | 119.92       | 10.95      | 0.1505      | 0.441 | 14.75  |
| 19) | 149.90       | 12.24      | 0.1510      | 0.440 | 14.80  |
| 20) | 179.90       | 13.41      | 0.1505      | 0.441 | 14.75  |
| 21) | 209.90       | 14.49      | 0.1510      | 0.440 | 14.80  |
| 22) | 239.90       | 15.49      | 0.1510      | 0.440 | 14.80  |
| 23) | 299.92       | 17.32      | 0.1510      | 0.440 | 14.80  |
| 24) | 359.92       | 18.97      | 0.1510      | 0.440 | 14.80  |
| 25) | 419.90       | 20.49      | 0.1510      | 0.440 | 14.80  |
| 26) | 479.90       | 21.91      | 0.1510      | 0.440 | 14.80  |
| 27) | 539.88       | 23.24      | 0.1510      | 0.440 | 14.80  |
| 28) | 599.88       | 24.49      | 0.1510      | 0.440 | 14.80  |
| 29) | 659.90       | 25.69      | 0.1510      | 0.440 | 14.80  |
| 30) | 719.92       | 26.83      | 0.1510      | 0.440 | 14.80  |
| 31) | 779.90       | 27.93      | 0.1515      | 0.439 | 14.85  |
| 32) | 839.88       | 28.98      | 0.1515      | 0.439 | 14.85  |
| 33) | 899.90       | 30.00      | 0.1515      | 0.439 | 14.85  |
| 34) | 959.90       | 30.98      | 0.1515      | 0.439 | 14.85  |
| 35) | 1019.88      | 31.94      | 0.1515      | 0.439 | 14.85  |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring No.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth :      | 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 15 of 20 Stress increment from 16.00 (t/ft<sup>2</sup>) to 32.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.1515      | 0.439 | 14.85  |
| 37) | 1139.90      | 33.76      | 0.1515      | 0.439 | 14.85  |
| 38) | 1199.90      | 34.64      | 0.1515      | 0.439 | 14.85  |
| 39) | 1259.90      | 35.50      | 0.1520      | 0.438 | 14.90  |
| 40) | 1319.90      | 36.33      | 0.1515      | 0.439 | 14.85  |
| 41) | 1379.90      | 37.15      | 0.1515      | 0.439 | 14.85  |
| 42) | 1438.68      | 37.93      | 0.1515      | 0.439 | 14.85  |

#### CONSOLIDATION TEST DATA

| Project : EMDF Charact | cerization Location | : GW987-ST-3, 2.0'- | -4.0' Project No.; | 183923    |
|------------------------|---------------------|---------------------|--------------------|-----------|
| Boring Nc.: GW987-ST-3 | Tested by           | : BMI: blc          | Checked by :       | KAF       |
| Sample Nc.: GW987-ST-3 | Test Date           | : 3-15-18           | Depth :            | 2.8'-3.0' |
| Test No. : GW987-ST-3  | Sample Ty           | pe: Undisturb       |                    |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 16 of 20 Stress increment from 32.00 (t/ft<sup>2</sup>) to 16.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1469      | 0.447 | 14.40  |
| 2)  | 0.13         | 0.37       | 0.1469      | 0.447 | 14.40  |
| 3)  | 0.38         | 0.62       | 0.1469      | 0.447 | 14.40  |
| 4)  | 0.90         | 0.95       | 0.1469      | 0.447 | 14.40  |
| 5)  | 1.92         | 1.38       | 0.1469      | 0.447 | 14.40  |
| 6)  | 2.92         | 1.71       | 0.1469      | 0.447 | 14.40  |
| 7)  | 3.92         | 1.98       | 0.1464      | 0.447 | 14.35  |
| 8)  | 4.90         | 2.21       | 0.1464      | 0.447 | 14.35  |
| 9)  | 5.90         | 2.43       | 0.1469      | 0.447 | 14.40  |
| 10) | 6.90         | 2.63       | 0.1464      | 0.447 | 14.35  |
| 11) | 7.90         | 2.81       | 0.1464      | 0.447 | 14.35  |
| 12) | 8.90         | 2.98       | 0.1464      | 0.447 | 14.35  |
| 13) | 9.90         | 3.15       | 0.1464      | 0.447 | 14.35  |
| 14) | 14.90        | 3.86       | 0.1464      | 0.447 | 14.35  |
| 15) | 29.92        | 5.47       | 0.1464      | 0.447 | 14.35  |
| 16) | 59.93        | 7.74       | 0.1459      | 0.448 | 14.30  |
| 17) | 89.90        | 9.48       | 0.1464      | 0.447 | 14.35  |
| 18) | 119.88       | 10.95      | 0.1459      | 0.448 | 14.30  |
| 19) | 149.90       | 12.24      | 0.1464      | 0.447 | 14.35  |
| 20) | 179.90       | 13.41      | 0.1459      | 0.448 | 14.30  |
| 21) | 209.90       | 14.49      | 0.1464      | 0.447 | 14.35  |
| 22) | 239.92       | 15.49      | 0.1459      | 0.448 | 14.30  |
| 23) | 299.88       | 17.32      | 0.1459      | 0.448 | 14.30  |
| 24) | 359.90       | 18.97      | 0.1459      | 0.448 | 14.30  |
| 25) | 419.90       | 20.49      | 0.1459      | 0.448 | 14.30  |
| 26) | 479.88       | 21.91      | 0.1459      | 0.448 | 14.30  |
| 27) | 539.90       | 23.24      | 0.1459      | 0.448 | 14.30  |
| 28) | 599.92       | 24.49      | 0.1459      | 0.448 | 14.30  |
| 29) | 659.90       | 25.69      | 0.1459      | 0.448 | 14.30  |
| 30) | 719.88       | 26.83      | 0.1459      | 0.448 | 14.30  |
| 31) | 779.88       | 27.93      | 0.1459      | 0.448 | 14.30  |
| 32) | 839.90       | 28.98      | 0.1459      | 0.448 | 14.30  |
| 33) | 899.95       | 30.00      | 0.1459      | 0.448 | 14.30  |
| 34) | 959.88       | 30.98      | 0.1459      | 0.448 | 14.30  |
| 35) | 1019.90      | 31.94      | 0.1459      | 0.448 | 14.30  |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring No.: | GW987-ST-3            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample Nc.: | GW987-ST-3            | Test Date : 3-15-18              | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3            | Sample Type: Undisturb           |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 16 of 20 Stress increment from 32.00 (t/ft<sup>2</sup>) to 16.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.1459      | 0.448 | 14.30  |
| 37) | 1139.88      | 33.76      | 0.1459      | 0.448 | 14.30  |
| 38) | 1199.90      | 34.64      | 0.1454      | 0.449 | 14.25  |
| 39) | 1259.88      | 35.49      | 0.1459      | 0.448 | 14.30  |
| 40) | 1319.90      | 36.33      | 0.1454      | 0.449 | 14.25  |
| 41) | 1379.88      | 37.15      | 0.1454      | 0.449 | 14.25  |
| 42) | 1436.52      | 37.90      | 0.1459      | 0.448 | 14.30  |
|     |              |            |             |       |        |

CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location     | : GW987-ST-3, 2.0'-4.0' | Project No.: | 183923    |
|---------------------------------|--------------|-------------------------|--------------|-----------|
| Boring Nc.: GW987-ST-3          | Tested by    | : BMI: blc              | Checked by : | KAF       |
| Sample Nc.: GW987-ST-3          | Test Date    | : 3-15-18               | Depth :      | 2.8'-3.0' |
| Test No. : GW987-ST-3           | Sample Type: | : Undisturb             |              |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 17 of 20 Stress increment from 16.00 (t/ft<sup>2</sup>) to 8.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (왕)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1413      | 0.456 | 13.85  |
| 2)  | 0.17         | 0.41       | 0.1413      | 0.456 | 13.85  |
| 3)  | 0.42         | 0.65       | 0.1408      | 0.457 | 13.80  |
| 4)  | 0.90         | 0.95       | 0.1403      | 0.458 | 13.75  |
| 5)  | 1.92         | 1.38       | 0.1403      | 0.458 | 13.75  |
| 6)  | 2.92         | 1.71       | 0.1403      | 0.458 | 13.75  |
| 7)  | 3.92         | 1.98       | 0.1403      | 0.458 | 13.75  |
| 8)  | 4.90         | 2.21       | 0.1403      | 0.458 | 13.75  |
| 9)  | 5.92         | 2.43       | 0.1403      | 0.458 | 13.75  |
| 10) | 6.92         | 2.63       | 0.1403      | 0.458 | 13.75  |
| 11) | 7.92         | 2.81       | 0.1397      | 0.458 | 13.70  |
| 12) | 8.90         | 2.98       | 0.1403      | 0.458 | 13.75  |
| 13) | 9.92         | 3.15       | 0.1397      | 0.458 | 13.70  |
| 14) | 14.93        | 3.86       | 0.1397      | 0.458 | 13.70  |
| 15) | 29.92        | 5.47       | 0.1403      | 0.458 | 13.75  |
| 16) | 59.92        | 7.74       | 0.1397      | 0.458 | 13.70  |
| 17) | 89.90        | 9.48       | 0.1397      | 0.458 | 13.70  |
| 18) | 119.92       | 10.95      | 0.1392      | 0.459 | 13.65  |
| 19) | 149.93       | 12.24      | 0.1397      | 0.458 | 13.70  |
| 20) | 179.92       | 13.41      | 0.1392      | 0.459 | 13.65  |
| 21) | 209.90       | 14.49      | 0.1397      | 0.458 | 13.70  |
| 22) | 239.92       | 15.49      | 0.1392      | 0.459 | 13.65  |
| 23) | 299.92       | 17.32      | 0.1392      | 0.459 | 13.65  |
| 24) | 359.92       | 18.97      | 0.1392      | 0.459 | 13.65  |
| 25) | 419.92       | 20.49      | 0.1392      | 0.459 | 13.65  |
| 26) | 479.92       | 21.91      | 0.1392      | 0.459 | 13.65  |
| 27) | 539.93       | 23.24      | 0.1392      | 0.459 | 13.65  |
| 28) | 599.90       | 24.49      | 0.1392      | 0.459 | 13.65  |
| 29) | 659.90       | 25.69      | 0.1392      | 0.459 | 13.65  |
| 30) | 719.92       | 26.83      | 0.1392      | 0.459 | 13.65  |
| 31) | 779.90       | 27.93      | 0.1392      | 0.459 | 13.65  |
| 32) | 839.92       | 28.98      | 0.1392      | 0.459 | 13.65  |
| 33) | 899.92       | 30.00      | 0.1392      | 0.459 | 13.65  |
| 34) | 959.90       | 30.98      | 0.1387      | 0.460 | 13.60  |
| 35) | 1019.90      | 31.94      | 0.1392      | 0.459 | 13.65  |

#### CONSOLIDATION TEST DATA

| Project : EMDF Chara   | cterization Locati | ion : GW98'   | 7-ST-3, 2.0′-4.0′ | Project No. | 183923    |
|------------------------|--------------------|---------------|-------------------|-------------|-----------|
| Boring No.: GW987-ST-3 | Tested             | i by : BMI:   | blc               | Checked by  | KAF       |
| Sample No.: GW987-ST-3 | Test I             | Date : 3-15-  | -18               | Depth :     | 2.8'-3.0' |
| Test No. : GW987-ST-3  | Sample             | • Type: Undia | sturb             |             |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 17 of 20 Stress increment from 16.00 (t/ft<sup>2</sup>) to 8.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME<br>(min) | SQRT. OF<br>TIME (min) | CHANGE IN<br>HEIGHT (in) | VOID<br>RATIO | STRAIN<br>(%) |
|-----|-----------------------|------------------------|--------------------------|---------------|---------------|
|     |                       |                        |                          | ŝ             |               |
| 36) | 1079.90               | 32.86                  | 0.1387                   | 0.460         | 13.60         |
| 37) | 1139.90               | 33.76                  | 0.1392                   | 0.459         | 13.65         |
| 38) | 1199.92               | 34.64                  | 0.1392                   | 0.459         | 13.65         |
| 39) | 1259.90               | 35.50                  | 0.1387                   | 0.460         | 13.60         |
| 40) | 1319.90               | 36.33                  | 0.1387                   | 0.460         | 13.60         |
| 41) | 1379.90               | 37.15                  | 0.1392                   | 0.459         | 13.65         |
| 42) | 1439.92               | 37.95                  | 0.1387                   | 0.460         | 13.60         |
| 43) | 1499.90               | 38.73                  | 0.1392                   | 0.459         | 13.65         |
| 44) | 1538.13               | 39.22                  | 0.1387                   | 0.460         | 13.60         |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW987-ST-3, 2.0'-4.0' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring No.: | GW987-ST-3            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW987-ST-3            | Test Date :  | 3-15-18               | Depth :      | 2.8′-3.0′ |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1352      | 0.466 | 13.25  |
| 2)  | 0.15         | 0.39       | 0.1346      | 0.467 | 13.20  |
| 3)  | 0.40         | 0.63       | 0.1346      | 0.467 | 13.20  |
| 4)  | 0.93         | 0.97       | 0.1341      | 0.468 | 13.15  |
| 5)  | 1.90         | 1.38       | 0.1341      | 0.468 | 13.15  |
| 6)  | 2.90         | 1.70       | 0.1336      | 0.469 | 13.10  |
| 7)  | 3.90         | 1.97       | 0.1336      | 0.469 | 13.10  |
| 8)  | 4.90         | 2.21       | 0.1336      | 0.469 | 13.10  |
| 9)  | 5.92         | 2.43       | 0.1336      | 0.469 | 13.10  |
| 10) | 6.92         | 2.63       | 0.1336      | 0.469 | 13.10  |
| 11) | 7.92         | 2.81       | 0.1336      | 0.469 | 13.10  |
| 12) | 8.92         | 2.99       | 0.1336      | 0.469 | 13.10  |
| 13) | 9.90         | 3.15       | 0.1331      | 0.469 | 13.05  |
| 14) | 14.92        | 3.86       | 0.1331      | 0.469 | 13.05  |
| 15) | 29.92        | 5.47       | 0.1326      | 0.470 | 13.00  |
| 16) | 59.90        | 7.74       | 0.1326      | 0.470 | 13.00  |
| 17) | 89.92        | 9.48       | 0.1326      | 0.470 | 13.00  |
| 18) | 119.92       | 10.95      | 0.1326      | 0.470 | 13.00  |
| 19) | 149.90       | 12.24      | 0.1326      | 0.470 | 13.00  |
| 20) | 179.90       | 13.41      | 0.1326      | 0.470 | 13.00  |
| 21) | 209.92       | 14.49      | 0.1326      | 0.470 | 13.00  |
| 22) | 239.90       | 15.49      | 0.1326      | 0.470 | 13.00  |
| 23) | 299.92       | 17.32      | 0.1326      | 0.470 | 13.00  |
| 24) | 359.90       | 18.97      | 0.1321      | 0.471 | 12.95  |
| 25) | 419.92       | 20.49      | 0.1321      | 0.471 | 12.95  |
| 26) | 479.90       | 21.91      | 0.1321      | 0.471 | 12.95  |
| 27) | 539.90       | 23.24      | 0.1321      | 0.471 | 12.95  |
| 28) | 599.92       | 24.49      | 0.1321      | 0.471 | 12.95  |
| 29) | 659.90       | 25.69      | 0.1321      | 0.471 | 12.95  |
| 30) | 719.92       | 26.83      | 0.1321      | 0.471 | 12.95  |
| 31) | 779.90       | 27.93      | 0.1321      | 0.471 | 12.95  |
| 32) | 839.90       | 28.98      | 0.1316      | 0.472 | 12.90  |
| 33) | 899.90       | 30.00      | 0.1321      | 0.471 | 12.95  |
| 34) | 959.90       | 30.98      | 0.1321      | 0.471 | 12.95  |
| 35) | 1019.92      | 31.94      | 0.1321      | 0.471 | 12.95  |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW987-ST-3, 2.0'-4.0' | Project No. | : 183923    |
|-------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring No.: | GW987-ST-3            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW987-ST-3            | Test Date   | : 3-15-18               | Depth       | : 2.8′-3.0′ |
| Test No. :  | GW987-ST-3            | Sample Type | : Undisturb             |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

| ELAPSED TIME | SQRT. OF                                                                                                                                                                                                                                                                                                                                                                   | CHANGE IN                                                                                                                                                                                                                                                                                                                                                               | VOID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (min)        | TIME (min)                                                                                                                                                                                                                                                                                                                                                                 | HEIGHT (in)                                                                                                                                                                                                                                                                                                                                                             | RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1079.90      | 32.86                                                                                                                                                                                                                                                                                                                                                                      | 0.1326                                                                                                                                                                                                                                                                                                                                                                  | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1139.90      | 33.76                                                                                                                                                                                                                                                                                                                                                                      | 0.1326                                                                                                                                                                                                                                                                                                                                                                  | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1199.90      | 34.64                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1259.90      | 35.50                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1319.92      | 36.33                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1379.90      | 37.15                                                                                                                                                                                                                                                                                                                                                                      | 0.1326                                                                                                                                                                                                                                                                                                                                                                  | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1439.90      | 37.95                                                                                                                                                                                                                                                                                                                                                                      | 0.1326                                                                                                                                                                                                                                                                                                                                                                  | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1499.90      | 38.73                                                                                                                                                                                                                                                                                                                                                                      | 0.1316                                                                                                                                                                                                                                                                                                                                                                  | 0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1559.90      | 39.50                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1619.92      | 40.25                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1679.90      | 40.99                                                                                                                                                                                                                                                                                                                                                                      | 0.1316                                                                                                                                                                                                                                                                                                                                                                  | 0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1739.90      | 41.71                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1799.90      | 42.43                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1859.90      | 43.13                                                                                                                                                                                                                                                                                                                                                                      | 0.1326                                                                                                                                                                                                                                                                                                                                                                  | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1919.90      | 43.82                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1979.90      | 44.50                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2039.90      | 45.17                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2099.90      | 45.82                                                                                                                                                                                                                                                                                                                                                                      | 0.1326                                                                                                                                                                                                                                                                                                                                                                  | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2159.90      | 46.47                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2219.90      | 47.12                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2279.90      | 47.75                                                                                                                                                                                                                                                                                                                                                                      | 0.1326                                                                                                                                                                                                                                                                                                                                                                  | 0.470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2339.90      | 48.37                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2399.90      | 48.99                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2459.90      | 49.60                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2519.88      | 50.20                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2579.90      | 50.79                                                                                                                                                                                                                                                                                                                                                                      | 0.1316                                                                                                                                                                                                                                                                                                                                                                  | 0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2639.88      | 51.38                                                                                                                                                                                                                                                                                                                                                                      | 0.1316                                                                                                                                                                                                                                                                                                                                                                  | 0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2699.90      | 51.96                                                                                                                                                                                                                                                                                                                                                                      | 0.1316                                                                                                                                                                                                                                                                                                                                                                  | 0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2759.90      | 52.53                                                                                                                                                                                                                                                                                                                                                                      | 0.1321                                                                                                                                                                                                                                                                                                                                                                  | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2818.38      | ,<br>53.09                                                                                                                                                                                                                                                                                                                                                                 | 0.1316                                                                                                                                                                                                                                                                                                                                                                  | 0.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | ELAPSED TIME<br>(min)<br>1079.90<br>1139.90<br>1199.90<br>1259.90<br>1319.92<br>1379.90<br>1439.90<br>1439.90<br>1439.90<br>1439.90<br>1439.90<br>1559.90<br>1619.92<br>1679.90<br>1739.90<br>1739.90<br>1739.90<br>1859.90<br>1919.90<br>2039.90<br>2039.90<br>2219.90<br>2219.90<br>2339.90<br>2339.90<br>2339.90<br>2519.88<br>2579.90<br>2639.88<br>2699.90<br>2759.90 | ELAPSED TIMESQRT. OF(min)TIME (min)1079.9032.861139.9033.761199.9034.641259.9035.501319.9236.331379.9037.151439.9037.951499.9038.731559.9039.501619.9240.251679.9041.711799.9042.431859.9043.131919.9043.821979.9045.172099.9045.172099.9045.822159.9046.472219.9047.122339.9048.372399.9049.602519.8850.202579.9050.792639.8851.382699.9051.962759.9052.532818.3853.09 | ELAPSED TIME         SQRT. OF         CHANGE IN           (min)         TIME (min)         HEIGHT (in)           1079.90         32.86         0.1326           1139.90         33.76         0.1326           1199.90         34.64         0.1321           1259.90         35.50         0.1321           1319.92         36.33         0.1321           1379.90         37.15         0.1326           1439.90         37.95         0.1326           1439.90         37.95         0.1321           1619.92         40.25         0.1321           1619.92         40.25         0.1321           1679.90         41.71         0.1321           1799.90         42.43         0.1321           1799.90         43.13         0.1326           1919.90         43.82         0.1321           2039.90         45.17         0.1321           2039.90         45.82         0.1321           2219.90         47.12         0.1321           2219.90         47.75         0.1322           2339.90         48.37         0.1321           2399.90         48.99         0.1321           24 | ELAPSED TIME         SQRT. OF         CHANGE IN         VOID           (min)         TIME (min)         HEIGHT (in)         RATIO           1079.90         32.86         0.1326         0.470           1139.90         33.76         0.1326         0.470           1199.90         34.64         0.1321         0.471           1259.90         35.50         0.1321         0.471           1319.92         36.33         0.1321         0.471           1379.90         37.15         0.1326         0.470           1439.90         37.95         0.1326         0.471           1619.92         40.25         0.1321         0.471           1619.92         40.25         0.1321         0.471           1679.90         41.71         0.1321         0.471           1679.90         41.71         0.1321         0.471           1739.90         41.71         0.1321         0.471           1859.90         43.13         0.1321         0.471           199.90         43.82         0.1321         0.471           199.90         45.82         0.1321         0.471           2039.90         45.82         0.1321         < |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location     | : GW987-ST-3, 2.0'-4.0' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-------------------------|-------------|-------------|
| Boring No.: | GW987-ST-3            | Tested by    | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW987-ST-3            | Test Date :  | : 3-15-18               | Depth       | : 2.8'-3.0' |
| Test No. :  | GW987-ST-3            | Sample Type: | Undisturb               |             |             |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 19 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1290      | 0.476 | 12.65  |
| 2)  | 0.17         | 0.41       | 0.1285      | 0.477 | 12.60  |
| 3)  | 0.40         | 0.63       | 0.1285      | 0.477 | 12.60  |
| 4)  | 0.88         | 0.94       | 0.1285      | 0.477 | 12.60  |
| 5)  | 1.88         | 1.37       | 0.1280      | 0.478 | 12.55  |
| 6)  | 2.90         | 1.70       | 0.1280      | 0.478 | 12.55  |
| 7)  | 3.92         | 1.98       | 0.1275      | 0.479 | 12.50  |
| 8)  | 4.90         | 2.21       | 0.1275      | 0.479 | 12.50  |
| 9)  | 5.88         | 2.43       | 0.1275      | 0.479 | 12.50  |
| 10) | 6.88         | 2.62       | 0.1270      | 0.480 | 12.45  |
| 11) | 7.90         | 2.81       | 0.1275      | 0.479 | 12.50  |
| 12) | 8.90         | 2.98       | 0.1270      | 0.480 | 12.45  |
| 13) | 9.90         | 3.15       | 0.1270      | 0.480 | 12.45  |
| 14) | 14.90        | 3.86       | 0.1270      | 0.480 | 12.45  |
| 15) | 29.88        | 5.47       | 0.1265      | 0.480 | 12.40  |
| 16) | 59.90        | 7.74       | 0.1265      | 0.480 | 12.40  |
| 17) | 89.90        | 9.48       | 0.1260      | 0.481 | 12.35  |
| 18) | 119.90       | 10.95      | 0.1260      | 0.481 | 12.35  |
| 19) | 149.93       | 12.24      | 0.1260      | 0.481 | 12.35  |
| 20) | 179.88       | 13.41      | 0.1260      | 0.481 | 12.35  |
| 21) | 209.90       | 14.49      | 0.1260      | 0.481 | 12.35  |
| 22) | 239.92       | 15.49      | 0.1260      | 0.481 | 12.35  |
| 23) | 299.90       | 17.32      | 0.1260      | 0.481 | 12.35  |
| 24) | 359.88       | 18.97      | 0.1255      | 0.482 | 12.30  |
| 25) | 419.90       | 20.49      | 0.1255      | 0.482 | 12.30  |
| 26) | 479.88       | 21.91      | 0.1255      | 0.482 | 12.30  |
| 27) | 539.95       | 23.24      | 0.1255      | 0.482 | 12.30  |
| 28) | 599.88       | 24.49      | 0.1255      | 0.482 | 12.30  |
| 29) | 659.90       | 25.69      | 0.1255      | 0.482 | 12.30  |
| 30) | 719.88       | 26.83      | 0.1255      | 0.482 | 12.30  |
| 31) | 779.90       | 27.93      | 0.1255      | 0.482 | 12.30  |
| 32) | 839.88       | 28.98      | 0.1255      | 0.482 | 12.30  |
| 33) | 899.90       | 30.00      | 0.1255      | 0.482 | 12.30  |
| 34) | 959.88       | 30.98      | 0.1255      | 0.482 | 12.30  |
| 35) | 1019.90      | 31.94      | 0.1255      | 0.482 | 12.30  |

#### CONSOLIDATION TEST DATA

| Project : EMDH   | F Characterization | Location    | : | GW987-ST-3, 2.0'-4.0' | Project No. | : | 183923    |
|------------------|--------------------|-------------|---|-----------------------|-------------|---|-----------|
| Boring Nc.: GW98 | 37-ST-3            | Tested by   | : | BMI: blc              | Checked by  | : | KAF       |
| Sample No.: GW98 | 37-ST-3            | Test Date   | : | 3-15-18               | Depth       | : | 2.8′-3.0′ |
| Test No. : GW98  | 37-ST-3            | Sample Type | : | Undisturb             |             |   |           |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 19 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.1255      | 0.482 | 12.30  |
| 37) | 1139.92      | 33.76      | 0.1255      | 0.482 | 12.30  |
| 38) | 1199.88      | 34.64      | 0.1255      | 0.482 | 12.30  |
| 39) | 1259.90      | 35.50      | 0.1255      | 0.482 | 12.30  |
| 40) | 1319.88      | 36.33      | 0.1250      | 0.483 | 12.25  |
| £1) | 1379.90      | 37.15      | 0.1255      | 0.482 | 12.30  |
| £2) | 1410.45      | 37.56      | 0.1255      | 0.482 | 12.30  |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring No.: | GW987-ST-3            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW987-ST-3            | Test Date : 3-15-18              | Depth : 2.8'-3.0'   |
| Test No. :  | GW987-ST-3            | Sample Type: Undisturb           |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1234      | 0.486 | 12.10  |
| 2)  | 0.17         | 0.41       | 0.1229      | 0.486 | 12.05  |
| 3)  | 0.42         | 0.65       | 0.1229      | 0.486 | 12.05  |
| 4)  | 0.92         | 0.96       | 0.1224      | 0.487 | 12.00  |
| 5)  | 1.90         | 1.38       | 0.1224      | 0.487 | 12.00  |
| 6)  | 2.92         | 1.71       | 0.1224      | 0.487 | 12.00  |
| 7)  | 3.92         | 1.98       | 0.1219      | 0.488 | 11.95  |
| 8)  | 4.92         | 2.22       | 0.1219      | 0.488 | 11.95  |
| 9)  | 5.90         | 2.43       | 0.1214      | 0.489 | 11.90  |
| 10) | 6.90         | 2.63       | 0.1214      | 0.489 | 11.90  |
| 11) | 7.92         | 2.81       | 0.1214      | 0.489 | 11.90  |
| 12) | 8.92         | 2.99       | 0.1219      | 0.488 | 11.95  |
| 13) | 9.92         | 3.15       | 0.1214      | 0.489 | 11.90  |
| 14) | 14.92        | 3.86       | 0.1214      | 0.489 | 11.90  |
| 15) | 29.92        | 5.47       | 0.1209      | 0.490 | 11.85  |
| 16) | 59.92        | 7.74       | 0.1204      | 0.491 | 11.80  |
| 17) | 89.93        | 9.48       | 0.1204      | 0.491 | 11.80  |
| 18) | 119.90       | 10.95      | 0.1199      | 0.491 | 11.75  |
| 19) | 149.90       | 12.24      | 0.1204      | 0.491 | 11.80  |
| 20) | 179.90       | 13.41      | 0.1193      | 0.492 | 11.70  |
| 21) | 209.93       | 14.49      | 0.1199      | 0.491 | 11.75  |
| 22) | 239.95       | 15.49      | 0.1199      | 0.491 | 11.75  |
| 23) | 299.93       | 17.32      | 0.1199      | 0.491 | 11.75  |
| 24) | 359.92       | 18.97      | 0.1199      | 0.491 | 11.75  |
| 25) | 419.92       | 20.49      | 0.1199      | 0.491 | 11.75  |
| 26) | 479.92       | 21.91      | 0.1193      | 0.492 | 11.70  |
| 27) | 539.92       | 23.24      | 0.1193      | 0.492 | 11.70  |
| 28) | 599.92       | 24.49      | 0.1193      | 0.492 | 11.70  |
| 29) | 659.92       | 25.69      | 0.1193      | 0.492 | 11.70  |
| 30) | 719.90       | 26.83      | 0.1193      | 0.492 | 11.70  |
| 31) | 779.95       | 27.93      | 0.1193      | 0.492 | 11.70  |
| 32) | 839.90       | 28.98      | 0.1193      | 0.492 | 11.70  |
| 33) | 899.92       | 30.00      | 0.1193      | 0.492 | 11.70  |
| 34) | 959.90       | 30.98      | 0.1193      | 0.492 | 11.70  |
| 35) | 1019.93      | 31.94      | 0.1193      | 0.492 | 11.70  |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW987-ST-3, 2.0'-4.0' | Project No.: 183923 |
|---------------------------------|----------------------------------|---------------------|
| Boring Nc.: GW987-ST-3 .        | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: GW987-ST-3          | Test Date : 3-15-18              | Depth : 2.8'-3.0'   |
| Test No. : GW987-ST-3           | Sample Type: Undisturb           |                     |

Soil Description : red/brown silty clay and sand (visual description) Remarks : Use: Foundation berm/fill

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

| ELAPSED TIME | SQRT. OF                                                                                           | CHANGE IN                                                                                                                                                                                                                                                                                        | VOID                                                                                                                                                                                                                                                                                                                                                                                                                                            | STRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (min)        | TIME (min)                                                                                         | HEIGHT (in)                                                                                                                                                                                                                                                                                      | RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                           | (응)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1079.92      | 32.86                                                                                              | 0.1193                                                                                                                                                                                                                                                                                           | 0.492                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1139.92      | 33.76                                                                                              | 0.1193                                                                                                                                                                                                                                                                                           | 0.492                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1199.92      | 34.64                                                                                              | 0.1193                                                                                                                                                                                                                                                                                           | 0.492                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1259.92      | 35.50                                                                                              | 0.1193                                                                                                                                                                                                                                                                                           | 0.492                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1319.90      | 36.33                                                                                              | 0.1193                                                                                                                                                                                                                                                                                           | 0.492                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1379.93      | 37.15                                                                                              | 0.1193                                                                                                                                                                                                                                                                                           | 0.492                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1417.50      | 37.65                                                                                              | 0.1183                                                                                                                                                                                                                                                                                           | 0.494                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | ELAPSED TIME<br>(min)<br>1079.92<br>1139.92<br>1199.92<br>1259.92<br>1319.90<br>1379.93<br>1417.50 | ELAPSED TIME         SQRT. OF           (min)         TIME (min)           1079.92         32.86           1139.92         33.76           1199.92         34.64           1259.92         35.50           1319.90         36.33           1379.93         37.15           1417.50         37.65 | ELAPSED TIME         SQRT. OF         CHANGE IN           (min)         TIME (min)         HEIGHT (in)           1079.92         32.86         0.1193           1139.92         33.76         0.1193           1199.92         34.64         0.1193           1259.92         35.50         0.1193           1319.90         36.33         0.1193           1379.93         37.15         0.1193           1417.50         37.65         0.1183 | ELAPSED TIME         SQRT. OF         CHANGE IN         VOID           (min)         TIME (min)         HEIGHT (in)         RATIO           1079.92         32.86         0.1193         0.492           1139.92         33.76         0.1193         0.492           1199.92         34.64         0.1193         0.492           1259.92         35.50         0.1193         0.492           1319.90         36.33         0.1193         0.492           1379.93         37.15         0.1193         0.492           1417.50         37.65         0.1183         0.494 |

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

## LABORATORY REPORT

**Report To:** CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377

Report Date: April 17, 2018 Job No.: 183923 430213 Report No.: No. of Pages: 2

Laboratory Analysis of One Shelby Tube Sample **Report On:** Project: EMDF Characterization - Project No. 1188070011 Sample ID: GW979 - ST-1, 3.0'-5.0' - Sample Date: 2/21/18

On March 5, 2018, one Shelby tube sample was submitted for determination of atterberg limits from the above referenced project. Testing was performed as specified by the client and in accordance with the following procedures:

> ASTM D 1140, "Determining the Amount of Material Finer than 75-µm (No. 200) Sieve in Soils by Washing".

ASTM D 4318, "Liquid Limit, Plastic Limit, and Plasticity Index of Soils".

Results are presented in the following table and detailed on the attached data sheet.

| Test Parameter                    | Results |
|-----------------------------------|---------|
| Liquid Limit:                     | 48      |
| Plastic Limit:                    | 29      |
| Plasticity Index:                 | 19      |
| Percent Finer than No. 200 Sieve: | 73.3    |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430213 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-133 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for review.



Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

## LABORATORY REPORT

| Report To: | CTI & Associates, Inc.      | <b>Report Date:</b> | May 3, 2018 |
|------------|-----------------------------|---------------------|-------------|
|            | Attn: Michael Partenio      | Job No.:            | 183923      |
|            | 28001 Cabot Drive, Ste. 250 | <b>Report No.:</b>  | 430246      |
|            | Novi, MI 48377              | No. of Pages:       | 2           |

**Report On:** Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW993 – ST-1, 3.0'-5.0' – Sample Date: 2/22/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the ASTM D 4318, "Liquid Limit, Plastic Limit, and Plasticity Index of Soils".

Results are presented in the following table and detailed on the attached data sheet.

| Test Parameter    | Results |
|-------------------|---------|
| Liquid Limit:     | 35      |
| Plastic Limit:    | 23      |
| Plasticity Index: | 12      |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430246 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-135

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for review.



Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

## LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377 Report Date:May 22, 2018Job No.:183923Report No.:430273No. of Pages:2

**Report On:** Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW979 – ST-2, 7.5'-8.75' – Sample Date: 2/21/18 Depth of Test Specimen: 8.2'-8.5'

On March 5, 2018, one Shelby tube sample was submitted for laboratory determination of permeability. Testing was performed as specified by the client and in accordance with ASTM D 5084, "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter".

Results are presented in the following table.

| Test Parameter                | Results            |
|-------------------------------|--------------------|
| Average Permeability, cm/sec: | <b>1.7 x 10</b> -7 |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430273 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-137

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

## **FALLING HEAD PERMEABILITY TEST** ASTM D 5084, Measurement of Hydraulic Conductivity

### UNDISTURBED

| Client:                | CTI and Associates, Inc. |
|------------------------|--------------------------|
| Project:               | EMDF Characterization    |
| BMI Work Order Number: | 183923                   |
| Sample Identification: | GW979 ST-2, 7.5' - 8.75' |
| Depth, ft:             | 8.2' - 8.5'              |
| Visual Description:    | brown silty clay         |

### **SPECIMEN DATA:**

| Dimension, inches<br>Height:<br>Diameter:                                                           | 2.99<br>2.883  |
|-----------------------------------------------------------------------------------------------------|----------------|
| Mass, lbs:                                                                                          | 1.428          |
| Moisture Content,%<br>Initial:<br>Final:                                                            | 21.8<br>24.4   |
| Wet Unit Weight, pcf<br>Initial:<br>Final:                                                          | 126.4<br>129.1 |
| Initial Dry Unit Weight, pcf:                                                                       | 103.8          |
| Back Pressure Saturation, psi<br>Back Pressure, Exit:<br>Back Pressure, Enter:<br>Lateral Pressure: | 60<br>63<br>67 |

Permeability (k), cm/sec:

1.7 x 10<sup>-7</sup>

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

### LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377 
 Report Date:
 May 7, 2018

 Job No.:
 183923

 Report No.:
 430253

 No. of Pages:
 4

Report On:Laboratory Analysis of One Shelby Tube SampleProject:EMDF Characterization – Project No. 1188070011Sample ID:GW989-ST-4, 14.5'-16.5' – Sample Date: 2/27/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the following procedures:

ASTM D 2216, "Laboratory Determination of Water (Moisture) Content of Soil and Rock".

ASTM D 6913, "Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis".

Results are summarized in Table I and detailed on the attached data sheets.

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430253 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com Report To:CTI & AsseProject:EMDF ChaSample No.:GW989-ST

CTI & Associates, Inc. EMDF Characterization GW989-ST-4, 14.5'-16.6' 
 BMI Job No.:
 183923

 BMI Report No.:
 430253

 Date Sampled:
 02/27/18

## Sample ID: GW989-ST-4, 14.5'-16.6'

**Description:** Saprolite

|                                  | · · · · · · · · · · · · · · · · · · · |
|----------------------------------|---------------------------------------|
| Sieve Size                       | Percent Passing                       |
| 1/2"                             | 100.0                                 |
| 3/8"                             | 99.1                                  |
| No. 4                            | 77.0                                  |
| No. 10                           | 43.4                                  |
| No. 20                           | 27.6                                  |
| No. 40                           | 22.1                                  |
| No. 60                           | 19.6                                  |
| No. 100                          | 17.8                                  |
| No. 200                          | 15.6                                  |
| Gravel, %:                       | 23.0                                  |
| Sand, %:                         | 61.4                                  |
| Fines, %:                        | 15.6                                  |
| As Received Moisture Content, %: | 14.9                                  |

# **TABLE I**Summary of Results

Page 2


### **GRAIN SIZE DISTRIBUTION TEST DATA**

Sample Number: ST-4

Client: CTI and Associates, Inc. Project: EMDF Characterization Project Number: 183923

Location: GW-989

**Depth:** 14.5' - 16.5'

Material Description: Saprolite

Testing Remarks: As Received

Moisture Content: 14.9%

|                                      |                 |                                             |                          | Sieve Test Data                             |                  |                     |  |
|--------------------------------------|-----------------|---------------------------------------------|--------------------------|---------------------------------------------|------------------|---------------------|--|
| Dry<br>Sample<br>and Tare<br>(grams) | Tare<br>(grams) | Cumulative<br>Pan<br>Tare Weight<br>(grams) | Sieve<br>Opening<br>Size | Cumulative<br>Weight<br>Retained<br>(grams) | Percent<br>Finer | Percent<br>Retained |  |
| 932.90                               | 228.22          | 0.00                                        | 0.50                     | 0.00                                        | 100.0            | 0.0                 |  |
|                                      |                 |                                             | 0.375                    | 6.60                                        | 99.1             | 0.9                 |  |
|                                      |                 |                                             | #4                       | 162.34                                      | 77.0             | 23.0                |  |
|                                      |                 |                                             | #10                      | 398.89                                      | 43.4             | 56.6                |  |
|                                      |                 |                                             | #20                      | 510.01                                      | 27.6             | 72.4                |  |
|                                      |                 |                                             | #40                      | 549.08                                      | 22.1             | 77.9                |  |
|                                      |                 |                                             | #60                      | 566.57                                      | 19.6             | 80.4                |  |
|                                      |                 |                                             | #100                     | 579.07                                      | 17.8             | 82.2                |  |
|                                      |                 |                                             | #200                     | 594.40                                      | 15.6             | 84.4                |  |
|                                      |                 |                                             | Frac                     | tional Compone                              | nts              |                     |  |

| Cobbles | Gravel |      |       | Sand   |        |      |       | Fines |      |       |
|---------|--------|------|-------|--------|--------|------|-------|-------|------|-------|
| Connies | Coarse | Fine | Total | Coarse | Medium | Fine | Total | Silt  | Clay | Total |
| 0.0     | 0.0    | 23.0 | 23.0  | 33.6   | 21.3   | 6.5  | 61.4  |       |      | 15.6  |

| D <sub>5</sub> | D <sub>10</sub> | D <sub>15</sub> | D <sub>20</sub> | D <sub>30</sub> | D <sub>40</sub> | D <sub>50</sub> | D <sub>60</sub> | D <sub>80</sub> | D <sub>85</sub> | D <sub>90</sub> | D <sub>95</sub> |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                |                 |                 | 0.2765          | 1.0368          | 1.7678          | 2.4480          | 3.1778          | 5.1031          | 5.7655          | 6.5876          | 7.7351          |

Fineness Modulus

3.81

5/7/2018

# **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

# LABORATORY REPORT

| <b>Report To:</b> | CTI & Associates, Inc.      | <b>Report Date:</b> | April 11, 2018 |
|-------------------|-----------------------------|---------------------|----------------|
|                   | Attn: Michael Partenio      | Job No.:            | 183923         |
|                   | 28001 Cabot Drive, Ste. 250 | <b>Report No.:</b>  | 430201         |
|                   | Novi, MI 48377              | No. of Pages:       | 1              |

**Report On:** Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW987 – ST-3, 2.0'-4.0' – Sample Date: 2/21/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the following procedures:

ASTM D 854, "Specific Gravity of Soils Solids by Water Pycnometer".

ASTM D 2216, "Laboratory Determination of Water (Moisture) Content of Soil and Rock".

ASTM D 7263, "Laboratory Determination of Density (Unit Weight) of Soil Specimens - Method B".

Results are summarized in the following table.

| Test Parameter                   | Results   |
|----------------------------------|-----------|
| Depth of Test Specimen:          | 2.0'-2.5' |
| As Received Moisture Content, %: | 20.7      |
| Apparent Specific Gravity:       | 2.69      |
| Wet Unit Weight, pcf:            | 128.5     |
| Dry Unit Weight, pcf:            | 106.4     |
| Void Ratio:                      | 0.5764    |
| Porosity, %:                     | 36.6      |
| Degree of Saturation, %:         | 96.5      |
| Volume of Water, %:              | 35.3      |
| Volume of Solids, %:             | 63.4      |
| Air Filled Voids, %:             | 3.5       |
| Water Filled Voids, %:           | 96.5      |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

KAF/blc 430201 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com Respectfully submitted,

BOWSER-MORNER, INC

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

E-143

L-1+5 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

# **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

# LABORATORY REPORT

| <b>Report To:</b> | CTI & Associates, Inc.      | <b>Report Date:</b> | May 22, 2018 |
|-------------------|-----------------------------|---------------------|--------------|
|                   | Attn: Michael Partenio      | Job No.:            | 183923       |
|                   | 28001 Cabot Drive, Ste. 250 | <b>Report No.:</b>  | 430274       |
|                   | Novi, MI 48377              | No. of Pages:       | 2            |

**Report On:** Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW989 – ST-2, 6.5'-8.5' – Sample Date: 2/27/18 Depth of Test Specimen: 7.3'-7.6'

On March 5, 2018, one Shelby tube sample was submitted for laboratory determination of permeability. Testing was performed as specified by the client and in accordance with ASTM D 5084, "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter".

Results are presented in the following table.

| Test Parameter                | Results                |
|-------------------------------|------------------------|
| Average Permeability, cm/sec: | 6.6 x 10 <sup>-8</sup> |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430274 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-144

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

# FALLING HEAD PERMEABILITY TEST ASTM D 5084, Measurement of Hydraulic Conductivity

## UNDISTURBED

| Client:                | CTI and Associates, Inc. |
|------------------------|--------------------------|
| Project:               | EMDF Characterization    |
| BMI Work Order Number: | 183923                   |
| Sample Identification: | GW989 ST-2, 6.5' - 8.5'  |
| Depth, ft:             | 7.3' - 7.6'              |
| Visual Description:    | brown silty clay         |

# SPECIMEN DATA:

| Dimension, inches<br>Height:<br>Diameter:                                                           | 3.008<br>2.86  |
|-----------------------------------------------------------------------------------------------------|----------------|
| Mass, lbs:                                                                                          | 1.355          |
| Moisture Content,%<br>Initial:<br>Final:                                                            | 28.0<br>30.0   |
| Wet Unit Weight, pcf<br>Initial:<br>Final:                                                          | 121.2<br>123.1 |
| Initial Dry Unit Weight, pcf:                                                                       | 94.7           |
| Back Pressure Saturation, psi<br>Back Pressure, Exit:<br>Back Pressure, Enter:<br>Lateral Pressure: | 60<br>63<br>67 |

Permeability (k), cm/sec:

6.6 x 10<sup>-8</sup>





TIME CURVES (STEP 1 OF 20) STRESS : 0.06 (t/ft^2) 0.000 Ð 0.001 DISPLACEMENT (in) 0.002 0.003 0.004 0.005 E 10-1 10° 10<sup>1</sup> TIME (min) 0.000 F ✐ -0.001 DISPLACEMENT (in) 0.002 0.003 0.004 0.005 년 0.0 0.5 1.0 1.5 2.5 2.0 SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW993-ST-1 Sample No : GW993-ST-1 Test Date : 3-16-18 Test No : GW993-ST-1 Depth : 3.6'-3.8' Description : brown clayey silt (visual description)

CONSOLIDATION TEST

CONSOLIDATION TEST TIME CURVES (STEP 2 OF 20) STRESS : 0.25 (t/ft^2) 0.002<del>00</del> 0.004 DISPLACEMENT (in) 0.006 0.008 0.010 6  $\gamma \overline{m}$ 0.012 E 10<sup>0</sup> 10<sup>2</sup> 10<sup>3</sup> 101 104 TIME (min) 0.002 0.004 DISPLACEMENT (in) 0.006 0.008 6 0.010  $\cap \cap$ 1111111 0.012 <sup>E</sup> 0. 10. 20. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No: 183923 Boring No : GW993-ST-1 Sample No : GW993-ST-1 Test Date : 3-16-18 Test No : GW993-ST-1 Depth : 3.6'-3.8' Description : brown clayey silt (visual description)





TIME CURVES (STEP 5 OF 20) STRESS :  $2(t/ft^2)$ 0.040@ 0 0.045 DISPLACEMENT (in) 0.050 0.055 0.060 0.065 10<sup>-1</sup> 10<sup>0</sup> 10<sup>1</sup>  $10^{2}$  $10^{3}$ 10<sup>4</sup> TIME (min) 0.040@ 0.045 DISPLACEMENT (in) 0.050 90000 0.055 0.060 \_\_\_\_\_ 0.065 <sup>E</sup>0 20. 10. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW993-ST-1 Sample No : GW993-ST-1 Test No : GW993-ST-1 Depth : 3.6'-3.8' Test Date : 3-16-18 Description : brown clayey silt (visual description)

CONSOLIDATION TEST



TIME CURVES (STEP 7 OF 20) STRESS :  $2(t/ft^2)$ 0.069 0.070 DISPLACEMENT (in) 0.071 A AAAA ΦÐ  $\sim$ 0.072 0.073 0.074 E\_\_\_\_\_ 10<sup>-1</sup> 10° 10<sup>2</sup> 10<sup>1</sup>  $10^{3}$ 10<sup>4</sup> TIME (min) 0.069 0.070 DISPLACEMENT (in)  $\Omega \Omega \Lambda$ 0.071 0.072 0.073 0.074 <sup>L</sup> ιΞ 20. 10. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW993-ST-1 Sample No : GW993-ST-1 Test Date : 3-16-18 Test No : GW993-ST-1 Depth : 3.6'-3.8' Description : brown clayey silt (visual description)

CONSOLIDATION TEST

CONSOLIDATION TEST TIME CURVES (STEP 8 OF 20) STRESS : 1 (t/ft^2)







CONSOLIDATION TEST TIME CURVES (STEP 11 OF 20) STRESS :  $2(t/ft^2)$ 0.068 0.069 DISPLACEMENT (in) 0.070 0.071 0.072 0.073 <sup>E</sup>  $10^{2}$ 10-1 10° 10<sup>3</sup> 10<sup>1</sup>  $10^{4}$ TIME (min) 0.068 0.069 DISPLACEMENT (in) -00000000 0000000000 0.070 0.071 0.072 0.073 <sup>L</sup> 7 20. 10. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW993-ST-1 Sample No : GW993-ST-1 Test Date : 3-16-18 Test No : GW993-ST-1 Depth : 3.6'-3.8' Description : brown clayey silt (visual description)









CONSOLIDATION TEST TIME CURVES (STEP 16 OF 20) STRESS : 16 (t/ft^2) 0.164 CODDOC 680 0.165 DISPLACEMENT (in) 0.166 0.167 0.168 0.169 <sup>t</sup> . 10<sup>-1</sup> 10° 10<sup>1</sup>  $10^{2}$  $10^{3}$ 104 TIME (min) 0.164 Æ 0.165 90000 DISPLACEMENT (in) 0.166 0.167 0.168 0.169 <sup>上</sup> 0. 20. 30. 40. 10. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No: GW993-ST-1 Sample No: GW993-ST-1 Test Date : 3-16-18 Test No : GW993-ST-1 Depth : 3.6'-3.8' Description : brown clayey silt (visual description)









#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|---------------------------------|----------------------------------|---------------------|
| Boring No.: GW993-ST-1          | Tested by : BMI: blc             | Checked by : KAF    |
| Sample Nc.: GW993-ST-1          | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. : GW993-ST-1           | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

|     | APPLIED  | FINAL        | VOID  | STRAIN | FIT      | FING  | COEFFIC   | IENT OF CONSOL | IDATION   |
|-----|----------|--------------|-------|--------|----------|-------|-----------|----------------|-----------|
|     | PRESSURE | DISPLACEMENT | RATIO | AT END | T50 TIME | (min) |           | (in^2/s)       |           |
|     | (t/ft^2) | (in)         |       | (%)    | SQ.RT.   | LOG   | SQ.RT.    | LOG            | AVE       |
|     |          |              |       |        |          |       |           |                |           |
| 1)  | 0.06     | 0.001        | 0.715 | 0.05   | 0.0      | 0.0   | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 2)  | 0.25     | 0.011        | 0.697 | 1.05   | 12.3     | 0.0   | 6.87E-005 | 0.00E+000      | 6.87E-005 |
| 3)  | 0.50     | 0.021        | 0.680 | 2.05   | 14.5     | 0.0   | 5.71E-005 | 0.00E+000      | 5.71E-005 |
| 4)  | 1.00     | 0.035        | 0.656 | 3.44   | 6.3      | 0.0   | 1.29E-004 | 0.00E+000      | 1.29E-004 |
| 5)  | 2.00     | 0.052        | 0.627 | 5.13   | 3.3      | 3.2   | 2.38E-004 | 2.47E-004      | 2.43E-004 |
| 6)  | 4.00     | 0.075        | 0.590 | 7.33   | 3.3      | 0.0   | 2.26E-004 | 0.00E+000      | 2.26E-004 |
| 7)  | 2.00     | 0.069        | 0.599 | 6.78   | 0.0      | 0.0   | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 8)  | 1.00     | 0.067        | 0.603 | 6.58   | 0.0      | 0.0   | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 9)  | 0.50     | 0.064        | 0.609 | 6.23   | 8.4      | 0.0   | 8.87E-005 | 0.00E+000      | 8.87E-005 |
| 10) | 1.00     | 0.066        | 0.605 | 6.43   | 0.0      | 0.0   | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 11) | 2.00     | 0.069        | 0.599 | 6.78   | 0.0      | 0.0   | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 12) | 4.00     | 0.076        | 0.587 | 7.48   | 0.0      | 0.0   | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 13) | 8.00     | 0.102        | 0.544 | 10.02  | 7.1      | 3.0   | 9.99E-005 | 2.40E-004      | 1.70E-004 |
| 14) | 16.00    | 0.135        | 0.489 | 13.20  | 1.8      | 0.0   | 3.71E-004 | 0.00E+000      | 3.71E-004 |
| 15) | 32.00    | 0.172        | 0.426 | 16.89  | 1.9      | 2.1   | 3.24E-004 | 3.00E-004      | 3.12E-004 |
| 16) | 16.00    | 0.165        | 0.439 | 16.14  | 9.2      | 0.0   | 6.47E-005 | 0.00E+000      | 6.47E-005 |
| 17) | 8.00     | 0.155        | 0.455 | 15.20  | 0.0      | 0.0   | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 18) | 4.00     | 0.146        | 0.469 | 14.35  | 7.6      | 0.0   | 8.18E-005 | 0.00E+000      | 8.18E-005 |
| 19) | 2.00     | 0.139        | 0.482 | 13.60  | 10.7     | 0.0   | 5.89E-005 | 0.00E+000      | 5.89E-005 |
| 20) | 1.00     | 0.132        | 0.493 | 12.95  | 39.7     | 0.0   | 1.62E-005 | 0.00E+000      | 1 62E-005 |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location    | : GW993-ST-1, 3.0'- | 5.0′ | Project No. | : 183923    |
|---------------------------------|-------------|---------------------|------|-------------|-------------|
| Boring No.: GW993-ST-1          | Tested by   | : BMI: blc          |      | Checked by  | : KAF       |
| Sample No.: GW993-ST-1          | Test Date   | : 3-16-18           |      | Depth       | : 3.6'-3.8' |
| Test No. : GW993-ST-1           | Sample Type | : Undisturb         |      |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

| Specific Gravity : 2.73   | Liquid Limit : 0     | Initial Height : 1.02 (in)  |
|---------------------------|----------------------|-----------------------------|
| Initial Void Ratio : 0.72 | Plastic Limit : 0    | Sample Diameter : 2.50 (in) |
| Final Void Ratio : 0.49   | Plasticity Index : 0 |                             |

|                              | BEFORE CONSOLIDATION |                 | AFTER CONSOLIDATION |           |
|------------------------------|----------------------|-----------------|---------------------|-----------|
|                              | TRIMMINGS            | SPECIMEN + RING | SPECIMEN + RING     | TRIMMINGS |
| CONTAINER NO.                |                      | RING            | RING                |           |
| WT CONTAINER + WET SOIL (gm) | 165.07               | 165.07          | 154.27              | 154.27    |
| WT CONTAINER + DRY SOIL (gm) | 130.77               | 130.77          | 130.77              | 130.77    |
| WT CONTAINER (gm)            | 0.00                 | 0.00            | 0.00                | 0.00      |
| WT DRY SOIL (gm)             | 130.77               | 130.77          | 130.77              | 130.77    |
| WATER CONTENT (%)            | 26.23                | 26.23           | 17.97               | 17.97     |
| VOID RATIO                   |                      | 0.72            | 0.49                |           |
| DEGREE OF SATURATION (%)     |                      | 100.24          | 99.61               |           |
| DRY DENSITY (lb/ft^3)        |                      | 99.50           | 114.30              |           |

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefor values may not represent actual values for the specimen.

### CONSOLIDATION TEST DATA

| Project :   | $	ext{EMD}\mathbf{F}$ Characterization | Location     | : GW993-ST-1, 3.0'-5.0' | Project No.: | 183923    |
|-------------|----------------------------------------|--------------|-------------------------|--------------|-----------|
| Boring No.: | GW993-ST-1                             | Tested by    | : BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW993-ST-1                             | Test Date :  | : 3-16-18               | Depth :      | 3.6′-3.8′ |
| Test No. :  | GW993-ST-1                             | Sample Type: | Undisturb               |              |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 1 of 20 Stress increment from 0.00 (t/ft<sup>2</sup>) to 0.06 (t/ft<sup>2</sup>) Start Date : Start Time :

|    | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|----|--------------|------------|-------------|-------|--------|
|    | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|    |              |            |             |       |        |
| 1) | 0.17         | 0.41       | 0.0000      | 0.715 | 0.00   |
| 2) | 0.90         | 0.95       | 0.0000      | 0.715 | 0.00   |
| 3) | 2.90         | 1.70       | 0.0005      | 0.715 | 0.05   |
| 4) | 3.93         | 1.98       | 0.0005      | 0.715 | 0.05   |
| 5) | 5.33         | 2.31       | 0.0005      | 0.715 | 0.05   |

#### CONSOLIDATION TEST DATA

| Project : 1   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No. | : 183923    |
|---------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring No.: ( | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: ( | GW993-ST-1            | Test Date   | : 3-16-18               | Depth       | : 3.6'-3.8' |
| Test No. : (  | GW993-ST-1            | Sample Type | : Undisturb             |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 2 of 20

Stress increment from 0.06  $(t/ft^2)$  to 0.25  $(t/ft^2)$ 

Start Date : Start Time :

|      | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|------|--------------|------------|-------------|-------|--------|
|      | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|      |              |            |             |       |        |
| 1)   | 0.00         | 0.00       | 0.0020      | 0.712 | 0.20   |
| 2)   | 0.13         | 0.37       | 0.0020      | 0.712 | 0.20   |
| 3)   | 0.38         | 0.62       | 0.0025      | 0.711 | 0.25   |
| 4)   | 0.88         | 0.94       | 0.0030      | 0.710 | 0.30   |
| 5)   | 1.87         | 1.37       | 0.0030      | 0.710 | 0.30   |
| 6)   | 2.87         | 1.69       | 0.0036      | 0.709 | 0.35   |
| 7)   | 3.87         | 1.97       | 0.0041      | 0.709 | 0.40   |
| 8)   | 4.88         | 2.21       | 0.0041      | 0.709 | 0.40   |
| 9)   | 5.88         | 2.43       | 0.0046      | 0.708 | 0.45   |
| 10)  | 6.87         | 2.62       | 0.0046      | 0.708 | 0.45   |
| 11)  | 7.90         | 2.81       | 0.0051      | 0.707 | 0.50   |
| 12)  | 8.88         | 2.98       | 0.0051      | 0.707 | 0.50   |
| 13)  | 9.90         | 3.15       | 0.0056      | 0.706 | 0.55   |
| 14)  | 14.88        | 3.86       | 0.0061      | 0.705 | 0.60   |
| 15)  | 29.88        | 5.47       | 0.0076      | 0.703 | 0.75   |
| 16)  | 59.88        | 7.74       | 0.0091      | 0.700 | 0.90   |
| -17) | 89.92        | 9.48       | 0.0097      | 0.699 | 0.95   |
| 18)  | 119.88       | 10.95      | 0.0097      | 0.699 | 0.95   |
| 19)  | 149.90       | 12.24      | 0.0102      | 0.698 | 1.00   |
| 20)  | 179.88       | 13.41      | 0.0102      | 0.698 | 1.00   |
| 21)  | 209.87       | 14.49      | 0.0102      | 0.698 | 1.00   |
| 22)  | 239.87       | 15.49      | 0.0102      | 0.698 | 1.00   |
| 23)  | 299.88       | 17.32      | 0.0102      | 0.698 | 1.00   |
| 24)  | 359.88       | 18.97      | 0.0107      | 0.697 | 1.05   |
| 25)  | 419.88       | 20.49      | 0.0107      | 0.697 | 1.05   |
| 26)  | 479.87       | 21.91      | 0.0107      | 0.697 | 1.05   |
| 27)  | 539.87       | 23.24      | 0.0107      | 0.697 | 1.05   |
| 28)  | 599.88       | 24.49      | 0.0107      | 0.697 | 1.05   |
| 29)  | 659.90       | 25.69      | 0.0107      | 0.697 | 1.05   |
| 30)  | 719.88       | 26.83      | 0.0112      | 0.697 | 1.10   |
| 31)  | 779.87       | 27.93      | 0.0112      | 0.697 | 1.10   |
| 32)  | 839.88       | 28.98      | 0.0112      | 0.697 | 1.10   |
| 33)  | 899.87       | 30.00      | 0.0107      | 0.697 | 1.05   |
| 34)  | 959.88       | 30.98      | 0.0112      | 0.697 | 1.10   |
| 35)  | 1019.88      | 31.94      | 0.0112      | 0.697 | 1.10   |

#### CONSOLIDATION TEST DATA

| Project : E   | MDF Characterization | Location :   | GW993-ST-1, 3.0'-5.0' | Project No. | : 183923    |
|---------------|----------------------|--------------|-----------------------|-------------|-------------|
| Boring No.: G | W993-ST-1            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample No.: G | W993-ST-1            | Test Date :  | 3-16-18               | Depth       | : 3.6'-3.8' |
| Test No. : G  | W993-ST-1            | Sample Type: | Undisturb             |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 2 of 20 Stress increment from 0.06 (t/ft<sup>2</sup>) to 0.25 (t/ft<sup>2</sup>) Start Date : Start Time :

|      | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|------|--------------|------------|-------------|-------|--------|
|      | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
| 2.53 |              |            |             |       |        |
| 36)  | 1079.88      | 32.86      | 0.0107      | 0.697 | 1.05   |
| 37)  | 1139.88      | 33.76      | 0.0107      | 0.697 | 1.05   |
| 38)  | 1199.90      | 34.64      | 0.0112      | 0.697 | 1.10   |
| 39)  | 1259.88      | 35.49      | 0.0112      | 0.697 | 1.10   |
| 40)  | 1303.47      | 36.10      | 0.0107      | 0.697 | 1.05   |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|---------------------------------|----------------------------------|---------------------|
| Boring No.: GW993-ST-1          | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: GW993-ST-1          | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. : GW993-ST-1           | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0132      | 0.693 | 1.29   |
| 2)  | 0.15         | 0.39       | 0.0132      | 0.693 | 1.29   |
| 3)  | 0.40         | 0.63       | 0.0137      | 0.692 | 1.34   |
| 4)  | 0.92         | 0.96       | 0.0142      | 0.691 | 1.39   |
| 5)  | 1.90         | 1.38       | 0.0147      | 0.691 | 1.44   |
| 6)  | 2.90         | 1.70       | 0.0152      | 0.690 | 1.49   |
| 7)  | 3.92         | 1.98       | 0.0152      | 0.690 | 1.49   |
| 8)  | 4.92         | 2.22       | 0.0157      | 0.689 | 1.54   |
| 9)  | 5.93         | 2.44       | 0.0163      | 0.688 | 1.59   |
| 10) | 6.93         | 2.63       | 0.0163      | 0.688 | 1.59   |
| 11) | 7.90         | 2.81       | 0.0168      | 0.687 | 1.64   |
| 12) | 8.92         | 2.99       | 0.0168      | 0.687 | 1.64   |
| 13) | 9.93         | 3.15       | 0.0168      | 0.687 | 1.64   |
| 14) | 14.90        | 3.86       | 0.0173      | 0.686 | 1.69   |
| 15) | 29.90        | 5.47       | 0.0188      | 0.684 | 1.84   |
| 16) | 59.92        | 7.74       | 0.0198      | 0.682 | 1.94   |
| 17) | 89.92        | 9.48       | 0.0198      | 0.682 | 1.94   |
| 18) | 119.93       | 10.95      | 0.0203      | 0.681 | 1.99   |
| 19) | 149.93       | 12.24      | 0.0198      | 0.682 | 1.94   |
| 20) | 179.92       | 13.41      | 0.0203      | 0.681 | 1.99   |
| 21) | 209.92       | 14.49      | 0.0203      | 0.681 | 1.99   |
| 22) | 239.92       | 15.49      | 0.0208      | 0.680 | 2.04   |
| 23) | 299.92       | 17.32      | 0.0208      | 0.680 | 2.04   |
| 24) | 359.90       | 18.97      | 0.0208      | 0.680 | 2.04   |
| 25) | 419.92       | 20.49      | 0.0213      | 0.680 | 2.09   |
| 26) | 479.90       | 21.91      | 0.0213      | 0.680 | 2.09   |
| 27) | 539.90       | 23.24      | 0.0213      | 0.680 | 2.09   |
| 28) | 599.92       | 24.49      | 0.0213      | 0.680 | 2.09   |
| 29) | 659.92       | 25.69      | 0.0213      | 0.680 | 2.09   |
| 30) | 719.92       | 26.83      | 0.0213      | 0.680 | 2.09   |
| 31) | 779.92       | 27.93      | 0.0213      | 0.680 | 2.09   |
| 32) | 839.90       | 28.98      | 0.0213      | 0.680 | 2.09   |
| 33) | 899.92       | 30.00      | 0.0213      | 0.680 | 2.09   |
| 34) | 959.92       | 30.98      | 0.0213      | 0.680 | 2.09   |
| 35) | 1019.95      | 31.94      | 0.0213      | 0.680 | 2.09   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring Nc.: | GW993-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample Nc.: | GW993-ST-1            | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.92      | 32.86      | 0.0213      | 0.680 | 2.09   |
| 37) | 1139.90      | 33.76      | 0.0213      | 0.680 | 2.09   |
| 38) | 1199.90      | 34.64      | 0.0213      | 0.680 | 2.09   |
| 39) | 1259.92      | 35.50      | 0.0208      | 0.680 | 2.04   |
| 40) | 1309.85      | 36.19      | 0.0208      | 0.680 | 2.04   |

.

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW993-ST-1, 3.0'-5.0' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring No.: | GW993-ST-1            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW993-ST-1            | Test Date :  | 3-16-18               | Depth       | : 3.6'-3.8' |
| Test No. :  | GW993-ST-1            | Sample Type: | Undisturb             |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 4 of 20

Stress increment from 0.50  $(t/ft^2)$  to 1.00  $(t/ft^2)$ 

Start Date : Start Time :

|      | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|------|--------------|------------|-------------|-------|--------|
|      | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|      |              |            |             |       |        |
| 1)   | 0.00         | 0.00       | 0.0254      | 0.673 | 2.49   |
| 2)   | 0.15         | 0.39       | 0.0259      | 0.672 | 2.54   |
| 3)   | 0.40         | 0.63       | 0.0264      | 0.671 | 2.59   |
| 4)   | 0.90         | 0.95       | 0.0269      | 0.670 | 2.64   |
| 5)   | 1.92         | 1.38       | 0.0284      | 0.668 | 2.79   |
| 6)   | 2.92         | 1.71       | 0.0290      | 0.667 | 2.84   |
| 7)   | 3.90         | 1.97       | 0.0295      | 0.666 | 2.89   |
| 8)   | 4.92         | 2.22       | 0.0305      | 0.664 | 2.99   |
| 9)   | 5.92         | 2.43       | 0.0305      | 0.664 | 2.99   |
| 10)  | 6.92         | 2.63       | 0.0310      | 0.663 | 3.04   |
| 11)  | 7.92         | 2.81       | 0.0310      | 0.663 | 3.04   |
| 12)  | 8.92         | 2.99       | 0.0310      | 0.663 | 3.04   |
| 13)  | 9.92         | 3.15       | 0.0310      | 0.663 | 3.04   |
| 14)  | 14.90        | 3.86       | 0.0320      | 0.662 | 3.14   |
| 15)  | 29.92        | 5.47       | 0.0335      | 0.659 | 3.29   |
| 16)  | 59.93        | 7.74       | 0.0340      | 0.658 | 3.34   |
| 17), | 89.92        | 9.48       | 0.0345      | 0.657 | 3.39   |
| 18)  | 119.90       | 10.95      | 0.0340      | 0.658 | 3.34   |
| 19)  | 149.92       | 12.24      | 0.0345      | 0.657 | 3.39   |
| 20)  | 179.92       | 13.41      | 0.0345      | 0.657 | 3.39   |
| 21)  | 209.92       | 14.49      | 0.0351      | 0.656 | 3.44   |
| 22)  | 239.92       | 15.49      | 0.0345      | 0.657 | 3.39   |
| 23)  | 299.92       | 17.32      | 0.0345      | 0.657 | 3.39   |
| 24)  | 359.93       | 18.97      | 0.0345      | 0.657 | 3.39   |
| 25)  | 419.90       | 20.49      | 0.0351      | 0.656 | 3.44   |
| 26)  | 479.92       | 21.91      | 0.0351      | 0.656 | 3.44   |
| 27)  | 539.90       | 23.24      | 0.0351      | 0.656 | 3.44   |
| 28)  | 599.92       | 24.49      | 0.0351      | 0.656 | 3.44   |
| 29)  | 659.92       | 25.69      | 0.0351      | 0.656 | 3.44   |
| 30)  | 719.92       | 26.83      | 0.0351      | 0.656 | 3.44   |
| 31)  | 779.95       | 27.93      | 0.0351      | 0.656 | 3.44   |
| 32)  | 839.92       | 28.98      | 0.0356      | 0.656 | 3.49   |
| 33)  | 899.92       | 30.00      | 0.0356      | 0.656 | 3.49   |
| 34)  | 959.93       | 30.98      | 0.0356      | 0.656 | 3.49   |
| 35)  | 1019.92      | 31.94      | 0.0351      | 0.656 | 3.44   |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|---------------------------------|----------------------------------|---------------------|
| Boring No.: GW993-ST-1          | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: GW993-ST-1          | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. : GW993-ST-1           | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 4 of 20

Stress increment from 0.50 (t/ft^2) to 1.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0356      | 0.656 | 3.49   |
| 37) | 1139.92      | 33.76      | 0.0356      | 0.656 | 3.49   |
| 38) | 1199.92      | 34.64      | 0.0356      | 0.656 | 3.49   |
| 39) | 1259.92      | 35.50      | 0.0356      | 0.656 | 3.49   |
| 40) | 1319.90      | 36.33      | 0.0356      | 0.656 | 3.49   |
| 41) | 1379.90      | 37.15      | 0.0356      | 0.656 | 3.49   |
| 42) | 1439.92      | 37.95      | 0.0351      | 0.656 | 3.44   |
| 43) | 1499.90      | 38.73      | 0.0356      | 0.656 | 3.49   |
| 44) | 1559.90      | 39.50      | 0.0356      | 0.656 | 3.49   |
| 45) | 1619.90      | 40.25      | 0.0351      | 0.656 | 3.44   |
| 46) | 1626.50      | 40.33      | 0.0351      | 0.656 | 3.44   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: | 183923    |
|-------------|-----------------------|-------------|-------------------------|--------------|-----------|
| Boring Nc.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by : | KAF       |
| Sample Nc.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth :      | 3.6′-3.8′ |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |              |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 5 of 20

Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0401      | 0.648 | 3.93   |
| 2)  | 0.15         | 0.39       | 0.0411      | 0.646 | 4.03   |
| 3)  | 0.40         | 0.63       | 0.0417      | 0.645 | 4.08   |
| 4)  | 0.90         | 0.95       | 0.0427      | 0.644 | 4.18   |
| 5)  | 1.90         | 1.38       | 0.0437      | 0.642 | 4.28   |
| 6)  | 2.92         | 1.71       | 0.0447      | 0.640 | 4.38   |
| 7)  | 3.90         | 1.97       | 0.0452      | 0.639 | 4.43   |
| 8)  | 4.90         | 2.21       | 0.0457      | 0.638 | 4.48   |
| 9)  | 5.92         | 2.43       | 0.0462      | 0.638 | 4.53   |
| 10) | 6.90         | 2.63       | 0.0467      | 0.637 | 4.58   |
| 11) | 7.90         | 2.81       | 0.0467      | 0.637 | 4.58   |
| 12) | 8.90         | 2.98       | 0.0467      | 0.637 | 4.58   |
| 13) | 9.90         | 3.15       | 0.0472      | 0.636 | 4.63   |
| 14) | 14.90        | 3.86       | 0.0488      | 0.633 | 4.78   |
| 15) | 29.90        | 5.47       | 0.0493      | 0.633 | 4.83   |
| 16) | 59.90        | 7.74       | 0.0503      | 0.631 | 4.93   |
| 17) | 89.92        | 9.48       | 0.0503      | 0.631 | 4.93   |
| 18) | 119.90       | 10.95      | 0.0508      | 0.630 | 4.98   |
| 19) | 149.90       | 12.24      | 0.0508      | 0.630 | 4.98   |
| 20) | 179.93       | 13.41      | 0.0513      | 0.629 | 5.03   |
| 21) | 209.90       | 14.49      | 0.0508      | 0.630 | 4.98   |
| 22) | 239.90       | 15.49      | 0.0513      | 0.629 | 5.03   |
| 23) | 299.90       | 17.32      | 0.0518      | 0.628 | 5.08   |
| 24) | 359.90       | 18.97      | 0.0518      | 0.628 | 5.08   |
| 25) | 419.93       | 20.49      | 0.0518      | 0.628 | 5.08   |
| 26) | 479.93       | 21.91      | 0.0518      | 0.628 | 5.08   |
| 27) | 539.90       | 23.24      | 0.0518      | 0.628 | 5.08   |
| 28) | 599.90       | 24.49      | 0.0523      | 0.627 | 5.13   |
| 29) | 659.90       | 25.69      | 0.0523      | 0.627 | 5.13   |
| 30) | 719.92       | 26.83      | 0.0523      | 0.627 | 5.13   |
| 31) | 779.90       | 27.93      | 0.0523      | 0.627 | 5.13   |
| 32) | 839.88       | 28.98      | 0.0523      | 0.627 | 5.13   |
| 33) | 899.90       | 30.00      | 0.0523      | 0.627 | 5.13   |
| 34) | 959.90       | 30.98      | 0.0528      | 0.627 | 5.18   |
| 35) | 1019.90      | 31.94      | 0.0523      | 0.627 | 5.13   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW993- <b>S</b> T-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|-------------------------------------------|---------------------|
| Boring Nc.: | GW993-ST-1            | Tested by : BMI: blc                      | Checked by : KAF    |
| Sample Nc.: | GW993-ST-1            | Test Date : 3-16-18                       | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type: Undisturb                    |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 5 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0528      | 0.627 | 5.18   |
| 37) | 1139.90      | 33.76      | 0.0528      | 0.627 | 5.18   |
| 38) | 1199.90      | 34.64      | 0.0528      | 0.627 | 5.18   |
| 39) | 1259.88      | 35.49      | 0.0528      | 0.627 | 5.18   |
| 40) | 1319.92      | 36.33      | 0.0528      | 0.627 | 5.18   |
| 41) | 1327.82      | 36.44      | 0.0523      | 0.627 | 5.13   |
# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW993-ST-1, 3.0'-5.0' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring No.: | GW993-ST-1            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW993-ST-1            | Test Date :  | 3-16-18               | Depth :      | 3.6'-3.8' |
| Test No. :  | GW993-ST-1            | Sample Type: | Undisturb             |              |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 6 of 20

Stress increment from 2.00 (t/ft^2) to 4.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0599      | 0.615 | 5.88   |
| 2)  | 0.17         | 0.41       | 0.0610      | 0.613 | 5.98   |
| 3)  | 0.40         | 0.63       | 0.0620      | 0.611 | 6.08   |
| 4)  | 0.90         | 0.95       | 0.0635      | 0.609 | 6.23   |
| 5)  | 1.90         | 1.38       | 0.0650      | 0.606 | 6.37   |
| 6)  | 2.90         | 1.70       | 0.0660      | 0.604 | 6.47   |
| 7)  | 3.90         | 1.97       | 0.0665      | 0.603 | 6.52   |
| 8)  | 4.90         | 2.21       | 0.0671      | 0.603 | 6.57   |
| 9)  | 5.93         | 2.44       | 0.0681      | 0.601 | 6.67   |
| 10) | 6.90         | 2.63       | 0.0686      | 0.600 | 6.72   |
| 11) | 7.90         | 2.81       | 0.0686      | 0.600 | 6.72   |
| 12) | 8.90         | 2.98       | 0.0691      | 0.599 | 6.77   |
| 13) | 9.90         | 3.15       | 0.0691      | 0.599 | 6.77   |
| 14) | 14.90        | 3.86       | 0.0706      | 0.597 | 6.92   |
| 15) | 29.90        | 5.47       | 0.0716      | 0.595 | 7.02   |
| 16) | 59.90        | 7.74       | 0.0721      | 0.594 | 7.07   |
| 17) | 89.92        | 9.48       | 0.0726      | 0.593 | 7.12   |
| 18) | 119.90       | 10.95      | 0.0726      | 0.593 | 7.12   |
| 19) | 149.92       | 12.24      | 0.0732      | 0.592 | 7.17   |
| 20) | 179.93       | 13.41      | 0.0732      | 0.592 | 7.17   |
| 21) | 209.90       | 14.49      | 0.0732      | 0.592 | 7.17   |
| 22) | 239.90       | 15.49      | 0.0732      | 0.592 | 7.17   |
| 23) | 299.92       | 17.32      | 0.0732      | 0.592 | 7.17   |
| 24) | 359.90       | 18.97      | 0.0737      | 0.592 | 7.22   |
| 25) | 419.92       | 20.49      | 0.0737      | 0.592 | 7.22   |
| 26) | 479.93       | 21.91      | 0.0737      | 0.592 | 7.22   |
| 27) | 539.90       | 23.24      | 0.0742      | 0.591 | 7.27   |
| 28) | 599.90       | 24.49      | 0.0737      | 0.592 | 7.22   |
| 29) | 659.90       | 25.69      | 0.0737      | 0.592 | 7.22   |
| 30) | 719.92       | 26.83      | 0.0742      | 0.591 | 7.27   |
| 31) | 779.90       | 27.93      | 0.0742      | 0.591 | 7.27   |
| 32) | 839.92       | 28.98      | 0.0742      | 0.591 | 7.27   |
| 33) | 899.90       | 30.00      | 0.0742      | 0.591 | 7.27   |
| 34) | 959.90       | 30.98      | 0.0742      | 0.591 | 7.27   |
| 35) | 1019.90      | 31.94      | 0.0742      | 0.591 | 7.27   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No. | : 183923    |
|-------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth       | : 3.6′-3.8′ |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 6 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0742      | 0.591 | 7.27   |
| 37) | 1139.90      | 33.76      | 0.0742      | 0.591 | 7.27   |
| 38) | 1199.90      | 34.64      | 0.0742      | 0.591 | 7.27   |
| 39) | 1259.88      | 35.49      | 0.0742      | 0.591 | 7.27   |
| 40) | 1319.92      | 36.33      | 0.0742      | 0.591 | 7.27   |
| 41) | 1379.90      | 37.15      | 0.0747      | 0.590 | 7.32   |
| 42) | 1428.78      | 37.80      | 0.0747      | 0.590 | 7.32   |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring Nc.: | GW993-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW993-ST-1            | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 7 of 20

Stress increment from 4.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| l)  | 0.00         | 0.00       | 0.0716      | 0.595 | 7.02   |
| 2)  | 0.13         | 0.37       | 0.0716      | 0.595 | 7.02   |
| 3)  | 0.38         | 0.62       | 0.0716      | 0.595 | 7.02   |
| 4)  | 0.90         | 0.95       | 0.0721      | 0.594 | 7.07   |
| 5)  | 1.88         | 1.37       | 0.0711      | 0.596 | 6.97   |
| 6)  | 2.88         | 1.70       | 0.0711      | 0.596 | 6.97   |
| 7)  | 3.88         | 1.97       | 0.0711      | 0.596 | 6.97   |
| 8)  | 4.88         | 2.21       | 0.0711      | 0.596 | 6.97   |
| 9)  | 5.88         | 2.43       | 0.0711      | 0.596 | 6.97   |
| 10) | 6.88         | 2.62       | 0.0711      | 0.596 | 6.97   |
| 11) | 7.90         | 2.81       | 0.0711      | 0.596 | 6.97   |
| 12) | 8.88         | 2.98       | 0.0706      | 0.597 | 6.92   |
| 13) | 9.90         | 3.15       | 0.0711      | 0.596 | 6.97   |
| 14) | 14.90        | 3.86       | 0.0716      | 0.595 | 7.02   |
| 15) | 29.90        | 5.47       | 0.0716      | 0.595 | 7.02   |
| 16) | 59.88        | 7.74       | 0.0711      | 0.596 | 6.97   |
| 17) | 89.90        | 9.48       | 0.0711      | 0.596 | 6.97   |
| 18) | 119.90       | 10.95      | 0.0711      | 0.596 | 6.97   |
| 19) | 149.88       | 12.24      | 0.0711      | 0.596 | 6.97   |
| 20) | 179.88       | 13.41      | 0.0706      | 0.597 | 6.92   |
| 21) | 209.88       | 14.49      | 0.0711      | 0.596 | 6.97   |
| 22) | 239.88       | 15.49      | 0.0706      | 0.597 | 6.92   |
| 23) | 299.88       | 17.32      | 0.0706      | 0.597 | 6.92   |
| 24) | 359.87       | 18.97      | 0.0706      | 0.597 | 6.92   |
| 25) | 419.88       | 20.49      | 0.0706      | 0.597 | 6.92   |
| 26) | 479.90       | 21.91      | 0.0711      | 0.596 | 6.97   |
| 27) | 539.90       | 23.24      | 0.0706      | 0.597 | 6.92   |
| 28) | 599.88       | 24.49      | 0.0706      | 0.597 | 6.92   |
| 29) | 659.87       | 25.69      | 0.0706      | 0.597 | 6.92   |
| 30) | 719.90       | 26.83      | 0.0706      | 0.597 | 6.92   |
| 31) | 779.88       | 27.93      | 0.0711      | 0.596 | 6.97   |
| 32) | 839.88       | 28.98      | 0.0706      | 0.597 | 6.92   |
| 33) | 899.88       | 30.00      | 0.0706      | 0.597 | 6.92   |
| 34) | 959.90       | 30.98      | 0.0706      | 0.597 | 6.92   |
| 35) | 1019.88      | 31.94      | 0.0706      | 0.597 | 6.92   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring No.: | GW993-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW993-ST-1            | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 7 of 20

Stress increment from 4.00 (t/ft^2) to 2.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME<br>(min) | SQRT. OF<br>TIME (min) | CHANGE IN<br>HEIGHT (in) | VOID<br>RATIO | STRAIN<br>(%) |
|-----|-----------------------|------------------------|--------------------------|---------------|---------------|
| 36) | 1079.90               | 32.86                  | 0.0706                   | 0.597         | 6.92          |
| 37) | 1139.88               | 33.76                  | 0.0706                   | 0.597         | 6.92          |
| 38) | 1199.88               | 34.64                  | 0.0706                   | 0.597         | 6.92          |
| 39) | 1259.90               | 35.50                  | 0.0706                   | 0.597         | 6.92          |
| 40) | 1319.88               | 36.33                  | 0.0706                   | 0.597         | 6.92          |
| 41) | 1379.87               | 37.15                  | 0.0706                   | 0.597         | 6.92          |
| 42) | 1439.88               | 37.95                  | 0.0706                   | 0.597         | 6.92          |
| 43) | 1441.68               | 37.97                  | 0.0691                   | 0.599         | 6.77          |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring No.: | GW993-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW993-ST-1            | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 8 of 20

Stress increment from 2.00  $(t/ft^2)$  to 1.00  $(t/ft^2)$ 

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0681      | 0.601 | 6.67   |
| 2)  | 0.15         | 0.39       | 0.0686      | 0.600 | 6.72   |
| 3)  | 0.40         | 0.63       | 0.0686      | 0.600 | 6.72   |
| 4)  | 0.90         | 0.95       | 0.0681      | 0.601 | 6.67   |
| 5)  | 1.90         | 1.38       | 0.0681      | 0.601 | 6.67   |
| 6)  | 2.90         | 1.70       | 0.0681      | 0.601 | 6.67   |
| 7)  | 3.90         | 1.97       | 0.0676      | 0.602 | 6.62   |
| 8)  | 4.90         | 2.21       | 0.0676      | 0.602 | 6.62   |
| 9)  | 5.90         | 2.43       | 0.0676      | 0.602 | 6.62   |
| 10) | 6.92         | 2.63       | 0.0676      | 0.602 | 6.62   |
| 11) | 7.92         | 2.81       | 0.0676      | 0.602 | 6.62   |
| 12) | 8.92         | 2.99       | 0.0676      | 0.602 | 6.62   |
| 13) | 9.88         | 3.14       | 0.0676      | 0.602 | 6.62   |
| 14) | 14.92        | 3.86       | 0.0671      | 0.603 | 6.57   |
| 15) | 29.90        | 5.47       | 0.0681      | 0.601 | 6.67   |
| 16) | 59.90        | 7.74       | 0.0681      | 0.601 | 6.67   |
| 17) | 89.90        | 9.48       | 0.0676      | 0.602 | 6.62   |
| 18) | 119.92       | 10.95      | 0.0676      | 0.602 | 6.62   |
| 19) | 149.90       | 12.24      | 0.0676      | 0.602 | 6.62   |
| 20) | 179.92       | 13.41      | 0.0676      | 0.602 | 6.62   |
| 21) | 209.92       | 14.49      | 0.0676      | 0.602 | 6.62   |
| 22) | 239.93       | 15.49      | 0.0676      | 0.602 | 6.62   |
| 23) | 299.92       | 17.32      | 0.0676      | 0.602 | 6.62   |
| 24) | 359.92       | 18.97      | 0.0671      | 0.603 | 6.57   |
| 25) | 419.88       | 20.49      | 0.0676      | 0.602 | 6.62   |
| 26) | 479.90       | 21.91      | 0.0671      | 0.603 | 6.57   |
| 27) | 539.92       | 23.24      | 0.0676      | 0.602 | 6.62   |
| 28) | 599.90       | 24.49      | 0.0676      | 0.602 | 6.62   |
| 29) | 659.92       | 25.69      | 0.0676      | 0.602 | 6.62   |
| 30) | 719.90       | 26.83      | 0.0671      | 0.603 | 6.57   |
| 31) | 779.92       | 27.93      | 0.0676      | 0.602 | 6.62   |
| 32) | 839.90       | 28.98      | 0.0676      | 0.602 | 6.62   |
| 33) | 899.90       | 30.00      | 0.0676      | 0.602 | 6.62   |
| 34) | 959.88       | 30.98      | 0.0676      | 0.602 | 6.62   |
| 35) | 1019.88      | 31.94      | 0.0676      | 0.602 | 6.62   |

E-182

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No. | : 183923    |
|-------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth       | : 3.6'-3.8' |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 8 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0676      | 0.602 | 6.62   |
| 37) | 1139.92      | 33.76      | 0.0676      | 0.602 | 6.62   |
| 38) | 1199.92      | 34.64      | 0.0671      | 0.603 | 6.57   |
| 39) | 1259.88      | 35.49      | 0.0676      | 0.602 | 6.62   |
| 40) | 1319.90      | 36.33      | 0.0676      | 0.602 | 6.62   |
| 41) | 1379.88      | 37.15      | 0.0671      | 0.603 | 6.57   |
| 42) | 1439.88      | 37.95      | 0.0676      | 0.602 | 6.62   |
| 43) | 1479.53      | 38.46      | 0.0671      | 0.603 | 6.57   |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW993- <b>S</b> T-1, 3.0'-5.0' | Project No.: 183923 |
|---------------------------------|-------------------------------------------|---------------------|
| Boring Nc.: GW993-ST-1          | Tested by : BMI: blc                      | Checked by : KAF    |
| Sample No.: GW993-ST-1          | Test Date : 3-16-18                       | Depth : 3.6'-3.8'   |
| Test No. : GW993-ST-1           | Sample Type: Undisturb                    |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft^2) to 0.50 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0655      | 0.605 | 6.42   |
| 2)  | 0.13         | 0.37       | 0.0655      | 0.605 | 6.42   |
| 3)  | 0.38         | 0.62       | 0.0650      | 0.606 | 6.37   |
| 4)  | 0.88         | 0.94       | 0.0650      | 0.606 | 6.37   |
| 5)  | 1.90         | 1.38       | 0.0650      | 0.606 | 6.37   |
| 6)  | 2.90         | 1.70       | 0.0645      | 0.607 | 6.33   |
| 7)  | 3.90         | 1.97       | 0.0645      | 0.607 | 6.33   |
| 8)  | 4.88         | 2.21       | 0.0645      | 0.607 | 6.33   |
| 9)  | 5.90         | 2.43       | 0.0645      | 0.607 | 6.33   |
| 10) | 6.90         | 2.63       | 0.0645      | 0.607 | 6.33   |
| 11) | 7.90         | 2.81       | 0.0645      | 0.607 | 6.33   |
| 12) | 8.92         | 2.99       | 0.0640      | 0.608 | 6.28   |
| 13) | 9.88         | 3.14       | 0.0645      | 0.607 | 6.33   |
| 14) | 14.90        | 3.86       | 0.0645      | 0.607 | 6.33   |
| 15) | 29.88        | 5.47       | 0.0640      | 0.608 | 6.28   |
| 16) | 59.90        | 7.74       | 0.0645      | 0.607 | 6.33   |
| 17) | 89.88        | 9.48       | 0.0640      | 0.608 | 6.28   |
| 18) | 119.90       | 10.95      | 0.0640      | 0.608 | 6.28   |
| 19) | 149.93       | 12.24      | 0.0640      | 0.608 | 6.28   |
| 20) | 179.88       | 13.41      | 0.0640      | 0.608 | 6.28   |
| 21) | 209.88       | 14.49      | 0.0635      | 0.609 | 6.23   |
| 22) | 239.88       | 15.49      | 0.0640      | 0.608 | 6.28   |
| 23) | 299.90       | 17.32      | 0.0640      | 0.608 | 6.28   |
| 24) | 359.90       | 18.97      | 0.0640      | 0.608 | 6.28   |
| 25) | 419.92       | 20.49      | 0.0640      | 0.608 | 6.28   |
| 26) | 479.88       | 21.91      | 0.0640      | 0.608 | 6.28   |
| 27) | 539.88       | 23.24      | 0.0640      | 0.608 | 6.28   |
| 28) | 599.92       | 24.49      | 0.0640      | 0.608 | 6.28   |
| 29) | 659.90       | 25.69      | 0.0640      | 0.608 | 6.28   |
| 30) | 719.90       | 26.83      | 0.0640      | 0.608 | 6.28   |
| 31) | 779.92       | 27.93      | 0.0640      | 0.608 | 6.28   |
| 32) | 839.88       | 28.98      | 0.0640      | 0.608 | 6.28   |
| 33) | 899.88       | 30.00      | 0.0640      | 0.608 | 6.28   |
| 34) | 959.90       | 30.98      | 0.0640      | 0.608 | 6.28   |
| 35) | 1019.92      | 31.94      | 0.0640      | 0.608 | 6.28   |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: | 183923    |
|-------------|-----------------------|-------------|-------------------------|--------------|-----------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth :      | 3.6'-3.8' |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |              |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0640      | 0.608 | 6.28   |
| 37) | 1139.88      | 33.76      | 0.0640      | 0.608 | 6.28   |
| 38) | 1199.93      | 34.64      | 0.0640      | 0.608 | 6.28   |
| 39) | 1259.88      | 35.49      | 0.0640      | 0.608 | 6.28   |
| 40) | 1319.88      | 36.33      | 0.0640      | 0.608 | 6.28   |
| 41) | 1327.25      | 36.43      | 0.0635      | 0.609 | 6.23   |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample Nc.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
| 1)  | 0.00         | 0.00       | 0 0650      | 0 606 | 6 27   |
| 2)  | 0.00         | 0.00       | 0.0650      | 0.606 | 6.37   |
| 2)  | 0.15         | 0.53       | 0.0645      | 0.608 | 6.37   |
| 4)  | 0.40         | 0.05       | 0.0650      | 0.606 | 6.33   |
| 5)  | 1 90         | 1 38       | 0.0650      | 0.000 | 6 27   |
| 5)  | 2 90         | 1.30       | 0.0650      | 0.606 | 6 37   |
| 7)  | 3 90         | 1.70       | 0.0650      | 0.000 | 6 37   |
| 8)  | 4 90         | 2 21       | 0.0650      | 0.606 | 6 37   |
| 9)  | 5 90         | 2.43       | 0.0650      | 0.606 | 6 37   |
| 10) | 6 90         | 2.63       | 0.0650      | 0.606 | 6 37   |
| 11) | 7.92         | 2.81       | 0.0650      | 0.606 | 6.37   |
| 12) | 8.90         | 2.98       | 0.0650      | 0.606 | 6.37   |
| 13) | 9.90         | 3.15       | 0.0650      | 0.606 | 6.37   |
| 14) | 14.92        | 3.86       | 0.0650      | 0.606 | 6.37   |
| 15) | 29.90        | 5.47       | 0.0650      | 0.606 | 6.37   |
| 16) | 59.90        | 7.74       | 0.0650      | 0.606 | 6.37   |
| 17) | 89.90        | 9.48       | 0.0650      | 0.606 | 6.37   |
| 18) | 119.92       | 10.95      | 0.0655      | 0.605 | 6.42   |
| 19) | 149.90       | 12.24      | 0.0650      | 0.606 | 6.37   |
| 20) | 179.90       | 13.41      | 0.0660      | 0.604 | 6.47   |
| 21) | 209.90       | 14.49      | 0.0655      | 0.605 | 6.42   |
| 22) | 239.90       | 15.49      | 0.0660      | 0.604 | 6.47   |
| 23) | 299.90       | 17.32      | 0.0660      | 0.604 | 6.47   |
| 24) | 359.90       | 18.97      | 0.0660      | 0.604 | 6.47   |
| 25) | 419.92       | 20.49      | 0.0660      | 0.604 | 6.47   |
| 26) | 479.90       | 21.91      | 0.0660      | 0.604 | 6.47   |
| 27) | 539.90       | 23.24      | 0.0660      | 0.604 | 6.47   |
| 28) | 599.90       | 24.49      | 0.0660      | 0.604 | 6.47   |
| 29) | 659.90       | 25.69      | 0.0660      | 0.604 | 6.47   |
| 30) | 719.90       | 26.83      | 0.0655      | 0.605 | 6.42   |
| 31) | 779.90       | 27.93      | 0.0655      | 0.605 | 6.42   |
| 32) | 839.90       | 28.98      | 0.0660      | 0.604 | 6.47   |
| 33) | 899.88       | 30.00      | 0.0660      | 0.604 | 6.47   |
| 34) | 959.90       | 30.98      | 0.0660      | 0.604 | 6.47   |
| 35) | 1019.90      | 31.94      | 0.0660      | 0.604 | 6.47   |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: | 183923    |
|-------------|-----------------------|-------------|-------------------------|--------------|-----------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by : | KAF       |
| Sample Nc.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth :      | 3.6'-3.8' |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |              |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (왕)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0660      | 0.604 | 6.47   |
| 37) | 1139.90      | 33.76      | 0.0660      | 0.604 | 6.47   |
| 38) | 1199.90      | 34.64      | 0.0660      | 0.604 | 6.47   |
| 39) | 1259.90      | 35.50      | 0.0660      | 0.604 | 6.47   |
| 40) | 1319.90      | 36.33      | 0.0660      | 0.604 | 6.47   |
| 41) | 1379.90      | 37.15      | 0.0660      | 0.604 | 6.47   |
| 42) | 1439.90      | 37.95      | 0.0655      | 0.605 | 6.42   |
| 43) | 1499.88      | 38.73      | 0.0660      | 0.604 | 6.47   |
| 44) | 1500.63      | 38.74      | 0.0655      | 0.605 | 6.42   |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring No.: | GW993-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW993-ST-1            | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0681      | 0.601 | 6.67   |
| 2)  | 0.15         | 0.39       | 0.0681      | 0.601 | 6.67   |
| 3)  | 0.38         | 0.62       | 0.0681      | 0.601 | 6.67   |
| 4)  | 0.88         | 0.94       | 0.0686      | 0.600 | 6.72   |
| 5)  | 1.92         | 1.38       | 0.0686      | 0.600 | 6.72   |
| 6)  | 2.90         | 1.70       | 0.0686      | 0.600 | 6.72   |
| 7)  | 3.88         | 1.97       | 0.0686      | 0.600 | 6.72   |
| 8)  | 4.90         | 2.21       | 0.0686      | 0.600 | 6.72   |
| 9)  | 5.88         | 2.43       | 0.0686      | 0.600 | 6.72   |
| 10) | 6.92         | 2.63       | 0.0686      | 0.600 | 6.72   |
| 11) | 7.92         | 2.81       | 0.0686      | 0.600 | 6.72   |
| 12) | 8.90         | 2.98       | 0.0686      | 0.600 | 6.72   |
| 13) | 9.88         | 3.14       | 0.0686      | 0.600 | 6.72   |
| 14) | 14.88        | 3.86       | 0.0691      | 0.599 | 6.77   |
| 15) | 29.88        | 5.47       | 0.0696      | 0.598 | 6.82   |
| 16) | 59.90        | 7.74       | 0.0696      | 0.598 | 6.82   |
| 17) | 89.90        | 9.48       | 0.0696      | 0.598 | 6.82   |
| 18) | 119.90       | 10.95      | 0.0696      | 0.598 | 6.82   |
| 19) | 149.88       | 12.24      | 0.0696      | 0.598 | 6.82   |
| 20) | 179.92       | 13.41      | 0.0696      | 0.598 | 6.82   |
| 21) | 209.92       | 14.49      | 0.0696      | 0.598 | 6.82   |
| 22) | 239.93       | 15.49      | 0.0696      | 0.598 | 6.82   |
| 23) | 299.90       | 17.32      | 0.0696      | 0.598 | 6.82   |
| 24) | 359.90       | 18.97      | 0.0696      | 0.598 | 6.82   |
| 25) | 419.90       | 20.49      | 0.0696      | 0.598 | 6.82   |
| 26) | 479.88       | 21.91      | 0.0691      | 0.599 | 6.77   |
| 27) | 539.92       | 23.24      | 0.0696      | 0.598 | 6.82   |
| 28) | 599.90       | 24.49      | 0.0696      | 0.598 | 6.82   |
| 29) | 659.90       | 25.69      | 0.0696      | 0.598 | 6.82   |
| 30) | 719.88       | 26.83      | 0.0696      | 0.598 | 6.82   |
| 31) | 779.88       | 27.93      | 0.0696      | 0.598 | 6.82   |
| 32) | 839.90       | 28.98      | 0.0696      | 0.598 | 6.82   |
| 33) | 899.88       | 30.00      | 0.0696      | 0.598 | 6.82   |
| 34) | 959.90       | 30.98      | 0.0696      | 0.598 | 6.82   |
| 35) | 1019.88      | 31.94      | 0.0696      | 0.598 | 6.82   |
|     |              |            |             |       |        |

# CONSOLIDATION TEST DATA

| Project :     | EMDF Characterization | Location    | : | GW993-ST-1, 3.0'-5.0' | Project No | . : | 183923    |
|---------------|-----------------------|-------------|---|-----------------------|------------|-----|-----------|
| Boring Nc.: ( | GW993-ST-1            | Tested by   | : | BMI: blc              | Checked by | :   | KAF       |
| Sample Nc.: ( | GW993-ST-1            | Test Date   | : | 3-16-18               | Depth      | :   | 3.6'-3.8' |
| Test No. : (  | GW993-ST-1            | Sample Type | : | Undisturb             |            |     |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|      | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|------|--------------|------------|-------------|-------|--------|
|      | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|      |              |            |             |       |        |
| 36)  | 1079.88      | 32.86      | 0.0696      | 0.598 | 6.82   |
| 37). | 1139.90      | 33.76      | 0.0696      | 0.598 | 6.82   |
| 38)  | 1199.88      | 34.64      | 0.0696      | 0.598 | 6.82   |
| 39)  | 1259.88      | 35.49      | 0.0696      | 0.598 | 6.82   |
| 40)  | 1319.88      | 36.33      | 0.0696      | 0.598 | 6.82   |
| 41)  | 1379.88      | 37.15      | 0.0696      | 0.598 | 6.82   |
| 42)  | 1439.90      | 37.95      | 0.0696      | 0.598 | 6.82   |
| 43)  | 1499.88      | 38.73      | 0.0696      | 0.598 | 6.82   |
| 44)  | 1505.98      | 38.81      | 0.0691      | 0.599 | 6.77   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample No.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 12 of 20

Stress increment from 2.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>)

Start Date :

Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0732      | 0.592 | 7.17   |
| 2)  | 0.10         | 0.32       | 0.0737      | 0.592 | 7.22   |
| 3)  | 0.37         | 0.61       | 0.0737      | 0.592 | 7.22   |
| 4)  | 0.85         | 0.92       | 0.0737      | 0.592 | 7.22   |
| 5)  | 1.87         | 1.37       | 0.0742      | 0.591 | 7.27   |
| 6)  | 2.87         | 1.69       | 0.0742      | 0.591 | 7.27   |
| 7)  | 3.87         | 1.97       | 0.0747      | 0.590 | 7.32   |
| 8)  | 4.87         | 2.21       | 0.0747      | 0.590 | 7.32   |
| 9)  | 5.92         | 2.43       | 0.0747      | 0.590 | 7.32   |
| 10) | 6.88         | 2.62       | 0.0747      | 0.590 | 7.32   |
| 11) | 7.87         | 2.80       | 0.0742      | 0.591 | 7.27   |
| 12) | 8.85         | 2.97       | 0.0747      | 0.590 | 7.32   |
| 13) | 9.87         | 3.14       | 0.0747      | 0.590 | 7.32   |
| 14) | 14.87        | 3.86       | 0.0747      | 0.590 | 7.32   |
| 15) | 29.87        | 5.47       | 0.0752      | 0.589 | 7.37   |
| 16) | 59.87        | 7.74       | 0.0752      | 0.589 | 7.37   |
| 17) | 89.85        | 9.48       | 0.0757      | 0.588 | 7.42   |
| 18) | 119.87       | 10.95      | 0.0752      | 0.589 | 7.37   |
| 19) | 149.85       | 12.24      | 0.0757      | 0.588 | 7.42   |
| 20) | 179.88       | 13.41      | 0.0757      | 0.588 | 7.42   |
| 21) | 209.87       | 14.49      | 0.0762      | 0.587 | 7.47   |
| 22) | 239.87       | 15.49      | 0.0757      | 0.588 | 7.42   |
| 23) | 299.90       | 17.32      | 0.0757      | 0.588 | 7.42   |
| 24) | 359.87       | 18.97      | 0.0757      | 0.588 | 7.42   |
| 25) | 419.87       | 20.49      | 0.0757      | 0.588 | 7.42   |
| 26) | 479.85       | 21.91      | 0.0762      | 0.587 | 7.47   |
| 27) | 539.88       | 23.24      | 0.0762      | 0.587 | 7.47   |
| 28) | 599.87       | 24.49      | 0.0757      | 0.588 | 7.42   |
| 29) | 659.87       | 25.69      | 0.0762      | 0.587 | 7.47   |
| 30) | 719.90       | 26.83      | 0.0762      | 0.587 | 7.47   |
| 31) | 779.87       | 27.93      | 0.0762      | 0.587 | 7.47   |
| 32) | 839.90       | 28.98      | 0.0762      | 0.587 | 7.47   |
| 33) | 899.85       | 30.00      | 0.0762      | 0.587 | 7.47   |
| 34) | 959.88       | 30.98      | 0.0762      | 0.587 | 7.47   |
| 35) | 1019.85      | 31.94      | 0.0762      | 0.587 | 7.47   |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | :  | GW993-ST-1, 3.0'-5.0' | Project No. | : | 183923    |
|-------------|-----------------------|-------------|----|-----------------------|-------------|---|-----------|
| Boring No.: | GW993-ST-1            | Tested by   | :  | BMI: blc              | Checked by  | : | KAF       |
| Sample No.: | GW993-ST-1            | Test Date   | :  | 3-16-18               | Depth       | : | 3.6'-3.8' |
| Test No. :  | GW993-ST-1            | Sample Type | е: | Undisturb             |             |   |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 13 of 20

Stress increment from 4.00 (t/ft^2) to 8.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0869      | 0.569 | 8.52   |
| 2)  | 0.15         | 0.39       | 0.0884      | 0.567 | 8.67   |
| 3)  | 0.40         | 0.63       | 0.0889      | 0.566 | 8.72   |
| 4)  | 0.90         | 0.95       | 0.0904      | 0.563 | 8.87   |
| 5)  | 1.88         | 1.37       | 0.0925      | 0.560 | 9.06   |
| 6)  | 2.90         | 1.70       | 0.0930      | 0.559 | 9.11   |
| 7)  | 3.92         | 1.98       | 0.0940      | 0.557 | 9.21   |
| 8)  | 4.92         | 2.22       | 0.0945      | 0.556 | 9.26   |
| 9)  | 5.90         | 2.43       | 0.0955      | 0.555 | 9.36   |
| 10) | 6.90         | 2.63       | 0.0955      | 0.555 | 9.36   |
| 11) | 7.90         | 2.81       | 0.0965      | 0.553 | 9.46   |
| 12) | 8.90         | 2.98       | 0.0965      | 0.553 | 9.46   |
| 13) | 9.92         | 3.15       | 0.0965      | 0.553 | 9.46   |
| 14) | 14.92        | 3.86       | 0.0970      | 0.552 | 9.51   |
| 15) | 29.90        | 5.47       | 0.0986      | 0.550 | 9.66   |
| 16) | 59.92        | 7.74       | 0.0996      | 0.548 | 9.76   |
| 17) | 89.92        | 9.48       | 0.1001      | 0.547 | 9.81   |
| 18) | 119.88       | 10.95      | 0.1001      | 0.547 | 9.81   |
| 19) | 149.90       | 12.24      | 0.1001      | 0.547 | 9.81   |
| 20) | 179.92       | 13.41      | 0.1006      | 0.546 | 9.86   |
| 21) | 209.90       | 14.49      | 0.1006      | 0.546 | 9.86   |
| 22) | 239.90       | 15.49      | 0.1006      | 0.546 | 9.86   |
| 23) | 299.90       | 17.32      | 0.1006      | 0.546 | 9.86   |
| 24) | 359.92       | 18.97      | 0.1011      | 0.545 | 9.91   |
| 25) | 419.90       | 20.49      | 0.1011      | 0.545 | 9.91   |
| 26) | 479.88       | 21.91      | 0.1016      | 0.545 | 9.96   |
| 27) | 539.88       | 23.24      | 0.1016      | 0.545 | 9.96   |
| 28) | 599.90       | 24.49      | 0.1016      | 0.545 | 9.96   |
| 29) | 659.90       | 25.69      | 0.1016      | 0.545 | 9.96   |
| 30) | 719.90       | 26.83      | 0.1016      | 0.545 | 9.96   |
| 31) | 779.88       | 27.93      | 0.1016      | 0.545 | 9.96   |
| 32) | 839.90       | 28.98      | 0.1016      | 0.545 | 9.96   |
| 33) | 899.88       | 30.00      | 0.1021      | 0.544 | 10.01  |
| 34) | 959.92       | 30.98      | 0.1021      | 0.544 | 10.01  |
| 35) | 1019.95      | 31.94      | 0.1016      | 0.545 | 9.96   |

# CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|---------------------------------|----------------------------------|---------------------|
| Boring No.: GW993-ST-1          | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: GW993-ST-1          | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. : GW993-ST-1           | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 13 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 8.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN     | VOID  | STRAIN |
|-----|--------------|------------|---------------|-------|--------|
|     | (min)        | TIME (min) | ) HEIGHT (in) | RATIO | (응)    |
|     |              |            |               |       |        |
| 36) | 1079.92      | 32.86      | 0.1016        | 0.545 | 9.96   |
| 37) | 1139.88      | 33.76      | 0.1021        | 0.544 | 10.01  |
| 38) | 1199.90      | 34.64      | 0.1021        | 0.544 | 10.01  |
| 39) | 1259.90      | 35.50      | 0.1021        | 0.544 | 10.01  |
| 40) | 1319.93      | 36.33      | 0.1021        | 0.544 | 10.01  |
| 41) | 1379.90      | 37.15      | 0.1016        | 0.545 | 9.96   |
| 42) | 1439.88      | 37.95      | 0.1016        | 0.545 | 9.96   |
| 43) | 1456.38      | 38.16      | 0.1021        | 0.544 | 10.01  |

# CONSOLIDATION TEST DATA

| Project :   | $	ext{EMD}\mathbf{F}$ Characterization | Location : GW993- <b>ST</b> -1, 3.0'-5.0' | Project No.: 183923 |
|-------------|----------------------------------------|-------------------------------------------|---------------------|
| Boring No.: | GW993-ST-1                             | Tested by : BMI: blc                      | Checked by : KAF    |
| Sample Nc.: | GW993-ST-1                             | Test Date : 3-16-18                       | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1                             | Sample Type: Undisturb                    |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 14 of 20 Stress increment from 8.00 (t/ft<sup>2</sup>) to 16.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1158      | 0.521 | 11.36  |
| 2)  | 0.15         | 0.39       | 0.1173      | 0.518 | 11.50  |
| 3)  | 0.40         | 0.63       | 0.1194      | 0.515 | 11.70  |
| 4)  | 0.90         | 0.95       | 0.1214      | 0.511 | 11.90  |
| 5)  | 1.90         | 1.38       | 0.1240      | 0.507 | 12.15  |
| 6)  | 2.88         | 1.70       | 0.1255      | 0.504 | 12.30  |
| 7)  | 3.92         | 1.98       | 0.1265      | 0.503 | 12.40  |
| 8)  | 4.90         | 2.21       | 0.1275      | 0.501 | 12.50  |
| 9)  | 5.92         | 2.43       | 0.1280      | 0.500 | 12.55  |
| 10) | 6.88         | 2.62       | 0.1285      | 0.499 | 12.60  |
| 11) | 7.88         | 2.81       | 0.1290      | 0.498 | 12.65  |
| 12) | 8.88         | 2.98       | 0.1290      | 0.498 | 12.65  |
| 13) | 9.90         | 3.15       | 0.1295      | 0.498 | 12.70  |
| 14) | 14.88        | 3.86       | 0.1306      | 0.496 | 12.80  |
| 15) | 29.92        | 5.47       | 0.1321      | 0.493 | 12.95  |
| 16) | 59.88        | 7.74       | 0.1326      | 0.492 | 13.00  |
| 17) | 89.88        | 9.48       | 0.1331      | 0.492 | 13.05  |
| 18) | 119.90       | 10.95      | 0.1331      | 0.492 | 13.05  |
| 19) | 149.88       | 12.24      | 0.1331      | 0.492 | 13.05  |
| 20) | 179.90       | 13.41      | 0.1336      | 0.491 | 13.10  |
| 21) | 209.88       | 14.49      | 0.1336      | 0.491 | 13.10  |
| 22) | 239.92       | 15.49      | 0.1336      | 0.491 | 13.10  |
| 23) | 299.88       | 17.32      | 0.1341      | 0.490 | 13.15  |
| 24) | 359.90       | 18.97      | 0.1341      | 0.490 | 13.15  |
| 25) | 419.88       | 20.49      | 0.1341      | 0.490 | 13.15  |
| 26) | 479.88       | 21.91      | 0.1346      | 0.489 | 13.20  |
| 27) | 539.90       | 23.24      | 0.1346      | 0.489 | 13.20  |
| 28) | 599.90       | 24.49      | 0.1346      | 0.489 | 13.20  |
| 29) | 659.90       | 25.69      | 0.1346      | 0.489 | 13.20  |
| 30) | 719.90       | 26.83      | 0.1346      | 0.489 | 13.20  |
| 31) | 779.90       | 27.93      | 0.1346      | 0.489 | 13.20  |
| 32) | 839.90       | 28.98      | 0.1351      | 0.488 | 13.25  |
| 33) | 899.88       | 30.00      | 0.1351      | 0.488 | 13.25  |
| 34) | 959.90       | 30.98      | 0.1351      | 0.488 | 13.25  |
| 35) | 1019.88      | 31.94      | 0.1346      | 0.489 | 13.20  |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring Nc.: | GW993-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW993-ST-1            | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 14 of 20 Stress increment from 8.00 (t/ft<sup>2</sup>) to 16.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.1346      | 0.489 | 13.20  |
| 37) | 1139.90      | 33.76      | 0.1346      | 0.489 | 13.20  |
| 38) | 1199.88      | 34.64      | 0.1351      | 0.488 | 13.25  |
| 39) | 1259.88      | 35.49      | 0.1346      | 0.489 | 13.20  |
| 40) | 1319.90      | 36.33      | 0.1346      | 0.489 | 13.20  |
| 41) | 1379.88      | 37.15      | 0.1351      | 0.488 | 13.25  |
| 42) | 1439.70      | 37.94      | 0.1346      | 0.489 | 13.20  |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No. | : 183923    |
|-------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth       | : 3.6′-3.8′ |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0762      | 0.587 | 7.47   |
| 37) | 1139.87      | 33.76      | 0.0762      | 0.587 | 7.47   |
| 38) | 1199.87      | 34.64      | 0.0762      | 0.587 | 7.47   |
| 39) | 1259.85      | 35.49      | 0.0762      | 0.587 | 7.47   |
| 40) | 1319.85      | 36.33      | 0.0762      | 0.587 | 7.47   |
| 41) | 1379.87      | 37.15      | 0.0762      | 0.587 | 7.47   |
| 42) | 1387.98      | 37.26      | 0.0762      | 0.587 | 7.47   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location     | : GW993-ST-1, 3.0'-5.0' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-------------------------|-------------|-------------|
| Boring Nc.: | GW993-ST-1            | Tested by    | : BMI: blc              | Checked by  | : KAF       |
| Sample Nc.: | GW993-ST-1            | Test Date    | : 3-16-18               | Depth       | : 3.6′-3.8′ |
| Test No. :  | GW993-ST-1            | Sample Type: | : Undisturb             |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 15 of 20

Stress increment from 16.00 (t/ft<sup>2</sup>) to 32.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1494      | 0.464 | 14.64  |
| 2)  | 0.17         | 0.41       | 0.1514      | 0.461 | 14.84  |
| 3)  | 0.43         | 0.66       | 0.1534      | 0.457 | 15.04  |
| 4)  | 0.93         | 0.97       | 0.1560      | 0.453 | 15.29  |
| 5)  | 1.90         | 1.38       | 0.1595      | 0.447 | 15.64  |
| 6)  | 2.92         | 1.71       | 0.1615      | 0.444 | 15.84  |
| 7)  | 3.93         | 1.98       | 0.1631      | 0.441 | 15.99  |
| 8)  | 4.93         | 2.22       | 0.1641      | 0.439 | 16.09  |
| 9)  | 5.93         | 2.44       | 0.1646      | 0.439 | 16.14  |
| 10) | 6.90         | 2.63       | 0.1651      | 0.438 | 16.19  |
| 11) | 7.92         | 2.81       | 0.1661      | 0.436 | 16.29  |
| 12) | 8.92         | 2.99       | 0.1656      | 0.437 | 16.24  |
| 13) | 9.92         | 3.15       | 0.1661      | 0.436 | 16.29  |
| 14) | 14.92        | 3.86       | 0.1671      | 0.434 | 16.39  |
| 15) | 29.92        | 5.47       | 0.1681      | 0.433 | 16.49  |
| 16) | 59.90        | 7.74       | 0.1692      | 0.431 | 16.58  |
| 17) | 89.92        | 9.48       | 0.1697      | 0.430 | 16.63  |
| 18) | 119.90       | 10.95      | 0.1697      | 0.430 | 16.63  |
| 19) | 149.92       | 12.24      | 0.1697      | 0.430 | 16.63  |
| 20) | 179.92       | 13.41      | 0.1702      | 0.429 | 16.68  |
| 21) | 209.93       | 14.49      | 0.1702      | 0.429 | 16.68  |
| 22) | 239.90       | 15.49      | 0.1702      | 0.429 | 16.68  |
| 23) | 299.92       | 17.32      | 0.1707      | 0.428 | 16.73  |
| 24) | 359.90       | 18.97      | 0.1712      | 0.427 | 16.78  |
| 25) | 419.90       | 20.49      | 0.1712      | 0.427 | 16.78  |
| 26) | 479.92       | 21.91      | 0.1712      | 0.427 | 16.78  |
| 27) | 539.92       | 23.24      | 0.1712      | 0.427 | 16.78  |
| 28) | 599.90       | 24.49      | 0.1712      | 0.427 | 16.78  |
| 29) | 659.90       | 25.69      | 0.1717      | 0.427 | 16.83  |
| 30) | 719.92       | 26.83      | 0.1712      | 0.427 | 16.78  |
| 31) | 779.92       | 27.93      | 0.1717      | 0.427 | 16.83  |
| 32) | 839.90       | 28.98      | 0.1717      | 0.427 | 16.83  |
| 33) | 899.93       | 30.00      | 0.1717      | 0.427 | 16.83  |
| 34) | 959.93       | 30.98      | 0.1717      | 0.427 | 16.83  |
| 35) | 1019.92      | 31.94      | 0.1717      | 0.427 | 16.83  |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No. | : 183923    |
|-------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth       | : 3.6′-3.8′ |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 15 of 20 Stress increment from 16.00 (t/ft<sup>2</sup>) to 32.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.1722      | 0.426 | 16.88  |
| 37) | 1139.93      | 33.76      | 0.1722      | 0.426 | 16.88  |
| 38) | 1199.90      | 34.64      | 0.1717      | 0.427 | 16.83  |
| 39) | 1259.90      | 35.50      | 0.1722      | 0.426 | 16.88  |
| 40) | 1319.90      | 36.33      | 0.1722      | 0.426 | 16.88  |
| 41) | 1379.90      | 37.15      | 0.1722      | 0.426 | 16.88  |
| 42) | 1436.83      | 37.91      | 0.1722      | 0.426 | 16.88  |
|     |              |            |             |       |        |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: | 183923    |
|-------------|-----------------------|-------------|-------------------------|--------------|-----------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth :      | 3.6′-3.8′ |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |              |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 16 of 20

Stress increment from 32.00 (t/ft<sup>2</sup>) to 16.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1661      | 0.436 | 16.29  |
| 2)  | 0.15         | 0.39       | 0.1656      | 0.437 | 16.24  |
| 3)  | 0.42         | 0.65       | 0.1656      | 0.437 | 16.24  |
| 4)  | 0.90         | 0.95       | 0.1656      | 0.437 | 16.24  |
| 5)  | 1.92         | 1.38       | 0.1651      | 0.438 | 16.19  |
| 6)  | 2.92         | 1.71       | 0.1651      | 0.438 | 16.19  |
| 7)  | 3.90         | 1.97       | 0.1651      | 0.438 | 16.19  |
| 8)  | 4.92         | 2.22       | 0.1651      | 0.438 | 16.19  |
| 9)  | 5.92         | 2.43       | 0.1651      | 0.438 | 16.19  |
| 10) | 6.92         | 2.63       | 0.1651      | 0.438 | 16.19  |
| 11) | 7.92         | 2.81       | 0.1651      | 0.438 | 16.19  |
| 12) | 8.92         | 2.99       | 0.1651      | 0.438 | 16.19  |
| 13) | 9.95         | 3.15       | 0.1646      | 0.439 | 16.14  |
| 14) | 14.90        | 3.86       | 0.1651      | 0.438 | 16.19  |
| 15) | 29.93        | 5.47       | 0.1646      | 0.439 | 16.14  |
| 16) | 59.92        | 7.74       | 0.1651      | 0.438 | 16.19  |
| 17) | 89.92        | 9.48       | 0.1646      | 0.439 | 16.14  |
| 18) | 119.93       | 10.95      | 0.1651      | 0.438 | 16.19  |
| 19) | 149.90       | 12.24      | 0.1646      | 0.439 | 16.14  |
| 20) | 179.90       | 13.41      | 0.1646      | 0.439 | 16.14  |
| 21) | 209.90       | 14.49      | 0.1646      | 0.439 | 16.14  |
| 22) | 239.90       | 15.49      | 0.1646      | 0.439 | 16.14  |
| 23) | 299.92       | 17.32      | 0.1646      | 0.439 | 16.14  |
| 24) | 359.90       | 18.97      | 0.1646      | 0.439 | 16.14  |
| 25) | 419.93       | 20.49      | 0.1646      | 0.439 | 16.14  |
| 26) | 479.92       | 21.91      | 0.1646      | 0.439 | 16.14  |
| 27) | 539.92       | 23.24      | 0.1646      | 0.439 | 16.14  |
| 28) | 599.90       | 24.49      | 0.1651      | 0.438 | 16.19  |
| 29) | 659.93       | 25.69      | 0.1651      | 0.438 | 16.19  |
| 30) | 719.92       | 26.83      | 0.1651      | 0.438 | 16.19  |
| 31) | 779.90       | 27.93      | 0.1651      | 0.438 | 16.19  |
| 32) | 839.90       | 28.98      | 0.1651      | 0.438 | 16.19  |
| 33) | 899.88       | 30.00      | 0.1651      | 0.438 | 16.19  |
| 34) | 959.92       | 30.98      | 0.1651      | 0.438 | 16.19  |
| 35) | 1019.90      | 31.94      | 0.1646      | 0.439 | 16.14  |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring Nc.: | GW993-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW993-ST-1            | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 16 of 20 Stress increment from 32.00 (t/ft<sup>2</sup>) to 16.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.1646      | 0.439 | 16.14  |
| 37) | 1139.90      | 33.76      | 0.1651      | 0.438 | 16.19  |
| 38) | 1199.95      | 34.64      | 0.1646      | 0.439 | 16.14  |
| 39) | 1259.93      | 35.50      | 0.1646      | 0.439 | 16.14  |
| 40) | 1319.93      | 36.33      | 0.1646      | 0.439 | 16.14  |
| 41) | 1379.90      | 37.15      | 0.1651      | 0.438 | 16.19  |
| 42) | 1439.90      | 37.95      | 0.1646      | 0.439 | 16.14  |
| 43) | 1499.95      | 38.73      | 0.1646      | 0.439 | 16.14  |
| 44) | 1542.83      | 39.28      | 0.1646      | 0.439 | 16.14  |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: | 183923    |
|---------------------------------|-------------|-------------------------|--------------|-----------|
| Boring No.: GW993-ST-1          | Tested by   | : BMI: blc              | Checked by : | KAF       |
| Sample No.: GW9 <b>9</b> 3-ST-1 | Test Date   | : 3-16-18               | Depth :      | 3.6'-3.8' |
| Test No. : GW993-ST-1           | Sample Type | : Undisturb             |              |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 17 of 20

Stress increment from 16.00 (t/ft<sup>2</sup>) to 8.00 (t/ft<sup>2</sup>)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1575      | 0.451 | 15.44  |
| 2)  | 0.15         | 0.39       | 0.1575      | 0.451 | 15.44  |
| 3)  | 0.40         | 0.63       | 0.1570      | 0.451 | 15.39  |
| 4)  | 0.90         | 0.95       | 0.1570      | 0.451 | 15.39  |
| 5)  | 1.90         | 1.38       | 0.1565      | 0.452 | 15.34  |
| 6)  | 2.92         | 1.71       | 0.1565      | 0.452 | 15.34  |
| 7)  | 3.92         | 1.98       | 0.1565      | 0.452 | 15.34  |
| 8)  | 4.90         | 2.21       | 0.1565      | 0.452 | 15.34  |
| 9)  | 5.90         | 2.43       | 0.1565      | 0.452 | 15.34  |
| 10) | 6.90         | 2.63       | 0.1565      | 0.452 | 15.34  |
| 11) | 7.90         | 2.81       | 0.1565      | 0.452 | 15.34  |
| 12) | 8.90         | 2.98       | 0.1560      | 0.453 | 15.29  |
| 13) | 9.92         | 3.15       | 0.1560      | 0.453 | 15.29  |
| 14) | 14.90        | 3.86       | 0.1560      | 0.453 | 15.29  |
| 15) | 29.90        | 5.47       | 0.1560      | 0.453 | 15.29  |
| 16) | 59.92        | 7.74       | 0.1554      | 0.454 | 15.24  |
| 17) | 89.90        | 9.48       | 0.1554      | 0.454 | 15.24  |
| 18) | 119.90       | 10.95      | 0.1554      | 0.454 | 15.24  |
| 19) | 149.92       | 12.24      | 0.1554      | 0.454 | 15.24  |
| 20) | 179.90       | 13.41      | 0.1560      | 0.453 | 15.29  |
| 21) | 209.90       | 14.49      | 0.1554      | 0.454 | 15.24  |
| 22) | 239.92       | 15.49      | 0.1560      | 0.453 | 15.29  |
| 23) | 299.90       | 17.32      | 0.1560      | 0.453 | 15.29  |
| 24) | 359.92       | 18.97      | 0.1560      | 0.453 | 15.29  |
| 25) | 419.90       | 20.49      | 0.1560      | 0.453 | 15.29  |
| 26) | 479.90       | 21.91      | 0.1554      | 0.454 | 15.24  |
| 27) | 539.90       | 23.24      | 0.1549      | 0.455 | 15.19  |
| 28) | 599.90       | 24.49      | 0.1554      | 0.454 | 15.24  |
| 29) | 659.92       | 25.69      | 0.1554      | 0.454 | 15.24  |
| 30) | 719.90       | 26.83      | 0.1549      | 0.455 | 15.19  |
| 31) | 779.90       | 27.93      | 0.1549      | 0.455 | 15.19  |
| 32) | 839.90       | 28.98      | 0.1554      | 0.454 | 15.24  |
| 33) | 899.90       | 30.00      | 0.1554      | 0.454 | 15.24  |
| 34) | 959.92       | 30.98      | 0.1554      | 0.454 | 15.24  |
| 35) | 1019.90      | 31.94      | 0.1554      | 0.454 | 15.24  |

Page : 34

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW993-ST-1, 3.0'-5.0' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring Nc.: | GW993-ST-1            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW993-ST-1            | Test Date :  | 3-16-18               | Depth       | : 3.6'-3.8' |
| Test No. :  | GW993-ST-1            | Sample Type: | Undisturb             |             |             |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 17 of 20

Stress increment from 16.00  $(t/ft^2)$  to 8.00  $(t/ft^2)$ 

Start Date : Start Time :

|      | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|------|--------------|------------|-------------|-------|--------|
|      | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
| 261  | 1070 00      |            | 0.1554      |       |        |
| 36)  | 1079.90      | 32.86      | 0.1554      | 0.454 | 15.24  |
| 37)  | 1139.90      | 33.76      | 0.1554      | 0.454 | 15.24  |
| 38)  | 1199.90      | 34.64      | 0.1554      | 0.454 | 15.24  |
| 39)  | 1259.90      | 35.50      | 0.1554      | 0.454 | 15.24  |
| 40)  | 1319.90      | 36.33      | 0.1549      | 0.455 | 15.19  |
| 41)  | 1379.90      | 37.15      | 0.1554      | 0.454 | 15.24  |
| 42)  | 1439.90      | 37.95      | 0.1554      | 0.454 | 15.24  |
| 43)  | 1499.90      | 38.73      | 0.1549      | 0.455 | 15.19  |
| 44)  | 1559.88      | 39.50      | 0.1554      | 0.454 | 15.24  |
| 45)  | 1619.90      | 40.25      | 0.1554      | 0.454 | 15.24  |
| 46)  | 1679.90      | 40.99      | 0.1554      | 0.454 | 15.24  |
| 47)  | 1739.90      | 41.71      | 0.1554      | 0.454 | 15.24  |
| 48)  | 1799.90      | 42.43      | 0.1549      | 0.455 | 15.19  |
| 49)  | 1859.88      | 43.13      | 0.1549      | 0.455 | 15.19  |
| 50)  | 1919.90      | 43.82      | 0.1554      | 0.454 | 15.24  |
| 51)  | 1979.90      | 44.50      | 0.1554      | 0.454 | 15.24  |
| 52)  | 2039.90      | 45.17      | 0.1554      | 0.454 | 15.24  |
| 53)  | 2099.90      | 45.82      | 0.1554      | 0.454 | 15.24  |
| 54)  | 2159.88      | 46.47      | 0.1554      | 0.454 | 15.24  |
| 55)  | 2219.90      | 47.12      | 0.1554      | 0.454 | 15.24  |
| 56)  | 2279.88      | 47.75      | 0.1554      | 0.454 | 15.24  |
| 57)  | 2339.90      | 48.37      | 0.1554      | 0.454 | 15.24  |
| 58)  | 2399.90      | 48.99      | 0.1554      | 0.454 | 15.24  |
| 59)  | 2459.88      | 49.60      | 0.1554      | 0.454 | 15.24  |
| 60)  | 2519.90      | 50.20      | 0.1554      | 0.454 | 15.24  |
| 61)  | 2579.88      | 50.79      | 0.1554      | 0.454 | 15.24  |
| 62)  | 2639.90      | 51.38      | 0.1554      | 0.454 | 15.24  |
| 63). | 2699.90      | 51.96      | 0.1554      | 0.454 | 15.24  |
| 64)  | 2759.88      | 52.53      | 0.1554      | 0.454 | 15.24  |
| 65)  | 2813.40      | 53.04      | 0.1549      | 0.455 | 15.19  |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993- <b>S</b> T-1, 3.0'-5.0' | Project No.: | 183923    |
|-------------|-----------------------|-------------|----------------------------------|--------------|-----------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc                       | Checked by : | KAF       |
| Sample No.: | GW993-ST-1            | Test Date   | : 3-16-18                        | Depth :      | 3.6′-3.8′ |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb                      |              |           |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1499      | 0.463 | 14.69  |
| 2)  | 0.15         | 0.39       | 0.1499      | 0.463 | 14.69  |
| 3)  | 0.40         | 0.63       | 0.1494      | 0.464 | 14.64  |
| 4)  | 0.92         | 0.96       | 0.1488      | 0.465 | 14.59  |
| 5)  | 1.90         | 1.38       | 0.1488      | 0.465 | 14.59  |
| 6)  | 2.93         | 1.71       | 0.1483      | 0.466 | 14.54  |
| 7)  | 3.90         | 1.97       | 0.1483      | 0.466 | 14.54  |
| 8)  | 4.90         | 2.21       | 0.1483      | 0.466 | 14.54  |
| 9)  | 5.92         | 2.43       | 0.1483      | 0.466 | 14.54  |
| 10) | 6.90         | 2.63       | 0.1483      | 0.466 | 14.54  |
| 11) | 7.90         | 2.81       | 0.1478      | 0.467 | 14.49  |
| 12) | 8.90         | 2.98       | 0.1483      | 0.466 | 14.54  |
| 13) | 9.90         | 3.15       | 0.1483      | 0.466 | 14.54  |
| 14) | 14.90        | 3.86       | 0.1478      | 0.467 | 14.49  |
| 15) | 29.92        | 5.47       | 0.1478      | 0.467 | 14.49  |
| 16) | 59.92        | 7.74       | 0.1473      | 0.468 | 14.44  |
| 17) | 89.92        | 9.48       | 0.1478      | 0.467 | 14.49  |
| 18) | 119.90       | 10.95      | 0.1473      | 0.468 | 14.44  |
| 19) | 149.92       | 12.24      | 0.1473      | 0.468 | 14.44  |
| 20) | 179.90       | 13.41      | 0.1468      | 0.468 | 14.39  |
| 21) | 209.90       | 14.49      | 0.1473      | 0.468 | 14.44  |
| 22) | 239.90       | 15.49      | 0.1468      | 0.468 | 14.39  |
| 23) | 299.93       | 17.32      | 0.1468      | 0.468 | 14.39  |
| 24) | 359.93       | 18.97      | 0.1468      | 0.468 | 14.39  |
| 25) | 419.90       | 20.49      | 0.1468      | 0.468 | 14.39  |
| 26) | 479.92       | 21.91      | 0.1468      | 0.468 | 14.39  |
| 27) | 539.90       | 23.24      | 0.1468      | 0.468 | 14.39  |
| 28) | 599.95       | 24.49      | 0.1468      | 0.468 | 14.39  |
| 29) | 659.90       | 25.69      | 0.1468      | 0.468 | 14.39  |
| 30) | 719.92       | 26.83      | 0.1468      | 0.468 | 14.39  |
| 31) | 779.90       | 27.93      | 0.1468      | 0.468 | 14.39  |
| 32) | 839.90       | 28.98      | 0.1468      | 0.468 | 14.39  |
| 33) | 899.90       | 30.00      | 0.1468      | 0.468 | 14.39  |
| 34) | 959.90       | 30.98      | 0.1468      | 0.468 | 14.39  |
| 35) | 1019.88      | 31.94      | 0.1468      | 0.468 | 14.39  |
|     |              |            |             |       |        |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring Nc.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample Nc.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.1468      | 0.468 | 14.39  |
| 37) | 1139.90      | 33.76      | 0.1468      | 0.468 | 14.39  |
| 38) | 1199.90      | 34.64      | 0.1468      | 0.468 | 14.39  |
| 39) | 1259.90      | 35.50      | 0.1468      | 0.468 | 14.39  |
| 40) | 1319.90      | 36.33      | 0.1463      | 0.469 | 14.34  |
| 41) | 1379.88      | 37.15      | 0.1463      | 0.469 | 14.34  |
| 42) | 1407.02      | 37.51      | 0.1463      | 0.469 | 14.34  |

#### CONSOLIDATION TEST DATA

| Project : EMDF Charac  | terization Location | : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|------------------------|---------------------|-------------------------|---------------------|
| Boring Nc.: GW993-ST-1 | Tested by           | : BMI: blc              | Checked by : KAF    |
| Sample No.: GW993-ST-1 | Test Date           | : 3-16-18               | Depth : 3.6'-3.8'   |
| Test No. : GW993-ST-1  | Sample Typ          | pe: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 19 of 20

Stress increment from 4.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1427      | 0.475 | 13.99  |
| 2)  | 0.18         | 0.43       | 0.1422      | 0.476 | 13.95  |
| 3)  | 0.42         | 0.65       | 0.1422      | 0.476 | 13.95  |
| 4)  | 0.92         | 0.96       | 0.1422      | 0.476 | 13.95  |
| 5)  | 1.92         | 1.38       | 0.1417      | 0.477 | 13.90  |
| 6)  | 2.92         | 1.71       | 0.1417      | 0.477 | 13.90  |
| 7)  | 3.90         | 1.97       | 0.1412      | 0.478 | 13.85  |
| 8)  | 4.93         | 2.22       | 0.1412      | 0.478 | 13.85  |
| 9)  | 5.90         | 2.43       | 0.1412      | 0.478 | 13.85  |
| 10) | 6.93         | 2.63       | 0.1412      | 0.478 | 13.85  |
| 11) | 7.93         | 2.82       | 0.1407      | 0.479 | 13.80  |
| 12) | 8.90         | 2.98       | 0.1407      | 0.479 | 13.80  |
| 13) | 9.92         | 3.15       | 0.1407      | 0.479 | 13.80  |
| 14) | 14.92        | 3.86       | 0.1402      | 0.480 | 13.75  |
| 15) | 29.90        | 5.47       | 0.1402      | 0.480 | 13.75  |
| 16) | 59.90        | 7.74       | 0.1397      | 0.480 | 13.70  |
| 17) | 89.92        | 9.48       | 0.1397      | 0.480 | 13.70  |
| 18) | 119.92       | 10.95      | 0.1397      | 0.480 | 13.70  |
| 19) | 149.90       | 12.24      | 0.1397      | 0.480 | 13.70  |
| 20) | 179.90       | 13.41      | 0.1397      | 0.480 | 13.70  |
| 21) | 209.93       | 14.49      | 0.1392      | 0.481 | 13.65  |
| 22) | 239.92       | 15.49      | 0.1392      | 0.481 | 13.65  |
| 23) | 299.90       | 17.32      | 0.1392      | 0.481 | 13.65  |
| 24) | 359.90       | 18.97      | 0.1387      | 0.482 | 13.60  |
| 25) | 419.90       | 20.49      | 0.1392      | 0.481 | 13.65  |
| 26) | 479.92       | 21.91      | 0.1387      | 0.482 | 13.60  |
| 27) | 539.92       | 23.24      | 0.1387      | 0.482 | 13.60  |
| 28) | 599.93       | 24.49      | 0.1392      | 0.481 | 13.65  |
| 29) | 659.95       | 25.69      | 0.1387      | 0.482 | 13.60  |
| 30) | 719.92       | 26.83      | 0.1392      | 0.481 | 13.65  |
| 31) | 779.92       | 27.93      | 0.1392      | 0.481 | 13.65  |
| 32) | 839.92       | 28.98      | 0.1387      | 0.482 | 13.60  |
| 33) | 899.92       | 30.00      | 0.1392      | 0.481 | 13.65  |
| 34) | 959.90       | 30.98      | 0.1387      | 0.482 | 13.60  |
| 35) | 1019.90      | 31.94      | 0.1387      | 0.482 | 13.60  |

# CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|---------------------------------|-------------|-------------------------|---------------------|
| Boring No.: GW993-ST-1          | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample Nc.: GW993-ST-1          | Test Date   | : 3-16-18               | Depth : 3.6'-3.8'   |
| Test No. : GW993-ST-1           | Sample Type | : Undisturb             |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 19 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.92      | 32.86      | 0.1387      | 0.482 | 13.60  |
| 37) | 1139.93      | 33.76      | 0.1392      | 0.481 | 13.65  |
| 38) | 1199.93      | 34.64      | 0.1387      | 0.482 | 13.60  |
| 39) | 1259.90      | 35.50      | 0.1392      | 0.481 | 13.65  |
| 40) | 1319.90      | 36.33      | 0.1387      | 0.482 | 13.60  |
| 41) | 1379.90      | 37.15      | 0.1387      | 0.482 | 13.60  |
| 42) | 1421.33      | 37.70      | 0.1387      | 0.482 | 13.60  |

## CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring No.: | GW993-ST-1            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample No.: | GW993-ST-1            | Test Date   | : 3-16-18               | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type | : Undisturb             | 1.4                 |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1372      | 0.485 | 13.45  |
| 2)  | 0.15         | 0.39       | 0.1367      | 0.486 | 13.40  |
| 3)  | 0.40         | 0.63       | 0.1361      | 0.486 | 13.35  |
| 4)  | 0.88         | 0.94       | 0.1367      | 0.486 | 13.40  |
| 5)  | 1.90         | 1.38       | 0.1356      | 0.487 | 13.30  |
| 6)  | 2.90         | 1.70       | 0.1356      | 0.487 | 13.30  |
| 7)  | 3.90         | 1.97       | 0.1356      | 0.487 | 13.30  |
| 8)  | 4.90         | 2.21       | 0.1351      | 0.488 | 13.25  |
| 9)  | 5.92         | 2.43       | 0.1351      | 0.488 | 13.25  |
| 10) | 6.88         | 2.62       | 0.1351      | 0.488 | 13.25  |
| 11) | 7.90         | 2.81       | 0.1351      | 0.488 | 13.25  |
| 12) | 8.92         | 2.99       | 0.1346      | 0.489 | 13.20  |
| 13) | 9.88         | 3.14       | 0.1346      | 0.489 | 13.20  |
| 14) | 14.88        | 3.86       | 0.1346      | 0.489 | 13.20  |
| 15) | 29.92        | 5.47       | 0.1341      | 0.490 | 13.15  |
| 16) | 59.90        | 7.74       | 0.1336      | 0.491 | 13.10  |
| 17) | 89.88        | 9.48       | 0.1336      | 0.491 | 13.10  |
| 18) | 119.88       | 10.95      | 0.1336      | 0.491 | 13.10  |
| 19) | 149.92       | 12.24      | 0.1331      | 0.492 | 13.05  |
| 20) | 179.88       | 13.41      | 0.1331      | 0.492 | 13.05  |
| 21) | 209.90       | 14.49      | 0.1331      | 0.492 | 13.05  |
| 22) | 239.90       | 15.49      | 0.1331      | 0.492 | 13.05  |
| 23) | 299.90       | 17.32      | 0.1326      | 0.492 | 13.00  |
| 24) | 359.93       | 18.97      | 0.1331      | 0.492 | 13.05  |
| 25) | 419.88       | 20.49      | 0.1326      | 0.492 | 13.00  |
| 26) | 479.90       | 21.91      | 0.1326      | 0.492 | 13.00  |
| 27) | 539.88       | 23.24      | 0.1326      | 0.492 | 13.00  |
| 28) | 599.88       | 24.49      | 0.1326      | 0.492 | 13.00  |
| 29) | 659.92       | 25.69      | 0.1326      | 0.492 | 13.00  |
| 30) | 719.88       | 26.83      | 0.1326      | 0.492 | 13.00  |
| 31) | 779.88       | 27.93      | 0.1326      | 0.492 | 13.00  |
| 32) | 839.92       | 28.98      | 0.1326      | 0.492 | 13.00  |
| 33) | 899.88       | 30.00      | 0.1326      | 0.492 | 13.00  |
| 34) | 959.88       | 30.98      | 0.1326      | 0.492 | 13.00  |
| 35) | 1019.88      | 31.94      | 0.1326      | 0.492 | 13.00  |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW993-ST-1, 3.0'-5.0' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring Nc.: | GW993-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample Nc.: | GW993-ST-1            | Test Date : 3-16-18              | Depth : 3.6'-3.8'   |
| Test No. :  | GW993-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : brown clayey silt (visual description) Remarks : Use: Fill, Near foundation/geobuffer layer

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.1326      | 0.492 | 13.00  |
| 37) | 1139.92      | 33.76      | 0.1321      | 0.493 | 12.95  |
| 38) | 1199.90      | 34.64      | 0.1321      | 0.493 | 12.95  |
| 39) | 1259.88      | 35.49      | 0.1321      | 0.493 | 12.95  |
| 40) | 1319.88      | 36.33      | 0.1321      | 0.493 | 12.95  |
| 41) | 1379.88      | 37.15      | 0.1321      | 0.493 | 12.95  |
| 42) | 1439.88      | 37.95      | 0.1321      | 0.493 | 12.95  |
| 43) | 1444.40      | 38.01      | 0.1321      | 0.493 | 12.95  |

# **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

# LABORATORY REPORT

Report Date: May 3, 2018 **Report To:** CTI & Associates, Inc. Job No.: 183923 Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 **Report No.:** 430248 No. of Pages: 3 Novi, MI 48377

Laboratory Analysis of One Shelby Tube Sample **Report On:** Project: EMDF Characterization - Project No. 1188070011 Sample ID: GW993 - ST-1, 3.0'-5.0' - Sample Date: 2/22/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with ASTM D 4767, "Consolidated-Undrained Triaxial Compression Test on Cohesive Soils".

Results are summarized below and detailed on the attached data sheets.

| Test Parameter                | Test No.1 | Test No. 2 | Test No. 3 |
|-------------------------------|-----------|------------|------------|
| Dry Density, pcf:             | 102.14    | 100.35     | 100.05     |
| Moisture Content, %:          | 22.47     | 25.41      | 25.51      |
| Minor Principle Stress, psi:  | 5.69      | 12.39      | 32.39      |
| Maximum Deviator Stress, psi: | 21.30     | 24.07      | 22.39      |
| Cohesion (c'), psi:           | 0.0       |            |            |
| phi Angle (Ø'):               | 30.0      |            |            |
| Apparent Specific Gravity:    | 2.73      |            |            |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805 extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430248 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-208 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowsermorner.com/accreditations for reviews.





# **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

# LABORATORY REPORT

| <b>Report To:</b> | CTI & Associates, Inc.      | <b>Report Date:</b> | May 3, 2018 |
|-------------------|-----------------------------|---------------------|-------------|
|                   | Attn: Michael Partenio      | Job No.:            | 183923      |
|                   | 28001 Cabot Drive, Ste. 250 | <b>Report No.:</b>  | 430245      |
|                   | Novi, MI 48377              | No. of Pages:       | 1           |

**Report On:** Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW993 – ST-1, 3.0'-5.0' – Sample Date: 2/22/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the following procedures:

ASTM D 854, "Specific Gravity of Soils Solids by Water Pycnometer". ASTM D 2216, "Laboratory Determination of Water (Moisture) Content of Soil and Rock". ASTM D 7263, "Laboratory Determination of Density (Unit Weight) of Soil Specimens – Method B".

Results are summarized in the following table.

| Test Parameter                   | Results   |
|----------------------------------|-----------|
| Depth of Test Specimen:          | 3.9'-5.1' |
| As Received Moisture Content, %: | 25.4      |
| Apparent Specific Gravity:       | 2.73      |
| Wet Unit Weight, pcf:            | 125.9     |
| Dry Unit Weight, pcf:            | 100.4     |
| Void Ratio:                      | 0.6978    |
| Porosity, %:                     | 41.1      |
| Degree of Saturation, %:         | 99.4      |
| Volume of Water, %:              | 40.9      |
| Volume of Solids, %:             | 58.9      |
| Air Filled Voids, %:             | 0.6       |
| Water Filled Voids, %:           | 99.4      |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER. INC

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430245 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-211

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.



TIME CURVES (STEP 1 OF 20) STRESS : 0.06 (t/ft^2) -0.004 (, -0.003 DISPLACEMENT (in) -0.002 -0.001 0.000 0.001 <sup>E</sup> 10° 10<sup>-1</sup> 10<sup>1</sup> TIME (min) -0.0041111 -0.003 DISPLACEMENT (in) -0.002 -0.001 0.000 0.001 L \_\_\_\_\_ 2.5 0.5 1.5 1.0 2.0 SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Boring No : GW995-ST-1 Sample No : GW995-ST-1 Project No : 183923 Test Date : 3-15-18 Test No : GW995-ST-1 Depth : Description : red/brown clayey silt (visual description)

CONSOLIDATION TEST


TIME CURVES (STEP 3 OF 20) STRESS : 0.5 (t/ft^2) -0.003 -0.002 DISPLACEMENT (in) ЖЖ ക -0.001 0.000 0.001 0.002 10-1  $10^{0}$ 10<sup>1</sup>  $10^{2}$  $10^{3}$ 104 TIME (min) -0.003 -0.002 DISPLACEMENT (in) -0.001 0.000 0.001 0.002 <sup>E</sup>0 Ξ 50. 10. 20. 30. 40. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No: 183923 Boring No : GW995-ST-1 Sample No : GW995-ST-1 Test Date : 3-15-18 Test No : GW995-ST-1 Depth : Description : red/brown clayey silt (visual description)

CONSOLIDATION TEST







CONSOLIDATION TEST TIME CURVES (STEP 7 OF 20) STRESS : 2 (t/ft^2)

























CONSOLIDATION TEST





### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location    | :  | GW995-ST-1, 2.5'-4.5' | Project No. | : | 183923    |
|---------------------------------|-------------|----|-----------------------|-------------|---|-----------|
| Boring No.: GW995-ST-1          | Tested by   | :  | BMI: blc              | Checked by  | : | KAF       |
| Sample No.: GW995-ST-1          | Test Date   | :  | 3-15-18               | Depth       | : | 3.8′-4.0′ |
| Test No. : GW995-ST-1           | Sample Type | ∋: | Undisturb             |             |   |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

|     | APPLIED  | FINAL        | VOID  | STRAIN | FITT        | ING  | COEFFIC   | IENT OF CONSOL | IDATION   |
|-----|----------|--------------|-------|--------|-------------|------|-----------|----------------|-----------|
|     | PRESSURE | DISPLACEMENT | RATIO | AT END | T50 TIME (r | nin) |           | (in^2/s)       |           |
|     | (t/ft^2) | (in)         |       | (%)    | SQ.RT.      | LOG  | SQ.RT.    | LOG            | AVE       |
| 1)  | 0.06     | -0.004       | 0.644 | -0.35  | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 2)  | 0.25     | -0.004       | 0.644 | -0.35  | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 3)  | 0.50     | -0.002       | 0.642 | -0.20  | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 4)  | 1.00     | 0.002        | 0.635 | 0.21   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 5)  | 2.00     | 0.012        | 0.618 | 1.23   | 8.1         | 0.0  | 1.00E-004 | 0.00E+000      | 1.00E-004 |
| 6)  | 4.00     | 0.029        | 0.591 | 2.91   | 3.6         | 3.3  | 2.18E-004 | 2.40E-004      | 2.29E-004 |
| 7)  | 2.00     | 0.025        | 0.597 | 2.50   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 8)  | 1.00     | 0.018        | 0.609 | 1.79   | 8.8         | 0.0  | 8.91E-005 | 0.00E+000      | 8.91E-005 |
| 9)  | 0.50     | 0.012        | 0.618 | 1.23   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 10) | 1.00     | 0.014        | 0.615 | 1.43   | 0.0         | 0.0  | 0.00E+000 | 0.00E+000      | 0.00E+000 |
| 11) | 2.00     | 0.021        | 0.604 | 2.09   | 0.9         | 0.0  | 9.01E-004 | 0.00E+000      | 9.01E-004 |
| 12) | 4.00     | 0.031        | 0.587 | 3.11   | 3.0         | 0.0  | 2.59E-004 | 0.00E+000      | 2.59E-004 |
| 13) | 8.00     | 0.052        | 0.553 | 5.20   | 3.5         | 0.0  | 2.14E-004 | 0.00E+000      | 2.14E-004 |
| 14) | 16.00    | 0.080        | 0.507 | 8.00   | 2.2         | 0.0  | 3.25E-004 | 0.00E+000      | 3.25E-004 |
| 15) | 32.00    | 0.116        | 0.448 | 11.61  | 2.2         | 0.0  | 3.02E-004 | 0.00E+000      | 3.02E-004 |
| 16) | 16.00    | 0.107        | 0.462 | 10.74  | 1.2         | 0.0  | 5.39E-004 | 0.00E+000      | 5.39E-004 |
| 17) | 8.00     | 0.097        | 0.480 | 9.68   | 2.9         | 0.0  | 2.29E-004 | 0.00E+000      | 2.29E-004 |
| 18) | 4.00     | 0.086        | 0.498 | 8.56   | 13.4        | 0.0  | 5.04E-005 | 0.00E+000      | 5.04E-005 |
| 19) | 2.00     | 0.073        | 0.518 | 7.33   | 19.8        | 0.0  | 3.52E-005 | 0.00E+000      | 3.52E-005 |
| 20) | 1.00     | 0.062        | 0.537 | 6.16   | 16.0        | 0.0  | 4.47E-005 | 0.00E+000      | 4.47E-005 |

## CONSOLIDATION TEST DATA

| Project : H   | EMDF Characterization | Location    | : GW995- <b>ST</b> -1, 2.5′-4.5′ | Project No. | : 183923    |
|---------------|-----------------------|-------------|----------------------------------|-------------|-------------|
| Boring No.: ( | GW995-ST-1            | Tested by   | : BMI: blc                       | Checked by  | : KAF       |
| Sample No.: ( | GW995-ST-1            | Test Date   | : 3-15-18                        | Depth       | : 3.8'-4.0' |
| Test No. : C  | GW995-ST-1            | Sample Type | : Undisturb                      |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

| Specific Gravity : 2.72   | Liquid Limit : 0     | Initial Height : 1.00 (in)  |
|---------------------------|----------------------|-----------------------------|
| Initial Void Ratio : 0.64 | Plastic Limit : 0    | Sample Diameter : 2.50 (in) |
| Final Void Ratio : 0.54   | Plasticity Index : 0 |                             |

|                              | BEFORE CONSOLIDATION |                 | AFTER CONSOLIDATION |           |
|------------------------------|----------------------|-----------------|---------------------|-----------|
|                              | TRIMMINGS            | SPECIMEN + RING | SPECIMEN + RING     | TRIMMINGS |
|                              |                      |                 |                     |           |
| CONTAINER NO.                |                      | RING            | RING                |           |
|                              | 162 02               | 1.62, 02        | 150.00              |           |
| WT CONTAINER + WET SOIL (gm) | 163.23               | 163.23          | 159.38              | 159.38    |
| WT CONTAINER + DRY SOIL (gm) | 133.59               | 133.59          | 133.59              | 133.59    |
| WT CONTAINER (gm)            | 0.00                 | 0.00            | 0.00                | 0.00      |
| WT DRY SOIL (gm)             | 133.59               | 133.59          | 133.59              | 133.59    |
| WATER CONTENT (%)            | 22.19                | 22.19           | 19.31               | 19.31     |
| VOID RATIO                   |                      | 0.64            | 0.54                |           |
| DEGREE OF SATURATION (%)     |                      | 94.56           | 97.73               |           |
| DRY DENSITY (1b/ft^3)        |                      | 103.68          | 110.48              |           |

Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefor values may not represent actual values for the specimen.

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No.: 1   | 183923    |
|---------------------------------|--------------|-----------------------|------------------|-----------|
| Boring No.: GW995-ST-1          | Tested by :  | BMI: blc              | Checked by : $H$ | KAF       |
| Sample No.: GW995-ST-1          | Test Date :  | 3-15-18               | Depth : 3        | 3.8'-4.0' |
| Test No. : GW995-ST-1           | Sample Type: | Undisturb             |                  |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 1 of 20

Stress increment from 0.00 (t/ft^2) to 0.06 (t/ft^2)

Start Date : Start Time :

|    | ELAPSED TIME<br>(min) | SQRT. OF<br>TIME (min) | CHANGE IN<br>HEIGHT (in) | VOID<br>RATIO | STRAIN<br>(%) |
|----|-----------------------|------------------------|--------------------------|---------------|---------------|
| 1) | 0.15                  | 0.39                   | 0.0000                   | 0.638         | 0.00          |
| 2) | 0.90                  | 0.95                   | 0.0000                   | 0.638         | 0.00          |
| 3) | 2.90                  | 1.70                   | 0.0000                   | 0.638         | 0.00          |
| 4) | 3.90                  | 1.97                   | 0.0000                   | 0.638         | 0.00          |
| 5) | 5.90                  | 2.43                   | -0.0036                  | 0.644         | -0.36         |

### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW995-ST-1, 2.5'-4.5' | Project No.: | 183923    |
|-------------|-----------------------|-------------|-------------------------|--------------|-----------|
| Boring No.: | GW995-ST-1            | Tested by   | : BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date   | : 3-15-18               | Depth :      | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type | : Undisturb             |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 2 of 20

Stress increment from 0.06 (t/ft<sup>2</sup>) to 0.25 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | -0.0031     | 0.643 | -0.31  |
| 2)  | 0.15         | 0.39       | -0.0036     | 0.644 | -0.36  |
| 3)  | 0.40         | 0.63       | -0.0036     | 0.644 | -0.36  |
| 4)  | 0.90         | 0.95       | -0.0036     | 0.644 | -0.36  |
| 5)  | 1.90         | 1.38       | -0.0031     | 0.643 | -0.31  |
| 6)  | 2.92         | 1.71       | -0.0036     | 0.644 | -0.36  |
| 7)  | 3.92         | 1.98       | -0.0036     | 0.644 | -0.36  |
| 8)  | 4.92         | 2.22       | -0.0031     | 0.643 | -0.31  |
| 9)  | 5.90         | 2.43       | -0.0036     | 0.644 | -0.36  |
| 10) | 6.90         | 2.63       | -0.0036     | 0.644 | -0.36  |
| 11) | 7.90         | 2.81       | -0.0031     | 0.643 | -0.31  |
| 12) | 8.90         | 2.98       | -0.0036     | 0.644 | -0.36  |
| 13) | 9.90         | 3.15       | -0.0036     | 0.644 | -0.36  |
| 14) | 14.90        | 3.86       | -0.0036     | 0.644 | -0.36  |
| 15) | 29.90        | 5.47       | -0.0031     | 0.643 | -0.31  |
| 16) | 59.92        | 7.74       | -0.0031     | 0.643 | -0.31  |
| 17) | 89.90        | 9.48       | -0.0031     | 0.643 | -0.31  |
| 18) | 119.90       | 10.95      | -0.0031     | 0.643 | -0.31  |
| 19) | 149.92       | 12.24      | -0.0036     | 0.644 | -0.36  |
| 20) | 179.92       | 13.41      | -0.0031     | 0.643 | -0.31  |
| 21) | 209.90       | 14.49      | -0.0031     | 0.643 | -0.31  |
| 22) | 239.90       | 15.49      | -0.0031     | 0.643 | -0.31  |
| 23) | 299.90       | 17.32      | -0.0031     | 0.643 | -0.31  |
| 24) | 359.92       | 18.97      | -0.0036     | 0.644 | -0.36  |
| 25) | 419.90       | 20.49      | -0.0031     | 0.643 | -0.31  |
| 26) | 479.92       | 21.91      | -0.0031     | 0.643 | -0.31  |
| 27) | 539.90       | 23.24      | -0.0031     | 0.643 | -0.31  |
| 28) | 599.90       | 24.49      | -0.0031     | 0.643 | -0.31  |
| 29) | 659.90       | 25.69      | -0.0031     | 0.643 | -0.31  |
| 30) | 719.90       | 26.83      | -0.0031     | 0.643 | -0.31  |
| 31) | 779.92       | 27.93      | -0.0031     | 0.643 | -0.31  |
| 32) | 839.90       | 28.98      | -0.0031     | 0.643 | -0.31  |
| 33) | 899.90       | 30.00      | -0.0031     | 0.643 | -0.31  |
| 34) | 959.90       | 30.98      | -0.0031     | 0.643 | -0.31  |
| 35) | 1019.90      | 31.94      | -0.0031     | 0.643 | -0.31  |
|     |              |            |             |       |        |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring No.: | GW995-ST-1            | Tested by :: | BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth       | : 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 2 of 20 Stress increment from 0.06 (t/ft<sup>2</sup>) to 0.25 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | -0.0031     | 0.643 | -0.31  |
| 37) | 1139.90      | 33.76      | -0.0031     | 0.643 | -0.31  |
| 38) | 1199.92      | 34.64      | -0.0031     | 0.643 | -0.31  |
| 39) | 1259.90      | 35.50      | -0.0031     | 0.643 | -0.31  |
| 40) | 1319.90      | 36.33      | -0.0031     | 0.643 | -0.31  |
| 41) | 1379.90      | 37.15      | -0.0025     | 0.643 | -0.25  |
| 42) | 1391.47      | 37.30      | -0.0036     | 0.644 | -0.36  |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW995-ST-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring No.: | GW995-ST-1            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW995-ST-1            | Test Date   | : 3-15-18               | Depth       | : 3.8′-4.0′ |
| Test No. :  | GW995-ST-1            | Sample Type | : Undisturb             |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 3 of 20

Stress increment from 0.25  $(t/ft^2)$  to 0.50  $(t/ft^2)$ 

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | -0.0025     | 0.643 | -0.25  |
| 2)  | 0.13         | 0.37       | -0.0025     | 0.643 | -0.25  |
| 3)  | 0.40         | 0.63       | -0.0025     | 0.643 | -0.25  |
| 4)  | 0.90         | 0.95       | -0.0025     | 0.643 | -0.25  |
| 5)  | 1.88         | 1.37       | -0.0025     | 0.643 | -0.25  |
| 6)  | 2.92         | 1.71       | -0.0020     | 0.642 | -0.20  |
| 7)  | 3.93         | 1.98       | -0.0025     | 0.643 | -0.25  |
| 8)  | 4.93         | 2.22       | -0.0025     | 0.643 | -0.25  |
| 9)  | 5.93         | 2.44       | -0.0020     | 0.642 | -0.20  |
| 10) | 6.90         | 2.63       | -0.0025     | 0.643 | -0.25  |
| 11) | 7.90         | 2.81       | -0.0025     | 0.643 | -0.25  |
| 12) | 8.90         | 2.98       | -0.0025     | 0.643 | -0.25  |
| 13) | 9.90         | 3.15       | -0.0025     | 0.643 | -0.25  |
| 14) | 14.90        | 3.86       | -0.0020     | 0.642 | -0.20  |
| 15) | 29.88        | 5.47       | -0.0015     | 0.641 | -0.15  |
| 16) | 59.90        | 7.74       | -0.0020     | 0.642 | -0.20  |
| 17) | 89.90        | 9.48       | -0.0015     | 0.641 | -0.15  |
| 18) | 119.90       | 10.95      | -0.0020     | 0.642 | -0.20  |
| 19) | 149.90       | 12.24      | -0.0015     | 0.641 | -0.15  |
| 20) | 179.90       | 13.41      | -0.0020     | 0.642 | -0.20  |
| 21) | 209.92       | 14.49      | -0.0015     | 0.641 | -0.15  |
| 22) | 239.90       | 15.49      | -0.0020     | 0.642 | -0.20  |
| 23) | 299.90       | 17.32      | -0.0020     | 0.642 | -0.20  |
| 24) | 359.88       | 18.97      | -0.0020     | 0.642 | -0.20  |
| 25) | 419.90       | 20.49      | -0.0020     | 0.642 | -0.20  |
| 26) | 479.92       | 21.91      | -0.0020     | 0.642 | -0.20  |
| 27) | 539.88       | 23.24      | -0.0020     | 0.642 | -0.20  |
| 28) | 599.90       | 24.49      | -0.0015     | 0.641 | -0.15  |
| 29) | 659.90       | 25.69      | -0.0015     | 0.641 | -0.15  |
| 30) | 719.88       | 26.83      | -0.0020     | 0.642 | -0.20  |
| 31) | 779.90       | 27.93      | -0.0020     | 0.642 | -0.20  |
| 32) | 839.88       | 28.98      | -0.0015     | 0.641 | -0.15  |
| 33) | 899.90       | 30.00      | -0.0020     | 0.642 | -0.20  |
| 34) | 959.88       | 30.98      | -0.0020     | 0.642 | -0.20  |
| 35) | 1019.92      | 31.94      | -0.0020     | 0.642 | -0.20  |

Page : 6

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring Nc.: | GW995-ST-1            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth :      | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 3 of 20 Stress increment from 0.25 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN     | VOID  | STRAIN |
|-----|--------------|------------|---------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT $(in)$ | RATIO | (%)    |
|     |              |            |               |       |        |
| 36) | 1079.88      | 32.86      | -0.0020       | 0.642 | -0.20  |
| 37) | 1139.88      | 33.76      | -0.0020       | 0.642 | -0.20  |
| 38) | 1199.88      | 34.64      | -0.0015       | 0.641 | -0.15  |
| 39) | 1259.90      | 35.50      | -0.0015       | 0.641 | -0.15  |
| 40) | 1298.28      | 36.03      | -0.0020       | 0.642 | -0.20  |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring Nc.: | GW995-ST-1            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth :      | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 4 of 20

Stress increment from 0.50 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0000      | 0.638 | 0.00   |
| 2)  | 0.15         | 0.39       | 0.0000      | 0.638 | 0.00   |
| 3)  | 0.40         | 0.63       | 0.0005      | 0.638 | 0.05   |
| 4)  | 0.90         | 0.95       | 0.0005      | 0.638 | 0.05   |
| 5)  | 1.90         | 1.38       | 0.0005      | 0.638 | 0.05   |
| 6)  | 2.88         | 1.70       | 0.0005      | 0.638 | 0.05   |
| 7)  | 3.92         | 1.98       | 0.0005      | 0.638 | 0.05   |
| 8)  | 4.90         | 2.21       | 0.0005      | 0.638 | 0.05   |
| 9)  | 5.90         | 2.43       | 0.0010      | 0.637 | 0.10   |
| 10) | 6.90         | 2.63       | 0.0010      | 0.637 | 0.10   |
| 11) | 7.90         | 2.81       | 0.0010      | 0.637 | 0.10   |
| 12) | 8.92         | 2.99       | 0.0010      | 0.637 | 0.10   |
| 13) | 9.92         | 3.15       | 0.0010      | 0.637 | 0.10   |
| 14) | 14.92        | 3.86       | 0.0010      | 0.637 | 0.10   |
| 15) | 29.90        | 5.47       | 0.0010      | 0.637 | 0.10   |
| 16) | 59.90        | 7.74       | 0.0010      | 0.637 | 0.10   |
| 17) | 89.88        | 9.48       | 0.0015      | 0.636 | 0.15   |
| 18) | 119.92       | 10.95      | 0.0015      | 0.636 | 0.15   |
| 19) | 149.92       | 12.24      | 0.0015      | 0.636 | 0.15   |
| 20) | 179.90       | 13.41      | 0.0015      | 0.636 | 0.15   |
| 21) | 209.88       | 14.49      | 0.0015      | 0.636 | 0.15   |
| 22) | 239.90       | 15.49      | 0.0015      | 0.636 | 0.15   |
| 23) | 299.92       | 17.32      | 0.0015      | 0.636 | 0.15   |
| 24) | 359.92       | 18.97      | 0.0015      | 0.636 | 0.15   |
| 25) | 419.88       | 20.49      | 0.0020      | 0.635 | 0.20   |
| 26) | 479.92       | 21.91      | 0.0015      | 0.636 | 0.15   |
| 27) | 539.90       | 23.24      | 0.0015      | 0.636 | 0.15   |
| 28) | 599.90       | 24.49      | 0.0020      | 0.635 | 0.20   |
| 29) | 659.90       | 25.69      | 0.0020      | 0.635 | 0.20   |
| 30) | 719.92       | 26.83      | 0.0020      | 0.635 | 0.20   |
| 31) | 779.90       | 27.93      | 0.0020      | 0.635 | 0.20   |
| 32) | 839.88       | 28.98      | 0.0020      | 0.635 | 0.20   |
| 33) | 899.90       | 30.00      | 0.0020      | 0.635 | 0.20   |
| 34) | 959.90       | 30.98      | 0.0020      | 0.635 | 0.20   |
| 35) | 1019.88      | 31.94      | 0.0020      | 0.635 | 0.20   |

## CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW995-ST-1, 2.5'-4.5' | Project No.: 183923 |
|---------------------------------|----------------------------------|---------------------|
| Boring Nc.: GW995-ST-1          | Tested by : BMI: blc             | Checked by : KAF    |
| Sample Nc.: GW995-ST-1          | Test Date : 3-15-18              | Depth : 3.8'-4.0'   |
| Test No. : GW995-ST-1           | Sample Type: Undisturb           |                     |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 4 of 20

Stress increment from 0.50 (t/ft^2) to 1.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME<br>(min) | SQRT. OF<br>TIME (min) | CHANGE IN<br>HEIGHT (in) | VOID<br>RATIO | STRAIN<br>(%) |
|-----|-----------------------|------------------------|--------------------------|---------------|---------------|
| 36) | 1079.90               | 32.86                  | 0.0020                   | 0.635         | 0.20          |
| 37) | 1139.90               | 33.76                  | 0.0020                   | 0.635         | 0.20          |
| 38) | 1199.90               | 34.64                  | 0.0020                   | 0.635         | 0.20          |
| 39) | 1259.88               | 35.49                  | 0.0036                   | 0.633         | 0.36          |
| 40) | 1309.58               | 36.19                  | 0.0020                   | 0.635         | 0.20          |

### CONSOLIDATION TEST DATA

| Project : EMDF Chara   | cterization Locatio | on : GWS  | 995- <b>S</b> T-1, | 2.5'-4.5' | Project No.: | 183923    |
|------------------------|---------------------|-----------|--------------------|-----------|--------------|-----------|
| Boring No.: GW995-ST-1 | Tested              | by : BM   | I: blc             | (         | Checked by : | KAF       |
| Sample No.: GW995-ST-1 | Test Da             | ate : 3-3 | 15-18              | I         | Depth :      | 3.8′-4.0′ |
| Test No. : GW995-ST-1  | Sample              | Type: Und | disturb            |           |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 5 of 20

Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0071      | 0.627 | 0.71   |
| 2)  | 0.15         | 0.39       | 0.0076      | 0.626 | 0.76   |
| 3)  | 0.42         | 0.65       | 0.0076      | 0.626 | 0.76   |
| 4)  | 0.92         | 0.96       | 0.0087      | 0.624 | 0.87   |
| 5)  | 1.92         | 1.38       | 0.0092      | 0.623 | 0.92   |
| 6)  | 2.92         | 1.71       | 0.0097      | 0.623 | 0.97   |
| 7)  | 3.92         | 1.98       | 0.0097      | 0.623 | 0.97   |
| 8)  | 4.90         | 2.21       | 0.0102      | 0.622 | 1.02   |
| 9)  | 5.92         | 2.43       | 0.0102      | 0.622 | 1.02   |
| 10) | 6.95         | 2.64       | 0.0102      | 0.622 | 1.02   |
| 11) | 7.95         | 2.82       | 0.0102      | 0.622 | 1.02   |
| 12) | 8.90         | 2.98       | 0.0107      | 0.621 | 1.07   |
| 13) | 9.92         | 3.15       | 0.0107      | 0.621 | 1.07   |
| 14) | 14.92        | 3.86       | 0.0107      | 0.621 | 1.07   |
| 15) | 29.92        | 5.47       | 0.0117      | 0.619 | 1.17   |
| 16) | 59.92        | 7.74       | 0.0122      | 0.618 | 1.22   |
| 17) | 89.90        | 9.48       | 0.0122      | 0.618 | 1.22   |
| 18) | 119.90       | 10.95      | 0.0127      | 0.618 | 1.27   |
| 19) | 149.93       | 12.24      | 0.0127      | 0.618 | 1.27   |
| 20) | 179.90       | 13.41      | 0.0127      | 0.618 | 1.27   |
| 21) | 209.92       | 14.49      | 0.0127      | 0.618 | 1.27   |
| 22) | 239.92       | 15.49      | 0.0127      | 0.618 | 1.27   |
| 23) | 299.93       | 17.32      | 0.0127      | 0.618 | 1.27   |
| 24) | 359.93       | 18.97      | 0.0122      | 0.618 | 1.22   |
| 25) | 419.90       | 20.49      | 0.0127      | 0.618 | 1.27   |
| 26) | 479.92       | 21.91      | 0.0127      | 0.618 | 1.27   |
| 27) | 539.90       | 23.24      | 0.0127      | 0.618 | 1.27   |
| 28) | 599.93       | 24.49      | 0.0127      | 0.618 | 1.27   |
| 29) | 659.90       | 25.69      | 0.0127      | 0.618 | 1.27   |
| 30) | 719.92       | 26.83      | 0.0127      | 0.618 | 1.27   |
| 31) | 779.92       | 27.93      | 0.0127      | 0.618 | 1.27   |
| 32) | 839.92       | 28.98      | 0.0127      | 0.618 | 1.27   |
| 33) | 899.90       | 30.00      | 0.0127      | 0.618 | 1.27   |
| 34) | 959.90       | 30.98      | 0.0132      | 0.617 | 1.32   |
| 35) | 1019.93      | 31.94      | 0.0127      | 0.618 | 1.27   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring No.: | GW995-ST-1            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample Nc.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth       | : 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 5 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
| 36) | 1079.92      | 32.86      | 0.0132      | 0.617 | 1.32   |
| 37) | 1139.90      | 33.76      | 0.0132      | 0.617 | 1.32   |
| 38) | 1199.95      | 34.64      | 0.0132      | 0.617 | 1.32   |
| 39) | 1259.92      | 35.50      | 0.0132      | 0.617 | 1.32   |
| 40) | 1319.90      | 36.33      | 0.0132      | 0.617 | 1.32   |
| 41) | 1379.90      | 37.15      | 0.0127      | 0.618 | 1.27   |
| 42) | 1439.92      | 37.95      | 0.0132      | 0.617 | 1.32   |
| 43) | 1499.92      | 38.73      | 0.0132      | 0.617 | 1.32   |
| 44) | 1559.90      | 39.50      | 0.0127      | 0.618 | 1.27   |
| 45) | 1619.90      | 40.25      | 0.0127      | 0.618 | 1.27   |
| 46) | 1624.45      | 40.30      | 0.0122      | 0.618 | 1.22   |

### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | :  | GW995-ST-1, 2.5'-4.5' | Project No. | : | 183923    |
|-------------|-----------------------|-------------|----|-----------------------|-------------|---|-----------|
| Boring No.: | GW995-ST-1            | Tested by   | :  | BMI: blc              | Checked by  | : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date   | :  | 3-15-18               | Depth       | : | 3.8′-4.0′ |
| Test No. :  | GW995-ST-1            | Sample Type | :: | Undisturb             |             |   |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 6 of 20

Stress increment from 2.00  $(t/ft^2)$  to 4.00  $(t/ft^2)$ 

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| l)  | 0.00         | 0.00       | 0.0204      | 0.605 | 2.04   |
| 2)  | 0.13         | 0.37       | 0.0209      | 0.604 | 2.09   |
| 3)  | 0.38         | 0.62       | 0.0214      | 0.603 | 2.14   |
| 4)  | 0.88         | 0.94       | 0.0224      | 0.602 | 2.24   |
| 5)  | 1.93         | 1.39       | 0.0234      | 0.600 | 2.34   |
| 6)  | 2.88         | 1.70       | 0.0239      | 0.599 | 2.39   |
| 7)  | 3.90         | 1.97       | 0.0249      | 0.598 | 2.49   |
| 8)  | 4.92         | 2.22       | 0.0255      | 0.597 | 2.55   |
| 9)  | 5.88         | 2.43       | 0.0260      | 0.596 | 2.60   |
| 10) | 6.90         | 2.63       | 0.0260      | 0.596 | 2.60   |
| 11) | 7.88         | 2.81       | 0.0260      | 0.596 | 2.60   |
| 12) | 8.90         | 2.98       | 0.0260      | 0.596 | 2.60   |
| 13) | 9.90         | 3.15       | 0.0265      | 0.595 | 2.65   |
| 14) | 14.88        | 3.86       | 0.0270      | 0.594 | 2.70   |
| 15) | 29.88        | 5.47       | 0.0280      | 0.593 | 2.80   |
| 16) | 59.88        | 7.74       | 0.0280      | 0.593 | 2.80   |
| 17) | 89.88        | 9.48       | 0.0285      | 0.592 | 2.85   |
| 18) | 119.90       | 10.95      | 0.0285      | 0.592 | 2.85   |
| 19) | 149.90       | 12.24      | 0.0285      | 0.592 | 2.85   |
| 20) | 179.90       | 13.41      | 0.0285      | 0.592 | 2.85   |
| 21) | 209.90       | 14.49      | 0.0285      | 0.592 | 2.85   |
| 22) | 239.90       | 15.49      | 0.0285      | 0.592 | 2.85   |
| 23) | 299.92       | 17.32      | 0.0290      | 0.591 | 2.90   |
| 24) | 359.88       | 18.97      | 0.0290      | 0.591 | 2.90   |
| 25) | 419.90       | 20.49      | 0.0290      | 0.591 | 2.90   |
| 26) | 479.92       | 21.91      | 0.0290      | 0.591 | 2.90   |
| 27) | 539.90       | 23.24      | 0.0295      | 0.590 | 2.95   |
| 28) | 599.88       | 24.49      | 0.0290      | 0.591 | 2.90   |
| 29) | 659.88       | 25.69      | 0.0295      | 0.590 | 2.95   |
| 30) | 719.90       | 26.83      | 0.0295      | 0.590 | 2.95   |
| 31) | 779.90       | 27.93      | 0.0295      | 0.590 | 2.95   |
| 32) | 839.88       | 28.98      | 0.0295      | 0.590 | 2.95   |
| 33) | 899.90       | 30.00      | 0.0295      | 0.590 | 2.95   |
| 34) | 959.90       | 30.98      | 0.0295      | 0.590 | 2.95   |
| 35) | 1019.88      | 31.94      | 0.0295      | 0.590 | 2.95   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring Nc.: | GW995-ST-1            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth :      | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 6 of 20 Stress increment from 2.00 (t/ft^2) to 4.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
| 36) | 1079.88      | 32.86      | 0.0295      | 0.590 | 2.95   |
| 37) | 1139.92      | 33.76      | 0.0295      | 0.590 | 2.95   |
| 38) | 1199,88      | 34.64      | 0.0295      | 0.590 | 2.95   |
| 39) | 1259.90      | 35.50      | 0.0295      | 0.590 | 2.95   |
| 40) | 1319.90      | 36.33      | 0.0295      | 0.590 | 2.95   |
| 41) | 1329.13      | 36.46      | 0.0290      | 0.591 | 2.90   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | :  | GW995-ST-1, 2.5'-4.5' | Project No. | : | 183923    |
|-------------|-----------------------|-------------|----|-----------------------|-------------|---|-----------|
| Boring No.: | GW995-ST-1            | Tested by   | :  | BMI: blc              | Checked by  | : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date   | :  | 3-15-18               | Depth       | : | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type | e: | Undisturb             |             |   |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 7 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0260      | 0,596 | 2.60   |
| 2)  | 0.13         | 0.37       | 0.0260      | 0.596 | 2.60   |
| 3)  | 0.40         | 0.63       | 0.0260      | 0.596 | 2.60   |
| 4)  | 0.88         | 0.94       | 0.0255      | 0.597 | 2.55   |
| 5)  | 1.90         | 1.38       | 0.0255      | 0.597 | 2.55   |
| 6)  | 2.90         | 1.70       | 0.0249      | 0.598 | 2.49   |
| 7)  | 3.90         | 1.97       | 0.0249      | 0.598 | 2.49   |
| 8)  | 4.90         | 2.21       | 0.0249      | 0.598 | 2.49   |
| 9)  | 5.90         | 2.43       | 0.0249      | 0.598 | 2.49   |
| 10) | 6.90         | 2.63       | 0.0249      | 0.598 | 2.49   |
| 11) | 7.88         | 2.81       | 0.0249      | 0.598 | 2.49   |
| 12) | 8.90         | 2.98       | 0.0244      | 0.598 | 2.44   |
| 13) | 9.88         | 3.14       | 0.0249      | 0.598 | 2.49   |
| 14) | 14.90        | 3.86       | 0.0249      | 0.598 | 2.49   |
| 15) | 29.88        | 5.47       | 0.0249      | 0.598 | 2.49   |
| 16) | 59.88        | 7.74       | 0.0249      | 0.598 | 2.49   |
| 17) | 89.88        | 9.48       | 0.0249      | 0.598 | 2.49   |
| 18) | 119.88       | 10.95      | 0.0249      | 0.598 | 2.49   |
| 19) | 149.90       | 12.24      | 0.0249      | 0.598 | 2.49   |
| 20) | 179.88       | 13.41      | 0.0249      | 0.598 | 2.49   |
| 21) | 209.88       | 14.49      | 0.0249      | 0.598 | 2.49   |
| 22) | 239.90       | 15.49      | 0.0249      | 0.598 | 2.49   |
| 23) | 299.88       | 17.32      | 0.0249      | 0.598 | 2.49   |
| 24) | 359.88       | 18.97      | 0.0244      | 0.598 | 2.44   |
| 25) | 419.88       | 20.49      | 0.0249      | 0.598 | 2.49   |
| 26) | 479.90       | 21.91      | 0.0249      | 0.598 | 2.49   |
| 27) | 539.88       | 23.24      | 0.0249      | 0.598 | 2.49   |
| 28) | 599.90       | 24.49      | 0.0244      | 0.598 | 2.44   |
| 29) | 659.90       | 25.69      | 0.0249      | 0.598 | 2.49   |
| 30) | 719.90       | 26.83      | 0.0249      | 0.598 | 2.49   |
| 31) | 779.92       | 27.93      | 0.0244      | 0.598 | 2.44   |
| 32) | 839.88       | 28.98      | 0.0249      | 0.598 | 2.49   |
| 33) | 899.88       | 30.00      | 0.0249      | 0.598 | 2.49   |
| 34) | 959.90       | 30.98      | 0.0249      | 0.598 | 2.49   |
| 35) | 1019.88      | 31.94      | 0.0249      | 0.598 | 2.49   |

## CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995- <b>S</b> T-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|--------------|--------------------------------|-------------|-------------|
| Boring No.: | GW995-ST-1            | Tested by :  | BMI: blc                       | Checked by  | : KAF       |
| Sample No.: | GW995-ST-1            | Test Date :  | 3-15-18                        | Depth       | : 3.8′-4.0′ |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb                      |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 7 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0249      | 0.598 | 2.49   |
| 37) | 1139.88      | 33.76      | 0.0249      | 0.598 | 2.49   |
| 38) | 1199.88      | 34.64      | 0.0244      | 0.598 | 2.44   |
| 39) | 1259.88      | 35.49      | 0.0244      | 0.598 | 2.44   |
| 40) | 1319.88      | 36.33      | 0.0249      | 0.598 | 2.49   |
| 41) | 1379.88      | 37.15      | 0.0244      | 0.598 | 2.44   |
| 42) | 1428.52      | 37.80      | 0.0249      | 0.598 | 2.49   |

### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location     | : GW995-ST-1, 2.5'-4,5' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-------------------------|--------------|-----------|
| Boring Nc.: | GW995-ST-1            | Tested by    | BMI: blc                | Checked by : | KAF       |
| Sample Nc.: | GW995-ST-1            | Test Date :  | 3-15-18                 | Depth :      | 3.8′-4.0′ |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb               |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 8 of 20

Stress increment from 2.00  $(t/ft^2)$  to 1.00  $(t/ft^2)$ 

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0219      | 0.603 | 2.19   |
| 2)  | 0.13         | 0.37       | 0.0214      | 0.603 | 2.14   |
| 3)  | 0.40         | 0.63       | 0.0214      | 0.603 | 2.14   |
| 4)  | 0.88         | 0.94       | 0.0209      | 0.604 | 2.09   |
| 5)  | 1.90         | 1.38       | 0.0209      | 0.604 | 2.09   |
| 6)  | 2.90         | 1.70       | 0.0204      | 0.605 | 2.04   |
| 7)  | 3.88         | 1.97       | 0.0204      | 0.605 | 2.04   |
| 8.) | 4.90         | 2.21       | 0.0199      | 0.606 | 1.99   |
| 9)  | 5.88         | 2.43       | 0.0199      | 0.606 | 1.99   |
| 10) | 6.92         | 2.63       | 0.0199      | 0.606 | 1.99   |
| 11) | 7.88         | 2.81       | 0.0199      | 0.606 | 1.99   |
| 12) | 8.90         | 2.98       | 0.0193      | 0.607 | 1.93   |
| 13) | 9.90         | 3.15       | 0.0193      | 0.607 | 1.93   |
| 14) | 14.90        | 3.86       | 0.0193      | 0.607 | 1.93   |
| 15) | 29.88        | 5.47       | 0.0193      | 0.607 | 1.93   |
| 16) | 59.90        | 7.74       | 0.0193      | 0.607 | 1.93   |
| 17) | 89.90        | 9.48       | 0.0193      | 0.607 | 1.93   |
| 18) | 119.90       | 10.95      | 0.0188      | 0.608 | 1.88   |
| 19) | 149.88       | 12.24      | 0.0188      | 0.608 | 1.88   |
| 20) | 179.90       | 13.41      | 0.0188      | 0.608 | 1.88   |
| 21) | 209.92       | 14.49      | 0.0188      | 0.608 | 1.88   |
| 22) | 239.90       | 15.49      | 0.0188      | 0.608 | 1.88   |
| 23) | 299.88       | 17.32      | 0.0188      | 0.608 | 1.88   |
| 24) | 359.90       | 18.97      | 0.0188      | 0.608 | 1.88   |
| 25) | 419.88       | 20.49      | 0.0188      | 0.608 | 1.88   |
| 26) | 479.88       | 21.91      | 0.0188      | 0.608 | 1.88   |
| 27) | 539.88       | 23.24      | 0.0188      | 0.608 | 1.88   |
| 28) | 599.90       | 24.49      | 0.0188      | 0.608 | 1.88   |
| 29) | 659.88       | 25.69      | 0.0188      | 0.608 | 1.88   |
| 30) | 719.88       | 26.83      | 0.0188      | 0.608 | 1.88   |
| 31) | 779.88       | 27.93      | 0.0188      | 0.608 | 1.88   |
| 32) | 839.90       | 28.98      | 0.0183      | 0.608 | 1.83   |
| 33) | 899.90       | 30.00      | 0.0188      | 0.608 | 1.88   |
| 34) | 959.88       | 30.98      | 0.0183      | 0.608 | 1.83   |
| 35) | 1019.88      | 31.94      | 0.0183      | 0.608 | 1.83   |

# CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring Nc.: | GW995-ST-1            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample Nc.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth       | : 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 8 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0188      | 0.608 | 1.88   |
| 37) | 1139.88      | 33.76      | 0.0188      | 0.608 | 1.88   |
| 38) | 1199.88      | 34.64      | 0.0183      | 0.608 | 1.83   |
| 39) | 1259.88      | 35.49      | 0.0183      | 0.608 | 1.83   |
| 40) | 1319.90      | 36.33      | 0.0183      | 0.608 | 1.83   |
| 41) | 1379.88      | 37.15      | 0.0183      | 0.608 | 1.83   |
| 42) | 1439.90      | 37.95      | 0.0183      | 0.608 | 1.83   |
| 43) | 1441.12      | 37.96      | 0.0178      | 0.609 | 1.78   |
#### CONSOLIDATION TEST DATA

| Project : EMDF Characte | erization Location | :   | GW995- <b>S</b> T-1, | 2.5'-4.5' | Project No. | : | 183923    |
|-------------------------|--------------------|-----|----------------------|-----------|-------------|---|-----------|
| Boring No.: GW995-ST-1  | Tested by          | :   | BMI: blc             |           | Checked by  | : | KAF       |
| Sample No.: GW995-ST-1  | Test Date          | :   | 3-15-18              |           | Depth       | : | 3.8′-4.0′ |
| Test No. : GW995-ST-1   | Sample Typ         | be: | Undisturb            |           |             |   |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0163      | 0.612 | 1.63   |
| 2)  | 0.12         | 0.34       | 0.0163      | 0.612 | 1.63   |
| 3)  | 0.37         | 0.61       | 0.0163      | 0.612 | 1.63   |
| 4)  | 0.88         | 0.94       | 0.0158      | 0.613 | 1.58   |
| 5)  | 1.88         | 1.37       | 0.0158      | 0.613 | 1.58   |
| 6)  | 2.87         | 1.69       | 0.0153      | 0.613 | 1.53   |
| 7)  | 3.88         | 1.97       | 0.0153      | 0.613 | 1.53   |
| 8)  | 4.87         | 2.21       | 0.0148      | 0.614 | 1.48   |
| 9)  | 5.88         | 2.43       | 0.0148      | 0.614 | 1.48   |
| 10) | 6.87         | 2.62       | 0.0148      | 0.614 | 1.48   |
| 11) | 7.88         | 2.81       | 0.0143      | 0.615 | 1.43   |
| 12) | 8.90         | 2.98       | 0.0143      | 0.615 | 1.43   |
| 13) | 9.90         | 3.15       | 0.0148      | 0.614 | 1.48   |
| 14) | 14.90        | 3.86       | 0.0137      | 0.616 | 1.37   |
| 15) | 29.90        | 5.47       | 0.0143      | 0.615 | 1.43   |
| 16) | 59.88        | 7.74       | 0.0137      | 0.616 | 1.37   |
| 17) | 89.92        | 9.48       | 0.0132      | 0.617 | 1.32   |
| 18) | 119.90       | 10.95      | 0.0132      | 0.617 | 1.32   |
| 19) | 149.87       | 12.24      | 0.0127      | 0.618 | 1.27   |
| 20) | 179.90       | 13.41      | 0.0127      | 0.618 | 1.27   |
| 21) | 209.87       | 14.49      | 0.0127      | 0.618 | 1.27   |
| 22) | 239.88       | 15.49      | 0.0127      | 0.618 | 1.27   |
| 23) | 299.87       | 17.32      | 0.0127      | 0.618 | 1.27   |
| 24) | 359.88       | 18.97      | 0.0127      | 0.618 | 1.27   |
| 25) | 419.90       | 20.49      | 0.0122      | 0.618 | 1.22   |
| 26) | 479.88       | 21.91      | 0.0122      | 0.618 | 1,22   |
| 27) | 539.88       | 23.24      | 0.0122      | 0.618 | 1.22   |
| 28) | 599.90       | 24.49      | 0.0122      | 0.618 | 1.22   |
| 29) | 659.88       | 25.69      | 0.0122      | 0.618 | 1.22   |
| 30) | 719.88       | 26.83      | 0.0122      | 0.618 | 1.22   |
| 31) | 779.90       | 27.93      | 0.0122      | 0.618 | 1.22   |
| 32) | 839.88       | 28.98      | 0.0122      | 0.618 | 1.22   |
| 33) | 899.88       | 30.00      | 0.0117      | 0.619 | 1.17   |
| 34) | 959.87       | 30.98      | 0.0122      | 0.618 | 1.22   |
| 35) | 1019.88      | 31.94      | 0.0122      | 0.618 | 1.22   |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location : GW995- <b>ST</b> -1, 2.5'-4. | 5' Project No.: 183923 |
|---------------------------------|-----------------------------------------|------------------------|
| Boring Nc.: GW995-ST-1          | Tested by : BMI: blc                    | Checked by : KAF       |
| Sample No.: GW995-ST-1          | Test Date : 3-15-18                     | Depth : 3.8'-4.0'      |
| Test No. : GW995-ST-1           | Sample Type: Undisturb                  |                        |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 9 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 0.50 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.87      | 32.86      | 0.0122      | 0.618 | 1.22   |
| 37) | 1139.87      | 33.76      | 0.0122      | 0.618 | 1.22   |
| 38) | 1199.88      | 34.64      | 0.0122      | 0.618 | 1.22   |
| 39) | 1259.92      | 35,50      | 0.0122      | 0.618 | 1.22   |
| 40) | 1319.87      | 36.33      | 0.0117      | 0.619 | 1.17   |
| 41) | 1379.87      | 37.15      | 0.0117      | 0.619 | 1.17   |
| 42) | 1439.88      | 37.95      | 0.0117      | 0.619 | 1.17   |
| 43) | 1479.92      | 38.47      | 0.0122      | 0.618 | 1.22   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No.: | 183923    |
|-------------|-----------------------|--------------|-----------------------|--------------|-----------|
| Boring No.: | GW995-ST-1            | Tested by :  | BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth :      | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft^2) to 1.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0127      | 0.618 | 1.27   |
| 2)  | 0.15         | 0.39       | 0.0127      | 0.618 | 1.27   |
| 3)  | 0.40         | 0.63       | 0.0127      | 0.618 | 1.27   |
| 4)  | 0.92         | 0.96       | 0.0132      | 0.617 | 1.32   |
| 5)  | 1.90         | 1.38       | 0.0137      | 0.616 | 1.37   |
| 6)  | 2.90         | 1.70       | 0.0132      | 0.617 | 1.32   |
| 7)  | 3.92         | 1.98       | 0.0137      | 0.616 | 1.37   |
| 8)  | 4.92         | 2.22       | 0.0137      | 0.616 | 1.37   |
| 9)  | 5.90         | 2.43       | 0.0137      | 0.616 | 1.37   |
| 10) | 6.92         | 2.63       | 0.0137      | 0.616 | 1.37   |
| 11) | 7.90         | 2.81 ,     | 0.0137      | 0.616 | 1.37   |
| 12) | 8.90         | 2.98       | 0.0137      | 0.616 | 1.37   |
| 13) | 9.90         | 3.15       | 0.0143      | 0.615 | 1.43   |
| 14) | 14.90        | 3.86       | 0.0137      | 0.616 | 1.37   |
| 15) | 29.95        | 5.47       | 0.0143      | 0.615 | 1.43   |
| 16) | 59.92        | 7.74       | 0.0143      | 0.615 | 1.43   |
| 17) | 89.90        | 9.48       | 0.0143      | 0.615 | 1.43   |
| 18) | 119.92       | 10.95      | 0.0148      | 0.614 | 1.48   |
| 19) | 149.92       | 12.24      | 0.0143      | 0.615 | 1.43   |
| 20) | 179.92       | 13.41      | 0.0143      | 0.615 | 1.43   |
| 21) | 209.92       | 14.49      | 0.0143      | 0.615 | 1.43   |
| 22) | 239.92       | 15.49      | 0.0143      | 0.615 | 1.43   |
| 23) | 299.90       | 17.32      | 0.0148      | 0.614 | 1.48   |
| 24) | 359.92       | 18.97      | 0.0148      | 0.614 | 1.48   |
| 25) | 419.92       | 20.49      | 0.0148      | 0.614 | 1.48   |
| 26) | 479.90       | 21.91      | 0.0148      | 0.614 | 1.48   |
| 27) | 539.92       | 23.24      | 0.0148      | 0.614 | 1.48   |
| 28) | 599.93       | 24.49      | 0.0148      | 0.614 | 1.48   |
| 29) | 659.90       | 25.69      | 0.0148      | 0.614 | 1.48   |
| 30) | 719.90       | 26.83      | 0.0148      | 0.614 | 1.48   |
| 31) | 779.90       | 27.93      | 0.0148      | 0.614 | 1.48   |
| 32) | 839.92       | 28.98      | 0.0148      | 0.614 | 1.48   |
| 33) | 899.90       | 30.00      | 0.0148      | 0.614 | 1.48   |
| 34) | 959.90       | 30.98      | 0.0148      | 0.614 | 1.48   |
| 35) | 1019.90      | 31.94      | 0.0148      | 0.614 | 1.48   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | :  | GW995-ST-1, 2.5 | 5′-4.5′ | Project No | . : | 183923    |
|-------------|-----------------------|-------------|----|-----------------|---------|------------|-----|-----------|
| Boring Nc.: | GW995-ST-1            | Tested by   | :  | BMI: blc        |         | Checked by | :   | KAF       |
| Sample Nc.: | GW995-ST-1            | Test Date   | :  | 3-15-18         |         | Depth      | :   | 3.8′-4.0′ |
| Test No. :  | GW995-ST-1            | Sample Type | :: | Undisturb       |         |            |     |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 10 of 20 Stress increment from 0.50 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME<br>(min) | SQRT. OF<br>TIME (min) | CHANGE IN<br>HEIGHT (in) | VOID<br>RATIO | STRAIN<br>(%) |
|-----|-----------------------|------------------------|--------------------------|---------------|---------------|
| 36) | 1079.88               | 32.86                  | 0.0148                   | 0.614         | 1.48          |
| 37) | 1139.92               | 33.76                  | 0.0153                   | 0.613         | 1.53          |
| 38) | 1199.92               | 34.64                  | 0.0148                   | 0.614         | 1.48          |
| 39) | 1259.90               | 35.50                  | 0.0148                   | 0.614         | 1.48          |
| 40) | 1319.90               | 36.33                  | 0.0148                   | 0.614         | 1.48          |
| 41) | 1328.40               | 36.45                  | 0.0143                   | 0.615         | 1.43          |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW995-ST-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|-------------|-------------------------|-------------|-------------|
| Boring No.: | GW995-ST-1            | Tested by   | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW995-ST-1            | Test Date   | : 3-15-18               | Depth       | : 3.8′-4,0′ |
| Test No. :  | GW995-ST-1            | Sample Type | : Undisturb             |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0173      | 0.610 | 1.73   |
| 2)  | 0.15         | 0.39       | 0.0178      | 0.609 | 1.78   |
| 3)  | 0.40         | 0.63       | 0.0183      | 0.608 | 1.83   |
| 4)  | 0.88         | 0.94       | 0.0188      | 0.608 | 1.88   |
| 5)  | 1.90         | 1.38       | 0.0188      | 0.608 | 1.88   |
| 6)  | 2.90         | 1.70       | 0.0193      | 0.607 | 1.93   |
| 7)  | 3.90         | 1.97       | 0.0193      | 0.607 | 1.93   |
| 8)  | 4.90         | 2.21       | 0.0193      | 0.607 | 1.93   |
| 9)  | 5.90         | 2.43       | 0.0199      | 0.606 | 1.99   |
| 10) | 6.88         | 2.62       | 0.0199      | 0.606 | 1.99   |
| 11) | 7.88         | 2.81       | 0.0199      | 0.606 | 1.99   |
| 12) | 8.90         | 2.98       | 0.0199      | 0.606 | 1.99   |
| 13) | 9.90         | 3.15       | 0.0199      | 0.606 | 1.99   |
| 14) | 14.88        | 3.86       | 0.0204      | 0.605 | 2.04   |
| 15) | 29.90        | 5.47       | 0.0204      | 0.605 | 2.04   |
| 16) | 59.90        | 7.74       | 0.0204      | 0.605 | 2.04   |
| 17) | 89.90        | 9.48       | 0.0214      | 0.603 | 2.14   |
| 18) | 119.88       | 10.95      | 0.0209      | 0.604 | 2.09   |
| 19) | 149.90       | 12.24      | 0.0214      | 0.603 | 2.14   |
| 20) | 179.90       | 13.41      | 0.0209      | 0.604 | 2.09   |
| 21) | 209.88       | 14.49      | 0.0209      | 0.604 | 2.09   |
| 22) | 239.90       | 15.49      | 0.0209      | 0.604 | 2.09   |
| 23) | 299.88       | 17.32      | 0.0209      | 0.604 | 2.09   |
| 24) | 359.90       | 18.97      | 0.0209      | 0.604 | 2.09   |
| 25) | 419.88       | 20.49      | 0.0209      | 0.604 | 2.09   |
| 26) | 479.90       | 21.91      | 0.0209      | 0.604 | 2.09   |
| 27) | 539.90       | 23.24      | 0.0209      | 0.604 | 2.09   |
| 28) | 599.88       | 24.49      | 0.0209      | 0.604 | 2.09   |
| 29) | 659.90       | 25.69      | 0.0209 ·    | 0.604 | 2.09   |
| 30) | 719.88       | 26.83      | 0.0209      | 0.604 | 2.09   |
| 31) | 779.90       | 27.93      | 0.0209      | 0.604 | 2.09   |
| 32) | 839.90       | 28.98      | 0.0209      | 0.604 | 2.09   |
| 33) | 899.88       | 30.00      | 0.0209      | 0.604 | 2.09   |
| 34) | 959.90       | 30.98      | 0.0209      | 0.604 | 2.09   |
| 35) | 1019.90      | 31.94      | 0.0209      | 0.604 | 2.09   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : | GW995- <b>ST</b> -1, 2 | 2.5'-4.5' | Project No. | : | 183923    |
|-------------|-----------------------|-------------|---|------------------------|-----------|-------------|---|-----------|
| Boring Nc.: | GW995-ST-1            | Tested by   | : | BMI: blc               |           | Checked by  | : | KAF       |
| Sample Nc.: | GW995-ST-1            | Test Date   | : | 3-15-18                |           | Depth       | : | 3.8′-4.0′ |
| Test No. :  | GW995-ST-1            | Sample Type | : | Undisturb              |           |             |   |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 11 of 20 Stress increment from 1.00 (t/ft<sup>2</sup>) to 2.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0209      | 0.604 | 2.09   |
| 37) | 1139.88      | 33.76      | 0.0209      | 0.604 | 2.09   |
| 38) | 1199.90      | 34.64      | 0.0209      | 0.604 | 2.09   |
| 39) | 1259.88      | 35.49      | 0.0209      | 0.604 | 2.09   |
| 10) | 1319.88      | 36.33      | 0.0209      | 0.604 | 2.09   |
| 11) | 1379.90      | 37.15      | 0.0209      | 0.604 | 2.09   |
| 12) | 1439.88      | 37.95      | 0.0209      | 0.604 | 2.09   |
| 13) | 1499.88      | 38.73      | 0.0209      | 0.604 | 2.09   |
| 4)  | 1503.95      | 38.78      | 0.0209      | 0.604 | 2.09   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterizatio | n Location : GW | N995-ST-1, 2.5′-4.5′ | Project No.: 1839 | 923   |
|-------------|----------------------|-----------------|----------------------|-------------------|-------|
| Boring No.: | GW995-ST-1           | Tested by : BM  | 4I: blc              | Checked by : KAF  |       |
| Sample No.: | GW995-ST-1           | Test Date : 3-  | -15-18               | Depth : 3.8'      | -4.0' |
| Test No. :  | GW995-ST-1           | Sample Type: Un | ıdisturb             |                   |       |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0255      | 0.597 | 2.55   |
| 2)  | 0.13         | 0.37       | 0.0260      | 0.596 | 2.60   |
| 3)  | 0.38         | 0.62       | 0.0265      | 0.595 | 2.65   |
| 4)  | 0.88         | 0.94       | 0.0270      | 0.594 | 2.70   |
| 5)  | 1.88         | 1.37       | 0.0275      | 0.593 | 2.75   |
| 6)  | 2.90         | 1.70       | 0.0280      | 0.593 | 2.80   |
| 7)  | 3.88         | 1.97       | 0.0285      | 0.592 | 2.85   |
| 8)  | 4.90         | 2.21       | 0.0285      | 0.592 | 2.85   |
| 9)  | 5.90         | 2.43       | 0.0290      | 0.591 | 2.90   |
| 10) | 6.88         | 2.62       | 0.0285      | 0.592 | 2.85   |
| 11) | 7.88         | 2.81       | 0.0285      | 0.592 | 2.85   |
| 12) | 8.88         | 2.98       | 0.0290      | 0.591 | 2.90   |
| 13) | 9.88         | 3.14       | 0.0290      | 0.591 | 2.90   |
| 14) | 14.88        | 3.86       | 0.0295      | 0.590 | 2.95   |
| 15) | 29.88        | 5.47       | 0.0295      | 0.590 | 2.95   |
| 16) | 59.90        | 7.74       | 0.0300      | 0.589 | 3.00   |
| 17) | 89.88        | 9.48       | 0.0300      | 0.589 | 3.00   |
| 18) | 119.88       | 10.95      | 0.0300      | 0.589 | 3.00   |
| 19) | 149.88       | 12.24      | 0.0300      | 0.589 | 3.00   |
| 20) | 179.88       | 13.41      | 0.0300      | 0.589 | 3.00   |
| 21) | 209.90       | 14.49      | 0.0300      | 0.589 | 3.00   |
| 22) | 239.88       | 15.49      | 0.0300      | 0.589 | 3.00   |
| 23) | 299.90       | 17.32      | 0.0300      | 0.589 | 3.00   |
| 24) | 359.88       | 18.97      | 0.0300      | 0.589 | 3.00   |
| 25) | 419.88       | 20.49      | 0.0300      | 0.589 | 3.00   |
| 26) | 479.88       | 21.91      | 0.0300      | 0.589 | 3.00   |
| 27) | 539.88       | 23.24      | 0.0300      | 0.589 | 3.00   |
| 28) | 599.90       | 24.49      | 0.0300      | 0.589 | 3.00   |
| 29) | 659.87       | 25.69      | 0.0300      | 0.589 | 3.00   |
| 30) | 719.88       | 26.83      | 0.0300      | 0.589 | 3.00   |
| 31) | 779.88       | 27.93      | 0.0305      | 0.588 | 3.05   |
| 32) | 839.88       | 28.98      | 0.0305      | 0.588 | 3.05   |
| 33) | 899.92       | 30.00      | 0.0305      | 0.588 | 3.05   |
| 34) | 959.88       | 30.98      | 0.0305      | 0.588 | 3.05   |
| 35) | 1019.88      | 31.94      | 0.0305      | 0.588 | 3.05   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | : GW995-ST-1, 2.5 | -4.5' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-------------------|-------|-------------|-------------|
| Boring Nc.: | GW995-ST-1            | Tested by :  | BMI: blc          |       | Checked by  | : KAF       |
| Sample Nc.: | GW995-ST-1            | Test Date :  | 3-15-18           |       | Depth       | : 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb         |       |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 12 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0305      | 0,588 | 3.05   |
| 37) | 1139.88      | 33.76      | 0.0305      | 0.588 | 3.05   |
| 38) | 1199.88      | 34.64      | 0.0305      | 0.588 | 3.05   |
| 39) | 1259.90      | 35.50      | 0.0305      | 0.588 | 3.05   |
| 40) | 1319.88      | 36.33      | 0.0305      | 0.588 | 3.05   |
| 41) | 1379.88      | 37.15      | 0.0305      | 0.588 | 3.05   |
| 42) | 1439.87      | 37.95      | 0.0305      | 0.588 | 3.05   |
| 43) | 1499.93      | 38.73      | 0.0300      | 0.589 | 3.00   |
| 44) | 1501.02      | 38.74      | 0.0310      | 0.588 | 3.10   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW995-ST-1, 2.5'-4.5' | Project No.: | 183923    |
|-------------|-----------------------|-------------|-------------------------|--------------|-----------|
| Boring No.: | GW995-ST-1            | Tested by   | : BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date   | : 3-15-18               | Depth :      | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type | : Undisturb             |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 13 of 20 Stress increment from 4.00 (t/ft<sup>2</sup>) to 8.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | ·(%)   |
| 1)  | 0.00         | 0.00       | 0.0392      | 0.574 | 3.92   |
| 2)  | 0.12         | 0.34       | 0.0397      | 0.573 | 3.97   |
| 3)  | 0.37         | 0.61       | 0.0407      | 0.572 | 4.07   |
| 4)  | 0.87         | 0.93       | 0.0422      | 0.569 | 4.22   |
| 5)  | 1.87         | 1.37       | 0.0438      | 0.567 | 4.38   |
| 6)  | 2.85         | 1.69       | 0.0448      | 0.565 | 4.48   |
| 7)  | 3.87         | 1.97       | 0.0458      | 0.563 | 4.58   |
| 8)  | 4.85         | 2.20       | 0.0463      | 0.563 | 4.63   |
| 9)  | 5.87         | 2.42       | 0.0468      | 0.562 | 4.68   |
| 10) | 6.87         | 2.62       | 0.0473      | 0.561 | 4.73   |
| 11) | 7.85         | 2.80       | 0.0473      | 0.561 | 4.73   |
| 12) | 8.85         | 2.97       | 0.0478      | 0.560 | 4.78   |
| 13) | 9.87         | 3.14       | 0.0478      | 0.560 | 4.78   |
| 14) | 14.85        | 3.85       | 0.0489      | 0.558 | 4.89   |
| 15) | 29.87        | 5.47       | 0.0499      | 0.557 | 4.99   |
| 16) | 59.85        | 7.74       | 0.0504      | 0.556 | 5.04   |
| 17) | 89.87        | 9.48       | 0.0509      | 0.555 | 5.09   |
| 18) | 119.85       | 10.95      | 0.0509      | 0.555 | 5.09   |
| 19) | 149.87       | 12.24      | 0.0509      | 0.555 | 5.09   |
| 20) | 179.87       | 13.41      | 0.0509      | 0.555 | 5.09   |
| 21) | 209.87       | 14.49      | 0.0509      | 0.555 | 5.09   |
| 22) | 239.88       | 15.49      | 0.0514      | 0.554 | 5.14   |
| 23) | 299.90       | 17.32      | 0.0509      | 0.555 | 5.09   |
| 24) | 359.87       | 18.97      | 0.0514      | 0.554 | 5.14   |
| 25) | 419.87       | 20.49      | 0.0514      | 0.554 | 5.14   |
| 26) | 479.85       | 21.91      | 0.0514      | 0.554 | 5.14   |
| 27) | 539.85       | 23.23      | 0.0514      | 0.554 | 5.14   |
| 28) | 599.85       | 24.49      | 0.0519      | 0.553 | 5.19   |
| 29) | 659.87       | 25.69      | 0.0519      | 0.553 | 5.19   |
| 30) | 719.87       | 26.83      | 0.0519      | 0.553 | 5.19   |
| 31) | 779.87       | 27.93      | 0.0519      | 0.553 | 5.19   |
| 32) | 839.85       | 28.98      | 0.0519      | 0.553 | 5.19   |
| 33) | 899.85       | 30.00      | 0.0519      | 0.553 | 5.19   |
| 34) | 959.85       | 30.98      | 0.0519      | 0.553 | 5.19   |
| 35) | 1019.85      | 31.94      | 0.0519      | 0.553 | 5.19   |

#### CONSOLIDATION TEST DATA

| Project : EMDF Cha   | racterization Lo | cation :   | GW995- <b>ST</b> -1, | 2.5'-4.5' | Project No. | : | 183923    |
|----------------------|------------------|------------|----------------------|-----------|-------------|---|-----------|
| Boring Nc.: GW995-ST | -1 Te            | sted by :  | BMI: blc             |           | Checked by  | : | KAF       |
| Sample Nc.: GW995-ST | -1 Te:           | st Date :  | 3-15-18              |           | Depth       | : | 3.8′-4.0′ |
| Test No. : GW995-ST  | -1 San           | mple Type: | Undisturb            |           |             |   |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 13 of 20

Stress increment from 4.00 (t/ft^2) to 8.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.87      | 32.86      | 0.0519      | 0.553 | 5.19   |
| 37) | 1139.87      | 33.76      | 0.0519      | 0.553 | 5.19   |
| 38) | 1199.87      | 34.64      | 0.0519      | 0.553 | 5.19   |
| 39) | 1259.87      | 35.49      | 0.0519      | 0.553 | 5.19   |
| 40) | 1319.87      | 36.33      | 0.0519      | 0.553 | 5.19   |
| 41) | 1379.87      | 37.15      | 0.0519      | 0.553 | 5.19   |
| 42) | 1388.23      | 37.26      | 0.0519      | 0.553 | 5.19   |
|     |              |            |             |       |        |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No.: 183923 |
|---------------------------------|--------------|-----------------------|---------------------|
| Boring Nc.: GW995-ST-1          | Tested by :  | BMI: blc              | Checked by : KAF    |
| Sample No.: GW995-ST-1          | Test Date :  | 3-15-18               | Depth : 3.8'-4.0'   |
| Test No. : GW995-ST-1           | Sample Type: | Undisturb             |                     |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 14 of 20

Stress increment from 8.00  $(t/ft^2)$  to 16.00  $(t/ft^2)$ 

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             | •     |        |
| 1)  | 0.00         | 0.00       | 0.0616      | 0.538 | 6.16   |
| 2)  | 0.15         | 0.39       | 0.0626      | 0.536 | 6.26   |
| 3)  | 0.40         | 0.63       | 0.0636      | 0.534 | 6.36   |
| 4)  | 0.90         | 0.95       | 0.0657      | 0.531 | 6.57   |
| 5)  | 1.90         | 1.38       | 0.0682      | 0.527 | 6.82   |
| 6)  | 2.90         | 1.70       | 0.0702      | 0.523 | 7.02   |
| 7)  | 3.90         | 1.97       | 0.0713      | 0.522 | 7.13   |
| 8)  | 4.90         | 2.21       | 0.0723      | 0.520 | 7.23   |
| 9)  | 5.90         | 2.43       | 0.0733      | 0.518 | 7.33   |
| 10) | 6.90         | 2.63       | 0.0738      | 0.517 | 7.38   |
| 11) | 7.90         | 2.81       | 0.0743      | 0.517 | 7.43   |
| 12) | 8.90         | 2.98       | 0.0748      | 0.516 | 7.48   |
| 13) | 9.92         | 3.15       | 0.0753      | 0.515 | 7.53   |
| 14) | 14.90        | 3.86       | 0.0769      | 0.512 | 7.69   |
| 15) | 29.90        | 5.47       | 0.0779      | 0.511 | 7.79   |
| 16) | 59.93        | 7.74       | 0.0784      | 0.510 | 7.84   |
| 17) | 89.92        | 9.48       | 0.0784      | 0.510 | 7.84   |
| 18) | 119.92       | 10.95      | 0.0789      | 0.509 | 7.89   |
| 19) | 149.90       | 12.24      | 0.0789      | 0.509 | 7.89   |
| 20) | 179.90       | 13.41      | 0.0794      | 0.508 | 7.94   |
| 21) | 209.90       | 14.49      | 0.0794      | 0.508 | 7.94   |
| 22) | 239.92       | 15.49      | 0.0789      | 0.509 | 7.89   |
| 23) | 299.90       | 17.32      | 0.0789      | 0.509 | 7.89   |
| 24) | 359.90       | 18.97      | 0.0794      | 0.508 | 7.94   |
| 25) | 419.90       | 20.49      | 0.0794      | 0.508 | 7.94   |
| 26) | 479.90       | 21.91      | 0.0794      | 0.508 | 7.94   |
| 27) | 539.92       | 23.24      | 0.0799      | 0.507 | 7.99   |
| 28) | 599.93       | 24.49      | 0.0794      | 0.508 | 7.94   |
| 29) | 659.90       | 25.69      | 0.0794      | 0.508 | 7.94   |
| 30) | 719.92       | 26.83      | 0.0794      | 0.508 | 7.94   |
| 31) | 779.90       | 27.93      | 0.0799      | 0.507 | 7.99   |
| 32) | 839.90       | 28.98      | 0.0799      | 0.507 | 7.99   |
| 33) | 899.90       | 30.00      | 0.0799      | 0.507 | 7.99   |
| 34) | 959.88       | 30.98      | 0.0799      | 0.507 | 7.99   |
| 35) | 1019.90      | 31.94      | 0.0799      | 0.507 | 7.99   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location     | GW995-ST-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring No.: | GW995-ST-1            | Tested by    | : BMI: blc            | Checked by  | : KAF       |
| Sample No.: | GW995-ST-1            | Test Date    | : 3-15-18             | Depth       | : 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 14 of 20 Stress increment from 8.00 (t/ft^2) to 16.00 (t/ft^2) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.88      | 32.86      | 0.0799      | 0.507 | 7.99   |
| 37) | 1139.92      | 33.76      | 0.0794      | 0.508 | 7.94   |
| 38) | 1199.88      | 34.64      | 0.0799      | 0.507 | 7.99   |
| 39) | 1259.90      | 35.50      | 0.0794      | 0.508 | 7.94   |
| 40) | 1319.90      | 36.33      | 0.0799      | 0.507 | 7.99   |
| 41) | 1379.92      | 37.15      | 0.0799      | 0.507 | 7.99   |
| 42) | 1439.90      | 37.95      | 0.0799      | 0.507 | 7.99   |
| 43) | 1456.82      | 38.17      | 0.0799      | 0.507 | 7.99   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW995-ST-1, 2.5'-4.5' | Project No.: | 183923    |
|-------------|-----------------------|-------------|-------------------------|--------------|-----------|
| Boring No.: | GW995-ST-1            | Tested by   | : BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date   | : 3-15-18               | Depth :      | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type | : Undisturb             |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 15 of 20

Stress increment from 16.00  $(t/ft^2)$  to 32.00  $(t/ft^2)$ 

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0896      | 0.492 | 8.96   |
| 2)  | 0.15         | 0.39       | 0.0911      | 0.489 | 9.11   |
| 3)  | 0.40         | 0.63       | 0.0931      | 0.486 | 9.31   |
| 4)  | 0.92         | 0.96       | 0.0962      | 0.481 | 9.62   |
| 5)  | 1.90         | 1.38       | 0.0998      | 0.475 | 9.98   |
| 6)  | 2.90         | 1.70       | 0.1018      | 0.472 | 10.18  |
| 7)  | 3.90         | 1.97       | 0.1038      | 0.468 | 10.38  |
| 8)  | 4.90         | 2.21       | 0.1054      | 0.466 | 10.54  |
| 9)  | 5.92         | 2.43       | 0.1064      | 0.464 | 10.64  |
| 10) | 6.92         | 2.63       | 0.1074      | 0.462 | 10.74  |
| 11) | 7.90         | 2.81       | 0.1084      | 0.461 | 10.84  |
| 12) | 8.92         | 2.99       | 0.1089      | 0.460 | 10.89  |
| 13) | 9.90         | 3.15       | 0.1099      | 0.458 | 10.99  |
| 14) | 14.90        | 3.86       | 0.1110      | 0.457 | 11.10  |
| 15) | 29.92        | 5.47       | 0.1130      | 0.453 | 11.30  |
| 16) | 59.90        | 7.74       | 0.1135      | 0.452 | 11.35  |
| 17) | 89.90        | 9.48       | 0.1140      | 0.452 | 11.40  |
| 18) | 119.92       | 10.95      | 0.1140      | 0.452 | 11.40  |
| 19) | 149.92       | 12.24      | 0.1145      | 0.451 | 11.45  |
| 20) | 179.90       | 13.41      | 0.1145      | 0.451 | 11.45  |
| 21) | 209.88       | 14.49      | 0.1145      | 0.451 | 11.45  |
| 22) | 239.90       | 15.49      | 0.1150      | 0.450 | 11.50  |
| 23) | 299.90       | 17.32      | 0.1150      | 0.450 | 11.50  |
| 24) | 359.93       | 18.97      | 0.1150      | 0.450 | 11.50  |
| 25) | 419.90       | 20.49      | 0.1150      | 0.450 | 11.50  |
| 26) | 479.90       | 21.91      | 0.1150      | 0.450 | 11.50  |
| 27) | 539.90       | 23.24      | 0.1155      | 0.449 | 11.55  |
| 28) | 599.90       | 24.49      | 0.1155      | 0.449 | 11.55  |
| 29) | 659.90       | 25.69      | 0.1155      | 0.449 | 11.55  |
| 30) | 719.93       | 26.83      | 0.1155      | 0.449 | 11.55  |
| 31) | 779.92       | 27.93      | 0.1161      | 0.448 | 11.61  |
| 32) | 839.88       | 28.98      | 0.1161      | 0.448 | 11.61  |
| 33) | 899.90       | 30.00      | 0.1155      | 0.449 | 11.55  |
| 34) | 959.93       | 30.98      | 0.1161      | 0.448 | 11.61  |
| 35) | 1019.90      | 31.94      | 0.1161      | 0.448 | 11.61  |

Page : 30

E-262

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW995-ST-1, 2.5'-4.5' | Project No.: | 183923    |
|-------------|-----------------------|-------------|-------------------------|--------------|-----------|
| Boring No.: | GW995-ST-1            | Tested by   | : BMI: blc              | Checked by : | KAF       |
| Sample No.: | GW995-ST-1            | Test Date   | : 3-15-18               | Depth :      | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type | : Undisturb             |              |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 15 of 20

Stress increment from 16.00  $(t/{\rm ft}^2)$  to 32.00  $(t/{\rm ft}^2)$ 

Start Date : Start Time :

|     | ELAPSED TIME<br>(min) | SQRT. OF<br>TIME (min) | CHANGE IN<br>HEIGHT (in) | VOID<br>RATIO | STRAIN<br>(%) |
|-----|-----------------------|------------------------|--------------------------|---------------|---------------|
| 36) | 1079.90               | 32.86                  | 0.1161                   | 0.448         | 11.61         |
| 37) | 1139.90               | 33.76                  | 0.1161                   | 0.448         | 11.61         |
| 38) | 1199.90               | 34.64                  | 0.1161                   | 0.448         | 11.61         |
| 39) | 1259.88               | 35.49                  | 0.1161                   | 0.448         | 11.61         |
| 40) | 1319.90               | 36.33                  | 0.1161                   | 0.448         | 11.61         |
| 41) | 1379.90               | 37.15                  | 0.1150                   | 0.450         | 11.50         |
| 42) | 1439.48               | 37.94                  | 0.1161                   | 0.448         | 11.61         |
|     |                       |                        |                          |               |               |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW995-ST-1, 2.5'-4.5' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring No.: | GW995-ST-1            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample No.: | GW995-ST-1            | Test Date   | : 3-15-18               | Depth : 3.8'-4.0'   |
| Test No. :  | GW995-ST-1            | Sample Type | : Undisturb             |                     |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 16 of 20

Stress increment from 32.00 (t/ft^2) to 16.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1099      | 0.458 | 10.99  |
| 2)  | 0.17         | 0.41       | 0.1094      | 0.459 | 10.94  |
| 3)  | 0.42         | 0.65       | 0.1089      | 0.460 | 10.89  |
| 4)  | 0.92         | 0.96       | 0.1089      | 0.460 | 10.89  |
| 5)  | 1.90         | 1.38       | 0.1084      | 0.461 | 10.84  |
| 6)  | 2.92         | 1.71       | 0.1079      | 0.462 | 10.79  |
| 7)  | 3.90         | 1.97       | 0.1079      | 0.462 | 10.79  |
| 8)  | 4.90         | 2.21       | 0.1079      | 0.462 | 10.79  |
| 9)  | 5.90         | 2.43       | 0.1084      | 0.461 | 10.84  |
| 10) | 6.92         | 2.63       | 0.1079      | 0.462 | 10.79  |
| 11) | 7.92         | 2.81       | 0.1079      | 0.462 | 10.79  |
| 12) | 8.90         | 2.98       | 0.1079      | 0.462 | 10.79  |
| 13) | 9.92         | 3.15       | 0.1074      | 0.462 | 10.74  |
| 14) | 14.90        | 3.86       | 0.1074      | 0.462 | 10.74  |
| 15) | 29.93        | 5.47       | 0.1079      | 0.462 | 10.79  |
| 16) | 59.92        | 7.74       | 0.1079      | 0.462 | 10.79  |
| 17) | 89.90        | 9.48       | 0.1079      | 0.462 | 10.79  |
| 18) | 119.92       | 10.95      | 0.1074      | 0.462 | 10.74  |
| 19) | 149.90       | 12.24      | 0.1074      | 0.462 | 10.74  |
| 20) | 179.90       | 13.41      | 0.1074      | 0.462 | 10.74  |
| 21) | 209.90       | 14.49      | 0.1074      | 0.462 | 10.74  |
| 22) | 239.90       | 15.49      | 0.1074      | 0.462 | 10.74  |
| 23) | 299.90       | 17.32      | 0.1074      | 0.462 | 10.74  |
| 24) | 359.93       | 18.97      | 0.1074      | 0.462 | 10.74  |
| 25) | 419.90       | 20.49      | 0.1074      | 0.462 | 10.74  |
| 26) | 479.90       | 21.91      | 0.1074      | 0.462 | 10.74  |
| 27) | 539.90       | 23.24      | 0.1074      | 0.462 | 10.74  |
| 28) | 599.90       | 24.49      | 0.1074      | 0.462 | 10.74  |
| 29) | 659.92       | 25.69      | 0.1074      | 0.462 | 10.74  |
| 30) | 719.88       | 26.83      | 0.1074      | 0.462 | 10.74  |
| 31) | 779.92       | 27.93      | 0.1074      | 0.462 | 10.74  |
| 32) | 839.90       | 28.98      | 0.1074      | 0.462 | 10.74  |
| 33) | 899.88       | 30.00      | 0.1074      | 0.462 | 10.74  |
| 34) | 959.92       | 30.98      | 0.1079      | 0.462 | 10.79  |
| 35) | 1019.90      | 31.94      | 0.1074      | 0.462 | 10.74  |
|     |              |            |             |       |        |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | : GW995-ST-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-------------------------|-------------|-------------|
| Boring No.: | GW995-ST-1            | Tested by :  | : BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW995-ST-1            | Test Date :  | : 3-15-18               | Depth       | : 3.8′-4.0′ |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb               |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 16 of 20 Stress increment from 32.00 (t/ft<sup>2</sup>) to 16.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.92      | 32.86      | 0.1074      | 0.462 | 10.74  |
| 37) | 1139.90      | 33.76      | 0.1074      | 0.462 | 10.74  |
| 38) | 1199.90      | 34.64      | 0.1074      | 0.462 | 10.74  |
| 39) | 1259.90      | 35.50      | 0.1074      | 0.462 | 10.74  |
| 10) | 1319.90      | 36.33      | 0.1074      | 0.462 | 10.74  |
| £1) | 1379.90      | 37.15      | 0.1074      | 0.462 | 10.74  |
| 12) | 1437.65      | 37.92      | 0.1074      | 0.462 | 10.74  |
|     |              |            |             |       |        |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW995-ST-1, 2.5'-4.5' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring No.: | GW995-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW995-ST-1            | Test Date : 3-15-18              | Depth : 3.8'-4.0'   |
| Test No. :  | GW995-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 17 of 20

Stress increment from 16.00 (t/ft^2) to 8.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.1018      | 0.472 | 10.18  |
| 2)  | 0.13         | 0.37       | 0.1013      | 0.472 | 10.13  |
| 3)  | 0.40         | 0.63       | 0.1008      | 0.473 | 10.08  |
| 4)  | 0.90         | 0.95       | 0.1003      | 0.474 | 10.03  |
| 5)  | 1.88         | 1.37       | 0.0998      | 0.475 | 9.98   |
| 6)  | 2.88         | 1.70       | 0.0993      | 0.476 | 9.93   |
| 7)  | 3.92         | 1.98       | 0.0987      | 0.477 | 9.87   |
| 8)  | 4.90         | 2.21       | 0.0987      | 0.477 | 9.87   |
| 9)  | 5.88         | 2.43       | 0.0987      | 0.477 | 9.87   |
| 10) | 6.88         | 2.62       | 0.0987      | 0.477 | 9.87   |
| 11) | 7.88         | 2.81       | 0.0987      | 0.477 | 9.87   |
| 12) | 8.90         | 2.98       | 0.0982      | 0.477 | 9.82   |
| 13) | 9.90         | 3.15       | 0.0982      | 0.477 | 9.82   |
| 14) | 14.92        | 3.86       | 0.0977      | 0.478 | 9.77   |
| 15) | 29.88        | 5.47       | 0.0982      | 0.477 | 9.82   |
| 16) | 59.90        | 7.74       | 0.0982      | 0.477 | 9.82   |
| 17) | 89.88        | 9.48       | 0.0982      | 0.477 | 9.82   |
| 18) | 119.90       | 10.95      | 0.0977      | 0.478 | 9.77   |
| 19) | 149.88       | 12.24      | 0.0977      | 0.478 | 9.77   |
| 20) | 179.88       | 13.41      | 0.0977      | 0.478 | 9.77   |
| 21) | 209.88       | 14.49      | 0.0977      | 0.478 | 9.77   |
| 22) | 239.92       | 15.49      | 0.0977      | 0.478 | 9.77   |
| 23) | 299.88       | 17.32      | 0.0977      | 0.478 | 9.77   |
| 24) | 359.88       | 18.97      | 0.0977      | 0.478 | 9.77   |
| 25) | 419.88       | 20.49      | 0.0977      | 0.478 | 9.77   |
| 26) | 479.90       | 21.91      | 0.0977      | 0.478 | 9.77   |
| 27) | 539.90       | 23.24      | 0.0977      | 0.478 | 9.77   |
| 28) | 599.88       | 24.49      | 0.0977      | 0.478 | 9.77   |
| 29) | 659.88       | 25.69      | 0.0977      | 0.478 | 9.77   |
| 30) | 719.88       | 26.83      | 0.0977      | 0.478 | 9.77   |
| 31) | 779.90       | 27.93      | 0.0977      | 0.478 | 9.77   |
| 32) | 839.88       | 28.98      | 0.0977      | 0.478 | 9.77   |
| 33) | 899.88       | 30.00      | 0.0977      | 0.478 | 9.77   |
| 34) | 959.90       | 30.98      | 0.0977      | 0.478 | 9.77   |
| 35) | 1019.88      | 31.94      | 0.0977      | 0.478 | 9.77   |

Page : 34

E-266

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW995-ST-1, 2.5'-4.5' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring No.: | GW995-ST-1            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample Nc.: | GW995-ST-1            | Test Date   | : 3-15-18               | Depth : 3.8'-4.0'   |
| Test No. :  | GW995-ST-1            | Sample Type | : Undisturb             |                     |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 17 of 20 Stress increment from 16.00 (t/ft<sup>2</sup>) to 8.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.92      | 32.86      | 0.0977      | 0.478 | 9.77   |
| 37) | 1139.90      | 33.76      | 0.0977      | 0.478 | 9.77   |
| 38) | 1199.88      | 34.64      | 0.0972      | 0.479 | 9.72   |
| 39) | 1259.88      | 35.49      | 0.0972      | 0.479 | 9.72   |
| 40) | 1319.88      | 36.33      | 0.0977      | 0.478 | 9.77   |
| 41) | 1379.90      | 37.15      | 0.0977      | 0.478 | 9.77   |
| 42) | 1439.88      | 37.95      | 0.0977      | 0.478 | 9.77   |
| 43) | 1499.88      | 38.73      | 0.0972      | 0.479 | 9.72   |
| 44) | 1543.13      | 39.28      | 0.0967      | 0.480 | 9.67   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location    | : GW995-ST-1, 2.5'-4.5' | Project No.: 183923 |
|-------------|-----------------------|-------------|-------------------------|---------------------|
| Boring No.: | GW995-ST-1            | Tested by   | : BMI: blc              | Checked by : KAF    |
| Sample No.: | GW995-ST-1            | Test Date   | : 3-15-18               | Depth : 3.8'-4,0'   |
| Test No. :  | GW995-ST-1            | Sample Type | : Undisturb             |                     |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 18 of 20

Stress increment from 8.00 (t/ft^2) to 4.00 (t/ft^2)

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (응)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0921      | 0.487 | 9.21   |
| 2)  | 0.15         | 0.39       | 0.0916      | 0.488 | 9.16   |
| 3)  | 0.42         | 0.65       | 0.0916      | 0.488 | 9.16   |
| 4)  | 0.92         | 0.96       | 0.0906      | 0.490 | 9.06   |
| 5)  | 1.90         | 1.38       | 0.0901      | 0.491 | 9.01   |
| 6)  | 2.90         | 1.70       | 0.0896      | 0.492 | 8.96   |
| 7)  | 3.92         | 1.98       | 0.0896      | 0.492 | 8.96   |
| 8)  | 4.92         | 2.22       | 0.0891      | 0.492 | 8.91   |
| 9)  | 5.92         | 2.43       | 0.0891      | 0.492 | 8.91   |
| 10) | 6.90         | 2.63       | 0.0886      | 0.493 | 8.86   |
| 11) | 7.90         | 2.81       | 0.0881      | 0.494 | 8.81   |
| 12) | 8.90         | 2.98       | 0.0881      | 0.494 | 8.81   |
| 13) | 9.90         | 3.15       | 0.0881      | 0.494 | 8.81   |
| 14) | 14.90        | 3.86       | 0.0875      | 0.495 | 8.75   |
| 15) | 29.90        | 5.47       | 0.0870      | 0.496 | 8.70   |
| 16) | 59.92        | 7.74       | 0.0865      | 0.497 | 8.65   |
| 17) | 89.92        | 9.48       | 0.0870      | 0.496 | 8.70   |
| 18) | 119.90       | 10.95      | 0.0860      | 0.497 | 8.60   |
| 19) | 149.90       | 12.24      | 0.0865      | 0.497 | 8.65   |
| 20) | 179.92       | 13.41      | 0.0860      | 0.497 | 8.60   |
| 21) | 209.90       | 14.49      | 0.0860      | 0.497 | 8.60   |
| 22) | 239.90       | 15.49      | 0.0860      | 0.497 | 8.60   |
| 23) | 299.90       | 17.32      | 0.0860      | 0.497 | 8.60   |
| 24) | 359.90       | 18.97      | 0.0860      | 0.497 | 8.60   |
| 25) | 419.90       | 20.49      | 0.0860      | 0.497 | 8.60   |
| 26) | 479.92       | 21.91      | 0.0855      | 0.498 | 8.55   |
| 27) | 539.90       | 23.24      | 0.0855      | 0.498 | 8.55   |
| 28) | 599.90       | 24.49      | 0.0855      | 0.498 | 8.55   |
| 29) | 659.90       | 25.69      | 0.0855      | 0.498 | 8.55   |
| 30) | 719.90       | 26.83      | 0.0855      | 0.498 | 8.55   |
| 31) | 779.92       | 27.93      | 0.0855      | 0.498 | 8.55   |
| 32) | 839.90       | 28.98      | 0.0855      | 0.498 | 8.55   |
| 33) | 899.90       | 30.00      | 0.0855      | 0.498 | 8.55   |
| 34) | 959.90       | 30.98      | 0.0855      | 0.498 | 8.55   |
| 35) | 1019.90      | 31.94      | 0.0855      | 0.498 | 8.55   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location : GW995-ST-1, 2.5'-4.5' | Project No.: 183923 |
|-------------|-----------------------|----------------------------------|---------------------|
| Boring No.: | GW995-ST-1            | Tested by : BMI: blc             | Checked by : KAF    |
| Sample No.: | GW995-ST-1            | Test Date : 3-15-18              | Depth : 3.8'-4.0'   |
| Test No. :  | GW995-ST-1            | Sample Type: Undisturb           |                     |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 18 of 20 Stress increment from 8.00 (t/ft<sup>2</sup>) to 4.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
| 36) | 1079 92      | 32 86      | 0 0855      | 0 499 | 0 66   |
| 37) | 1139 90      | 32.00      | 0.0855      | 0.498 | 0.00   |
| 38) | 1199 90      | 34 64      | 0.0855      | 0.498 | 0.55   |
| 39) | 1259 90      | 35 50      | 0.0055      | 0.498 | 0.55   |
| 40) | 1319 90      | 36.33      | 0.0855      | 0.498 | 0.00   |
| 41) | 1379 90      | 37 15      | 0.0850      | 0.498 | 0.55   |
| 42) | 1439.90      | 37.95      | 0.0855      | 0.498 | 8 55   |
| 43) | 1499.90      | 38.73      | 0.0850      | 0 499 | 8 50   |
| 44) | 1559.90      | 39.50      | 0.0855      | 0 498 | 8 55   |
| 45) | 1619.90      | 40.25      | 0.0855      | 0 498 | 8 55   |
| 46) | 1679.90      | 40.99      | 0.0855      | 0.498 | 8 55   |
| 47) | 1739.90      | 41.71      | 0.0850      | 0 499 | 8 50   |
| 48) | 1799.90      | 42.43      | 0.0850      | 0.499 | 8.50   |
| 49) | 1859.90      | 43.13      | 0.0850      | 0.499 | 8.50   |
| 50) | 1919.90      | 43.82      | 0.0850      | 0.499 | 8.50   |
| 51) | 1979.90      | 44.50      | 0.0855      | 0.498 | 8.55   |
| 52) | 2039.90      | 45.17      | 0.0850      | 0.499 | 8.50   |
| 53) | 2099.88      | 45.82      | 0.0850      | 0.499 | 8.50   |
| 54) | 2159.90      | 46.47      | 0.0855      | 0.498 | 8.55   |
| 55) | 2219.90      | 47.12      | 0.0855      | 0.498 | 8.55   |
| 56) | 2279.88      | 47.75      | 0.0850      | 0.499 | 8.50   |
| 57) | 2339.90      | 48.37      | 0.0855      | 0.498 | 8.55   |
| 58) | 2399.88      | 48.99      | 0.0855      | 0.498 | 8.55   |
| 59) | 2459.90      | 49.60      | 0.0855      | 0.498 | 8.55   |
| 60) | 2519.90      | 50.20      | 0.0855      | 0.498 | 8.55   |
| 61) | 2579.88      | 50.79      | 0.0855      | 0.498 | 8.55   |
| 62) | 2639.90      | 51.38      | 0.0850      | 0.499 | 8.50   |
| 63) | 2699.88      | 51.96      | 0.0855      | 0.498 | 8.55   |
| 64) | 2759.90      | 52.53      | 0.0850      | 0.499 | 8.50   |
| 65) | 2812.53      | 53.03      | 0.0855      | 0.498 | 8.55   |

#### CONSOLIDATION TEST DATA

| Project : EMDF Characte | erization Location | :   | GW995- <b>S</b> T-1, | 2.5'-4.5' | Project No. | : | 183923    |
|-------------------------|--------------------|-----|----------------------|-----------|-------------|---|-----------|
| Boring No.: GW995-ST-1  | Tested by          | :   | BMI: blc             |           | Checked by  | : | KAF       |
| Sample No.: GW995-ST-1  | Test Date          | :   | 3-15-18              |           | Depth       | : | 3.8'-4.0' |
| Test No. : GW995-ST-1   | Sample Typ         | pe: | Undisturb            |           |             |   |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 19 of 20

Stress increment from 4.00 (t/ft^2) to 2.00 (t/ft^2)  $\,$ 

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| l)  | 0.00         | 0.00       | 0.0819      | 0.504 | 8.19   |
| 2)  | 0.15         | 0.39       | 0.0814      | 0.505 | 8.14   |
| 3)  | 0.40         | 0.63       | 0.0809      | 0.506 | 8.09   |
| 4)  | 0.90         | 0.95       | 0.0809      | 0.506 | 8.09   |
| 5)  | 1.90         | 1.38       | 0.0799      | 0.507 | 7.99   |
| 6)  | 2.90         | 1.70       | 0.0794      | 0.508 | 7.94   |
| 7)  | 3.90         | 1.97       | 0.0794      | 0.508 | 7.94   |
| 8)  | 4.90         | 2.21       | 0.0789      | 0.509 | 7.89   |
| 9)  | 5.90         | 2.43       | 0.0789      | 0.509 | 7.89   |
| 10) | 6.92         | 2.63       | 0.0784      | 0.510 | 7.84   |
| 11) | 7.90         | 2.81       | 0.0789      | 0.509 | 7.89   |
| 12) | 8.90         | 2.98       | 0.0779      | 0.511 | 7.79   |
| 13) | 9.90         | 3.15       | 0.0779      | 0.511 | 7.79   |
| 14) | 14.90        | 3.86       | 0.0774      | 0.512 | 7.74   |
| 15) | 29.90        | 5.47       | 0.0764      | 0.513 | 7.64   |
| 16) | 59.90        | 7.74       | 0.0758      | 0.514 | 7.58   |
| 17) | 89.92        | 9.48       | 0.0753      | 0.515 | 7.53   |
| 18) | 119.90       | 10.95      | 0.0748      | 0.516 | 7.48   |
| 19) | 149.90       | 12.24      | 0.0748      | 0.516 | 7.48   |
| 20) | 179.90       | 13.41      | 0.0743      | 0.517 | 7.43   |
| 21) | 209.93       | 14.49      | 0.0743      | 0.517 | 7.43   |
| 22) | 239.90       | 15.49      | 0.0743      | 0.517 | 7.43   |
| 23) | 299.92       | 17.32      | 0.0743      | 0.517 | 7.43   |
| 24) | 359.90       | 18.97      | 0.0743      | 0.517 | 7.43   |
| 25) | 419.90       | 20.49      | 0.0743      | 0.517 | 7.43   |
| 26) | 479.90       | 21.91      | 0.0738      | 0.517 | 7.38   |
| 27) | 539.88       | 23.24      | 0.0743      | 0.517 | 7.43   |
| 28) | 599.90       | 24.49      | 0.0743      | 0.517 | 7.43   |
| 29) | 659.90       | 25.69      | 0.0743      | 0.517 | 7.43   |
| 30) | 719.90       | 26.83      | 0.0743      | 0.517 | 7.43   |
| 31) | 779.88       | 27.93      | 0.0738      | 0.517 | 7.38   |
| 32) | 839.90       | 28.98      | 0.0738      | 0.517 | 7.38   |
| 33) | 899.88       | 30.00      | 0.0738      | 0.517 | 7.38   |
| 34) | 959.90       | 30.98      | 0.0738      | 0.517 | 7.38   |
| 35) | 1019.88      | 31.94      | 0.0738      | 0.517 | 7.38   |

E-270

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring No.: | GW995-ST-1            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample No.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth       | : 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 19 of 20

Stress increment from 4.00  $(t/ft^2)$  to 2.00  $(t/ft^2)$ 

Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0738      | 0.517 | 7.38   |
| 37) | 1139.88      | 33.76      | 0.0738      | 0.517 | 7.38   |
| 38) | 1199.90      | 34.64      | 0.0738      | 0.517 | 7.38   |
| 39) | 1259.90      | 35.50      | 0.0738      | 0.517 | 7.38   |
| 40) | 1319.90      | 36.33      | 0.0738      | 0.517 | 7.38   |
| 41) | 1379.90      | 37.15      | 0.0733      | 0.518 | 7.33   |
| 42) | 1407.72      | 37.52      | 0.0733      | 0.518 | 7.33   |
|     |              |            |             |       |        |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No. | : 183923  |
|-------------|-----------------------|--------------|-----------------------|-------------|-----------|
| Boring No.: | GW995-ST-1            | Tested by :  | BMI: blc              | Checked by  | KAF       |
| Sample No.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth :     | 3.8'-4.0' |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |             |           |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 1)  | 0.00         | 0.00       | 0.0708      | 0.523 | 7.08   |
| 2)  | 0.15         | 0.39       | 0.0702      | 0.523 | 7.02   |
| 3)  | 0.42         | 0.65       | 0.0702      | 0.523 | 7.02   |
| 4)  | 0.90         | 0.95       | 0.0697      | 0.524 | 6.97   |
| 5)  | 1.92         | 1.38       | 0.0697      | 0.524 | 6.97   |
| 6)  | 2.93         | 1:71       | 0.0692      | 0.525 | 6.92   |
| 7)  | 3.90         | 1.97       | 0.0687      | 0.526 | 6.87   |
| 8)  | 4.92         | 2.22       | 0.0687      | 0.526 | 6.87   |
| 9)  | 5.95         | 2.44       | 0.0682      | 0.527 | 6.82   |
| 10) | 6.90         | 2.63       | 0.0682      | 0.527 | 6.82   |
| 11) | 7.90         | 2.81       | 0.0687      | 0.526 | 6.87   |
| 12) | 8.90         | 2.98       | 0.0677      | 0.528 | 6.77   |
| 13) | 9.92         | 3.15       | 0.0677      | 0.528 | 6.77   |
| 14) | 14.92        | 3.86       | 0.0667      | 0.529 | 6.67   |
| 15) | 29.90        | 5.47       | 0.0662      | 0.530 | 6.62   |
| 16) | 59.92        | 7.74       | 0.0646      | 0.533 | 6.46   |
| 17) | 89.92        | 9.48       | 0.0636      | 0.534 | 6.36   |
| 18) | 119.90       | 10.95      | 0.0636      | 0.534 | 6.36   |
| 19) | 149.92       | 12.24      | 0.0631      | 0.535 | 6.31   |
| 20) | 179.90       | 13.41      | 0.0631      | 0.535 | 6.31   |
| 21) | 209.92       | 14.49      | 0.0631      | 0.535 | 6.31   |
| 22) | 239.92       | 15.49      | 0.0626      | 0.536 | 6.26   |
| 23) | 299.92       | 17.32      | 0.0626      | 0.536 | 6.26   |
| 24) | 359.90       | 18.97      | 0.0621      | 0.537 | 6.21   |
| 25) | 419.92       | 20.49      | 0.0621      | 0.537 | 6.21   |
| 26) | 479.92       | 21.91      | 0.0621      | 0.537 | 6.21   |
| 27) | 539.90       | 23.24      | 0.0621      | 0.537 | 6.21   |
| 28) | 599.92       | 24.49      | 0.0621      | 0.537 | 6.21   |
| 29) | 659.90       | 25.69      | 0.0621      | 0.537 | 6.21   |
| 30) | 719.92       | 26.83      | 0.0621      | 0.537 | 6.21   |
| 31) | 779.90       | 27.93      | 0.0616      | 0.538 | 6.16   |
| 32) | 839.92       | 28.98      | 0.0616      | 0.538 | 6.16   |
| 33) | 899.90       | 30.00      | 0.0621      | 0.537 | 6.21   |
| 34) | 959.90       | 30.98      | 0.0621      | 0.537 | 6.21   |
| 35) | 1019.92      | 31.94      | 0.0621      | 0.537 | 6.21   |

#### CONSOLIDATION TEST DATA

| Project :   | EMDF Characterization | Location :   | GW995-ST-1, 2.5'-4.5' | Project No. | : 183923    |
|-------------|-----------------------|--------------|-----------------------|-------------|-------------|
| Boring Nc.: | GW995-ST-1            | Tested by :  | BMI: blc              | Checked by  | : KAF       |
| Sample Nc.: | GW995-ST-1            | Test Date :  | 3-15-18               | Depth       | : 3.8′-4.0′ |
| Test No. :  | GW995-ST-1            | Sample Type: | Undisturb             |             |             |

Soil Description : red/brown clayey silt (visual description) Remarks : Use: Near foundation/geobuffer layer

Load Increment : 20 of 20 Stress increment from 2.00 (t/ft<sup>2</sup>) to 1.00 (t/ft<sup>2</sup>) Start Date : Start Time :

|     | ELAPSED TIME | SQRT. OF   | CHANGE IN   | VOID  | STRAIN |
|-----|--------------|------------|-------------|-------|--------|
|     | (min)        | TIME (min) | HEIGHT (in) | RATIO | (%)    |
|     |              |            |             |       |        |
| 36) | 1079.90      | 32.86      | 0.0616      | 0.538 | 6.16   |
| 37) | 1139.93      | 33.76      | 0.0616      | 0.538 | 6.16   |
| 38) | 1199.92      | 34.64      | 0.0621      | 0.537 | 6.21   |
| 39) | 1259.92      | 35.50      | 0.0616      | 0.538 | 6.16   |
| 40) | 1319.92      | 36.33      | 0.0616      | 0.538 | 6.16   |
| 41) | 1379.90      | 37.15      | 0.0616      | 0.538 | 6.16   |
| 42) | 1420.95      | 37.70      | 0.0616      | 0.538 | 6.16   |
|     |              |            |             |       |        |

## **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

### LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377 
 Report Date:
 May 24, 2018

 Job No.:
 183923

 Report No.:
 430281

 No. of Pages:
 1 + Appendix

Report On: Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW995 - ST-2, 6.0'-8.0' – Sample Date: 2/20/18 Depth of Test Specimen: 6.3'-6.5'

On March 5, 2018, one shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with ASTM D 2435, "One-Dimensional Consolidation Properties of Soils Using Incremental Loading".

Results are summarized in the following table. Consolidation data is detailed in Appendix I.

| Test Parameter             | Before Test | After Test |
|----------------------------|-------------|------------|
| Moisture Content, %:       | 13.5        | 17.8       |
| Dry Density, pcf:          | 109.66      | 112.65     |
| Saturation, %:             | 68.66       | 98.23      |
| Void Ratio:                | 0.53        | 0.49       |
| Apparent Specific Gravity: | 2.680       |            |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430281 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-274

Report To: CTI and Associates Project:

**EMDF** Characterization

Sample ID: GW995-ST-2, 6.0'-8.0'

# Appendix I







E-277

CONSOLIDATION TEST TIME CURVES (STEP 2 OF 19) STRESS : 0.25 (t/ft^2) -0.001 0<del>M</del> 0.000 DISPLACEMENT (in) 0.001 0.002 0.003 0.004 E 10<sup>-1</sup> 10-2 10° 10<sup>1</sup>  $10^{2}$  $10^{3}$ TIME (min) -0.001 0.000 DISPLACEMENT (in) 0.001 0.002 0.003 0.004 <sup>E</sup> Ē 5. 10. 15. 20. 25. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No: 183923 Boring No : GW995-ST-2 Sample No : GW995-ST-2 Test Date : 05/09/18 Test No : GW995-ST-2 Depth : 6.3'-6.5' Description : brown silty clay (visual description)

CONSOLIDATION TEST TIME CURVES (STEP 3 OF 19) STRESS :  $0.5 (t/ft^2)$ 0.000Q 0.001 DISPLACEMENT (in) 0.002 0.003 0.004 0.005 <sup>L</sup> 10<sup>-2</sup> 10<sup>-1</sup> 10° 10<sup>1</sup>  $10^{2}$  $10^{3}$ 10<sup>4</sup> TIME (min) 0.001 DISPLACEMENT (in) 0.002 0.003 0.004 -0.005 20. 10. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No : 183923 Boring No : GW995-ST-2 Sample No : GW995-ST-2 Test Date : 05/09/18 Test No : GW995-ST-2 Depth : 6.3'-6.5' Description : brown silty clay (visual description)

E-279

CONSOLIDATION TEST TIME CURVES (STEP 4 OF 19) STRESS : 1 (t/ft^2)



CONSOLIDATION TEST TIME CURVES (STEP 5 OF 19) STRESS : 2 (t/ft^2)





E-282

CONSOLIDATION TEST TIME CURVES (STEP 7 OF 19) STRESS : 1 (t/ft^2)





CONSOLIDATION TEST TIME CURVES (STEP 9 OF 19)
















CONSOLIDATION TEST



CONSOLIDATION TEST TIME CURVES (STEP 18 OF 19) STRESS : 0.5 (t/ft^2) 0.036 ADDAD 0.038 DISPLACEMENT (in) 0.040 0.042 0.044 0.046 <u>–</u> 10<sup>-2</sup> 10<sup>-1</sup> 10<sup>0</sup> 10<sup>1</sup> 10<sup>3</sup>  $10^{2}$ 104 TIME (min) 0.036 0.038 DISPLACEMENT (in) 0.040 0.042 0.044 0.046 0 10. 20. 30. 40. 50. SQUARE ROOT of TIME (min) Bowser Morner Project Name : EMDF Characterization Project No: 183923 Boring No : GW995-ST-2 Sample No : GW995-ST-2 Test Date : 05/09/18 Test No : GW995-ST-2 Depth : 6.3'-6.5' Description : brown silty clay (visual description)



## **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

#### LABORATORY REPORT

Report To: CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377 
 Report Date:
 May 17, 2018

 Job No.:
 183923

 Report No.:
 430272

 No. of Pages:
 3

**Report On:** Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization – Project No. 1188070011 Sample ID: GW995 – ST-2, 6.0'-8.0' – Sample Date: 2/22/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with ASTM D 4767, "Consolidated-Undrained Triaxial Compression Test on Cohesive Soils".

Results are summarized below and detailed on the attached data sheets.

| Test Parameter                | Test No.1 | Test No. 2 | Test No. 3 |  |
|-------------------------------|-----------|------------|------------|--|
| Dry Density, pcf:             | 107.9     | 106.05     | No Test    |  |
| Moisture Content, %:          | 15.55     | 17.12      | No Test    |  |
| Minor Principle Stress, psi:  | 15.46     | 23.65      | No Test    |  |
| Maximum Deviator Stress, psi: | 52.84     | 69.43      | No Test    |  |
| Cohesion (c'), psi:           |           | 0.0        |            |  |
| phi Angle (Ø'):               | 36.9      |            |            |  |
| Apparent Specific Gravity:    | 2.68      |            |            |  |

Note: Two triaxial points were tested instead of three due to insufficient amount of sample.

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805 extension 322.

Respectfully submitted,

BOWSER-MORNER, IN

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430272 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-296

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowsermorner.com/accreditations for reviews.





## **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated

### LABORATORY REPORT

**Report To:** CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377

Report Date: May 4, 2018 Job No.: 183923 **Report No.:** 430252 No. of Pages: 2

**Report On:** Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization - Project No. 1188070011 Sample ID: GW999 - ST-1, 2.5'-4.5' - Sample Date: 2/20/18

On March 5, 2018, one Shelby tube sample was submitted for selected laboratory analysis from the above referenced project. Testing was performed as specified by the client and in accordance with the ASTM D 4318, "Liquid Limit, Plastic Limit, and Plasticity Index of Soils".

Results are presented in the following table and detailed on the attached data sheet.

| Test Parameter    | Results |  |  |
|-------------------|---------|--|--|
| Liquid Limit:     | 46      |  |  |
| Plastic Limit:    | 31      |  |  |
| Plasticity Index: | 15      |  |  |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430252 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-299 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for review.



# **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Road • Dayton, Ohio 45424 Mailing Address: P. O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated



### LABORATORY REPORT

**Report To:** CTI & Associates, Inc. Attn: Michael Partenio 28001 Cabot Drive, Ste. 250 Novi, MI 48377

Report Date: May 3, 2018 Job No.: 183923 **Report No.:** 430247 No. of Pages: 2

**Report On:** Laboratory Analysis of One Shelby Tube Sample Project: EMDF Characterization - Project No. 1188070011 Sample ID: GW999 - ST-2, 5.0'-5.85' - Sample Date: 2/20/18 Depth of Test Specimen: 5.0'-5.3'

On March 5, 2018, one Shelby tube sample was submitted for laboratory determination of permeability. Testing was performed as specified by the client and in accordance with ASTM D 5084. "Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter".

Results are presented in the following table.

| Test Parameter                | Results                |  |  |
|-------------------------------|------------------------|--|--|
| Average Permeability, cm/sec: | 3.9 x 10 <sup>-8</sup> |  |  |

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, extension 322.

Respectfully submitted,

BOWSER-MORNER, INC.

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

KAF/blc 430247 1-File 1-mpartenio@cticompanies.com 1-kfoye@cticompanies.com

E-301 All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only of The Items Calibrated or Tested. Unless Otherwise Agreed, Samples Or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www.bowser-morner.com/accreditations for reviews.

## FALLING HEAD PERMEABILITY TEST

ASTM D 5084, Measurement of Hydraulic Conductivity

#### UNDISTURBED

| Client:                | CTI & Associates, Inc. |
|------------------------|------------------------|
| Project:               | EMDF Characterization  |
| BMI Work Order Number: | 183923                 |
| Sample Identification: | GW999-ST-2, 5.0'-5.85' |
| Depth, ft:             | 5.0'-5.3'              |
| Visual Description:    | Saprolite              |

#### **SPECIMEN DATA:**

| Dimension, inches<br>Height:<br>Diameter:                                                           | 3.08<br>2.863  |
|-----------------------------------------------------------------------------------------------------|----------------|
| Mass, Ibs:                                                                                          | 1.458          |
| Moisture Content,%<br>Initial:<br>Final:                                                            | 21.4<br>25.0   |
| Wet Unit Weight, pcf<br>Initial:<br>Final:                                                          | 127.1<br>130.9 |
| Initial Dry Unit Weight, pcf:                                                                       | 104.7          |
| Back Pressure Saturation, psi<br>Back Pressure, Exit:<br>Back Pressure, Enter:<br>Lateral Pressure: | 60<br>63<br>67 |

Permeability (k), cm/sec:

3.9 x 10<sup>-8</sup>



Appendix E.4 – Rock Core Specimen Testing

This Page Intentionally Left Blank.

# **BOWSER-MORNER, INC.**

Delivery Address: 4518 Taylorsville Rd • Dayton, Ohio 45424 Mailing Address: P.O. Box 51 • Dayton, Ohio 45401

AASHTO/ISO 17025 Accredited • USACE Validated



#### LABORATORY REPORT

Report To: CTI and Associates Attn: Kevin Foye 28001 Cabot Drive, Suite 250 Novi, MI 48477

 Report Date:
 04/18/18

 Job No.:
 183740

 Report No.:
 301273

 No. of Pages:
 8

Source: EMDF Characterization

Date Submitted: 03/01/18

Project No.: 1188070011

**Procedure:** Compressive Strength of Intact Rock Core Specimens (ASTM D 7012 Method C & D)

| Sample Identification:             | GW 978-RC-9           | GW 988-RC-10          | GW 982-RC-10     | GW 982-RC-13          | GW 978-RC-6           | GW 992-RC-4           |
|------------------------------------|-----------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------|
| Length As Cut, Inches:             | 3.97                  | 2.85                  | 4.33             | 4.69                  | 4.65                  | 3.38                  |
| Diameter, Inches:                  | 2.38                  | 2.38                  | 2.37             | 2.39                  | 2.35                  | 2.38                  |
| Mass, grams:                       | 757.6                 | 599.4                 | 802.9            | 940.1                 | 868.6                 | 607.6                 |
| Maximum Load, Ibs:                 | 6,720                 | 32,462                | 190              | 107,074               | 3,241                 | 2,755                 |
| Area, Square Inches:               | 4.45                  | 4.45                  | 4.41             | 4.49                  | 4.34                  | 4.45                  |
| Volume, cubic ft:                  | 0.0102                | 0.0073                | 0.0111           | 0.0122                | 0.0117                | 0.0087                |
| L/D Ratio:                         | 1.67                  | 1.20                  | 1.83             | 1,96                  | 1.98                  | 1.42                  |
| Compressive Strength, psi:         | 1,510                 | 7,290                 | 40               | 23,850                | 750                   | 620                   |
| Density, pcf:                      | 163.4                 | 180.0                 | 160.2            | 170.1                 | 164.0                 | 153.9                 |
| Young's Modulus (E <sub>av</sub> ) | 8.0 x 10 <sup>4</sup> | 2.4 x 10 <sup>5</sup> | cannot determine | 4.5 x 10 <sup>5</sup> | 4.4 x 10 <sup>4</sup> | 5.0 x 10 <sup>4</sup> |

Note: specimens GW 982-RC-10, GW 982-RC-13, and GW 992-RC-4 all failed along natural planes of weakness contained in the rock core. See attached photos for mode of failure criteria.

Should you have any questions, or if we may be of further service, please contact me at (937) 236-8805, ext. 322.

KAF/bk/jd 301273 1-File 1-kfoye@cticompanies.com This document has been provided in an electronic format to expedite delivery of results and / or recommendations to BOWSER-MORNER's Client: A wet-signed ordgnal is maintained at our Dayton office at 4518 Taylorsville Rd , Dayton, OH 45424. Recause electronic documents can be altered, if there is any question about the validity of this discussent, please contact our office to view the the wet signed original.

Respectfully submitted, BOWSER-MORNER, INC.

Karl A. Fletcher

Karl A. Fletcher, Manager Construction Materials and Geotechnical Laboratories

All Reports Remain The Confidential Property Of BOWSER-MORNER And No Publication Or Distribution Of Reports May Be Made Without Our Express Written Consent, Except As Authorized By Contract. Results Contained In This Report Are Reflective Only Of The Items Calibrated Or Tested. Unless Otherwise Agreed, Samples or Specimens Will Be Discarded Or Returned At Bowser-Morner's Discretion. AASHTO/ISO 17025 Accreditation applies only to the parameters included in BOWSER-MORNER'S current scope of accreditation. Go to www bowser-morner com/accreditations for review.









$$E_{av} = \frac{\Delta \nabla}{\Delta E_{d}} = \frac{4000 \text{ psi}}{0.017} = 2.4 \times 10^5 \text{ psi}$$



BOWSER MORNER





RNER

n





### Compressive Strength of Intact Rock Core Specimens (ASTM D 7012 Method C & D)



After -GW978-11.9 0 183740 CTI GW 988-11-10 183740 CTT s GW 982-10-0 0 183740 271 GW 112-11-13 0 183 740 CTI 644978-00-6 183740 CTI 0 4 GW112-RC-4 0 183740 <12



4/18/2018

### DOE/OR/01-2819&D1

## **RECORD COPY DISTRIBUTION**

File—DMC—RC